Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
703487c6
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
703487c6
编写于
11月 02, 2021
作者:
Z
zhaocaibei123
提交者:
GitHub
11月 02, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
memory sparse table (#36909)
上级
41a09113
变更
9
显示空白变更内容
内联
并排
Showing
9 changed file
with
874 addition
and
66 deletion
+874
-66
paddle/fluid/distributed/table/CMakeLists.txt
paddle/fluid/distributed/table/CMakeLists.txt
+3
-1
paddle/fluid/distributed/table/depends/dense.h
paddle/fluid/distributed/table/depends/dense.h
+0
-62
paddle/fluid/distributed/table/memory_sparse_table.cc
paddle/fluid/distributed/table/memory_sparse_table.cc
+615
-0
paddle/fluid/distributed/table/memory_sparse_table.h
paddle/fluid/distributed/table/memory_sparse_table.h
+92
-0
paddle/fluid/distributed/table/table.cc
paddle/fluid/distributed/table/table.cc
+16
-0
paddle/fluid/distributed/table/table.h
paddle/fluid/distributed/table/table.h
+4
-2
paddle/fluid/distributed/test/CMakeLists.txt
paddle/fluid/distributed/test/CMakeLists.txt
+3
-0
paddle/fluid/distributed/test/memory_sparse_table_test.cc
paddle/fluid/distributed/test/memory_sparse_table_test.cc
+140
-0
paddle/fluid/framework/io/CMakeLists.txt
paddle/fluid/framework/io/CMakeLists.txt
+1
-1
未找到文件。
paddle/fluid/distributed/table/CMakeLists.txt
浏览文件 @
703487c6
...
...
@@ -37,7 +37,9 @@ set_source_files_properties(table.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPI
set_source_files_properties
(
sparse_sgd_rule.cc PROPERTIES COMPILE_FLAGS
${
DISTRIBUTE_COMPILE_FLAGS
}
)
set_source_files_properties
(
ctr_accessor.cc PROPERTIES COMPILE_FLAGS
${
DISTRIBUTE_COMPILE_FLAGS
}
)
set_source_files_properties
(
memory_sparse_table.cc PROPERTIES COMPILE_FLAGS
${
DISTRIBUTE_COMPILE_FLAGS
}
)
cc_library
(
sparse_sgd_rule SRCS sparse_sgd_rule.cc DEPS
${
TABLE_DEPS
}
ps_framework_proto
)
cc_library
(
ctr_accessor SRCS ctr_accessor.cc DEPS
${
TABLE_DEPS
}
ps_framework_proto sparse_sgd_rule
)
cc_library
(
memory_sparse_table SRCS memory_sparse_table.cc DEPS ps_framework_proto
${
TABLE_DEPS
}
fs afs_wrapper ctr_accessor common_table
)
cc_library
(
table SRCS table.cc DEPS
common_table tensor_accessor tensor_table ps_framework_proto string_helper device_context gflags glog boost ctr_accessor
)
cc_library
(
table SRCS table.cc DEPS
memory_sparse_table common_table tensor_accessor tensor_table ps_framework_proto string_helper device_context gflags glog boost
)
paddle/fluid/distributed/table/depends/dense.h
浏览文件 @
703487c6
...
...
@@ -221,15 +221,6 @@ class DAdamD2Sum : public DenseOptimizer {
void
update
(
const
float
*
update_values
,
size_t
num
,
int
begin
,
int
end
)
override
{
auto
update_numel
=
end
-
begin
;
/*
// for debug
std::cout << "before update:\n";
for (int i = 0; i < 3; ++ i) {
std::cout << "param: " << i << " " << *(param+begin+i) <<
"grad: " << *(update_values+begin+i) << "\n";
}*/
std
::
vector
<
float
>
grad
,
grad2
,
scale
;
grad
.
resize
(
update_numel
);
grad2
.
resize
(
update_numel
);
...
...
@@ -240,57 +231,21 @@ class DAdamD2Sum : public DenseOptimizer {
blas
.
VCOPY
(
update_numel
,
update_values
+
begin
,
grad
.
data
());
blas
.
VCOPY
(
update_numel
,
update_values
+
begin
,
grad2
.
data
());
/*
for (int i = 0; i < end-begin; ++ i) {
std::cout << "copy grad: " << i << " " << *(grad.data()+begin+i) <<
"copy grad2: " << *(grad2.data()+begin+i) << "\n";
}
for (int i = 0; i < 3; ++ i) {
std::cout << "d2sum before: " << i << " " << *(ada_d2sum+begin+i) << "\n";
}*/
// d2sum
blas
.
SCAL
(
update_numel
,
ada_decay_rate
[
0
],
ada_d2sum
+
begin
);
ADD
<
float
>
(
update_numel
,
ada_d2sum
+
begin
,
1
,
ada_d2sum
+
begin
);
/*
for (int i = 0; i < end-begin; ++ i) {
std::cout << "d2sum update: " << i << " " << *(ada_d2sum+begin+i) << "\n";
}
for (int i = 0; i < 3; ++ i) {
std::cout << "g2sum before: " << i << " " << *(ada_g2sum+begin+i) << "\n";
}*/
// g2sum
blas
.
SCAL
(
update_numel
,
ada_decay_rate
[
0
],
ada_g2sum
+
begin
);
blas
.
VSQUARE
(
update_numel
,
grad2
.
data
(),
grad2
.
data
());
blas
.
VADD
(
update_numel
,
ada_g2sum
+
begin
,
grad2
.
data
(),
ada_g2sum
+
begin
);
/*
for (int i = 0; i < end-begin; ++ i) {
std::cout << "g2sum update: " << i << " " << *(ada_g2sum+begin+i) << "\n";
}
for (int i = 0; i < 3; ++ i) {
std::cout << "mom before: " << i << " " << *(mom_velocity+begin+i) <<
"\n";
}*/
// mom
blas
.
SCAL
(
update_numel
,
mom_decay_rate
[
0
],
mom_velocity
+
begin
);
blas
.
SCAL
(
update_numel
,
1
-
mom_decay_rate
[
0
],
grad
.
data
());
blas
.
VADD
(
update_numel
,
mom_velocity
+
begin
,
grad
.
data
(),
mom_velocity
+
begin
);
/*
for (int i = 0; i < end-begin; ++ i) {
std::cout << "mom update: " << i << " " << *(mom_velocity+begin+i) <<
"\n";
}
for (int i = 0; i < 3; ++ i) {
std::cout << "scale before: " << i << " " << *(scale.data()+begin+i) <<
"\n";
}*/
// scale
float
*
scale_
=
scale
.
data
();
blas
.
VDIV
(
update_numel
,
ada_g2sum
+
begin
,
ada_d2sum
+
begin
,
scale_
);
...
...
@@ -298,30 +253,13 @@ class DAdamD2Sum : public DenseOptimizer {
DIV
<
float
>
(
update_numel
,
1
+
ada_epsilon
[
0
],
scale_
,
scale_
);
SQRT
<
float
>
(
update_numel
,
scale_
,
scale_
);
/*
for (int i = 0; i < 3; ++ i) {
std::cout << "scale update: " << i << " " << *(scale.data()+begin+i) <<
"\n";
}*/
blas
.
SCAL
(
update_numel
,
learning_rate
[
0
],
scale_
);
// TODO(zhaocaibei123): check if there exists elementwise_multiply in blas
// TODO(zhaocaibei123): blas.VMUL
ELE_MUL
<
float
>
(
update_numel
,
scale_
,
mom_velocity
+
begin
,
scale_
);
/*
for (int i = 0; i < 3; ++ i) {
std::cout << "scale update2: " << i << " " << *(scale.data()+begin+i) <<
"\n";
}*/
blas
.
VSUB
(
update_numel
,
param
+
begin
,
scale_
,
param
+
begin
);
/*
for (int i = 0; i < end-begin; ++ i) {
std::cout << "param update " << i << " " << *(param+begin+i) << "\n";
}*/
}
float
*
learning_rate
;
...
...
paddle/fluid/distributed/table/memory_sparse_table.cc
0 → 100644
浏览文件 @
703487c6
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <sstream>
#include "paddle/fluid/distributed/table/memory_sparse_table.h"
#include "paddle/fluid/framework/io/fs.h"
#include "boost/lexical_cast.hpp"
#include "glog/logging.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
distributed
{
// TODO(zhaocaibei123): configure
bool
FLAGS_pslib_create_value_when_push
=
false
;
int
FLAGS_pslib_table_save_max_retry
=
3
;
bool
FLAGS_pslib_enable_create_feasign_randomly
=
false
;
int32_t
MemorySparseTable
::
initialize
()
{
shards_task_pool_
.
resize
(
task_pool_size_
);
for
(
int
i
=
0
;
i
<
shards_task_pool_
.
size
();
++
i
)
{
shards_task_pool_
[
i
].
reset
(
new
::
ThreadPool
(
1
));
}
initialize_value
();
VLOG
(
0
)
<<
"initalize MemorySparseTable succ"
;
return
0
;
}
int32_t
MemorySparseTable
::
initialize_value
()
{
sparse_table_shard_num_
=
static_cast
<
int
>
(
_config
.
shard_num
());
avg_local_shard_num_
=
SparseTable
::
sparse_local_shard_num
(
sparse_table_shard_num_
,
_shard_num
);
real_local_shard_num_
=
avg_local_shard_num_
;
if
(
real_local_shard_num_
*
(
_shard_idx
+
1
)
>
sparse_table_shard_num_
)
{
real_local_shard_num_
=
sparse_table_shard_num_
-
real_local_shard_num_
*
_shard_idx
;
real_local_shard_num_
=
real_local_shard_num_
<
0
?
0
:
real_local_shard_num_
;
}
VLOG
(
1
)
<<
"memory sparse table avg_local_shard_num_: "
<<
avg_local_shard_num_
<<
" real_local_shard_num_: "
<<
real_local_shard_num_
;
shard_values_
.
reserve
(
real_local_shard_num_
);
for
(
int
x
=
0
;
x
<
real_local_shard_num_
;
++
x
)
{
auto
shard
=
std
::
make_shared
<
SparseTableShard
>
();
shard_values_
.
emplace_back
(
shard
);
}
return
0
;
}
int32_t
MemorySparseTable
::
load
(
const
std
::
string
&
path
,
const
std
::
string
&
param
)
{
std
::
string
table_path
=
table_dir
(
path
);
auto
file_list
=
_afs_client
.
list
(
table_path
);
std
::
sort
(
file_list
.
begin
(),
file_list
.
end
());
for
(
auto
file
:
file_list
)
{
VLOG
(
1
)
<<
"MemorySparseTable::load() file list: "
<<
file
;
}
int
load_param
=
atoi
(
param
.
c_str
());
auto
expect_shard_num
=
sparse_table_shard_num_
;
if
(
file_list
.
size
()
!=
expect_shard_num
)
{
LOG
(
WARNING
)
<<
"MemorySparseTable file_size:"
<<
file_list
.
size
()
<<
" not equal to expect_shard_num:"
<<
expect_shard_num
;
return
-
1
;
}
if
(
file_list
.
size
()
==
0
)
{
LOG
(
WARNING
)
<<
"MemorySparseTable load file is empty, path:"
<<
path
;
return
-
1
;
}
size_t
file_start_idx
=
_shard_idx
*
avg_local_shard_num_
;
size_t
feature_value_size
=
_value_accesor
->
size
()
/
sizeof
(
float
);
// TODO(zhaocaibei123): multi-thread
// int thread_num = shard_values_.size() < 15 ? shard_values_.size() : 15;
// omp_set_num_threads(thread_num);
// #pragma omp parallel for schedule(dynamic)
for
(
size_t
i
=
0
;
i
<
real_local_shard_num_
;
++
i
)
{
FsChannelConfig
channel_config
;
channel_config
.
path
=
file_list
[
file_start_idx
+
i
];
VLOG
(
1
)
<<
"MemorySparseTable::load begin load "
<<
channel_config
.
path
<<
" into local shard "
<<
i
;
channel_config
.
converter
=
_value_accesor
->
converter
(
load_param
).
converter
;
channel_config
.
deconverter
=
_value_accesor
->
converter
(
load_param
).
deconverter
;
bool
is_read_failed
=
false
;
int
retry_num
=
0
;
int
err_no
=
0
;
do
{
is_read_failed
=
false
;
err_no
=
0
;
std
::
string
line_data
;
auto
read_channel
=
_afs_client
.
open_r
(
channel_config
,
0
,
&
err_no
);
char
*
end
=
NULL
;
auto
&
shard
=
shard_values_
[
i
];
try
{
while
(
read_channel
->
read_line
(
line_data
)
==
0
&&
line_data
.
size
()
>
1
)
{
uint64_t
key
=
std
::
strtoul
(
line_data
.
data
(),
&
end
,
10
);
auto
*
value
=
shard
->
Init
(
key
);
value
->
resize
(
feature_value_size
);
int
parse_size
=
_value_accesor
->
parse_from_string
(
++
end
,
value
->
data
());
value
->
resize
(
parse_size
);
// for debug
for
(
int
ii
=
0
;
ii
<
parse_size
;
++
ii
)
{
VLOG
(
2
)
<<
"MemorySparseTable::load key: "
<<
key
<<
" value "
<<
ii
<<
": "
<<
value
->
data
()[
ii
]
<<
" local_shard: "
<<
i
;
}
}
read_channel
->
close
();
if
(
err_no
==
-
1
)
{
++
retry_num
;
is_read_failed
=
true
;
LOG
(
ERROR
)
<<
"MemorySparseTable load failed after read, retry it! path:"
<<
channel_config
.
path
<<
" , retry_num="
<<
retry_num
;
}
}
catch
(...)
{
++
retry_num
;
is_read_failed
=
true
;
LOG
(
ERROR
)
<<
"MemorySparseTable load failed, retry it! path:"
<<
channel_config
.
path
<<
" , retry_num="
<<
retry_num
;
}
if
(
retry_num
>
paddle
::
distributed
::
FLAGS_pslib_table_save_max_retry
)
{
LOG
(
ERROR
)
<<
"MemorySparseTable load failed reach max limit!"
;
exit
(
-
1
);
}
}
while
(
is_read_failed
);
}
LOG
(
INFO
)
<<
"MemorySparseTable load success, path from "
<<
file_list
[
file_start_idx
]
<<
" to "
<<
file_list
[
file_start_idx
+
real_local_shard_num_
-
1
];
return
0
;
}
int32_t
MemorySparseTable
::
load_local_fs
(
const
std
::
string
&
path
,
const
std
::
string
&
param
)
{
std
::
string
table_path
=
table_dir
(
path
);
auto
file_list
=
paddle
::
framework
::
localfs_list
(
table_path
);
int
load_param
=
atoi
(
param
.
c_str
());
auto
expect_shard_num
=
sparse_table_shard_num_
;
if
(
file_list
.
size
()
!=
expect_shard_num
)
{
LOG
(
WARNING
)
<<
"MemorySparseTable file_size:"
<<
file_list
.
size
()
<<
" not equal to expect_shard_num:"
<<
expect_shard_num
;
return
-
1
;
}
if
(
file_list
.
size
()
==
0
)
{
LOG
(
WARNING
)
<<
"MemorySparseTable load file is empty, path:"
<<
path
;
return
-
1
;
}
size_t
file_start_idx
=
_shard_idx
*
avg_local_shard_num_
;
size_t
feature_value_size
=
_value_accesor
->
size
()
/
sizeof
(
float
);
// int thread_num = shard_values_.size() < 15 ? shard_values_.size() : 15;
// omp_set_num_threads(thread_num);
// #pragma omp parallel for schedule(dynamic)
for
(
size_t
i
=
0
;
i
<
real_local_shard_num_
;
++
i
)
{
bool
is_read_failed
=
false
;
int
retry_num
=
0
;
int
err_no
=
0
;
do
{
is_read_failed
=
false
;
err_no
=
0
;
std
::
string
line_data
;
std
::
ifstream
file
(
file_list
[
file_start_idx
+
i
]);
char
*
end
=
NULL
;
auto
&
shard
=
shard_values_
[
i
];
try
{
while
(
std
::
getline
(
file
,
line_data
)
&&
line_data
.
size
()
>
1
)
{
uint64_t
key
=
std
::
strtoul
(
line_data
.
data
(),
&
end
,
10
);
auto
*
value
=
shard
->
Init
(
key
);
value
->
resize
(
feature_value_size
);
int
parse_size
=
_value_accesor
->
parse_from_string
(
++
end
,
value
->
data
());
value
->
resize
(
parse_size
);
// value->shrink_to_fit();
}
file
.
close
();
if
(
err_no
==
-
1
)
{
++
retry_num
;
is_read_failed
=
true
;
LOG
(
ERROR
)
<<
"MemorySparseTable load failed after read, retry it! path:"
<<
file_list
[
file_start_idx
+
i
]
<<
" , retry_num="
<<
retry_num
;
}
}
catch
(...)
{
++
retry_num
;
is_read_failed
=
true
;
LOG
(
ERROR
)
<<
"MemorySparseTable load failed, retry it! path:"
<<
file_list
[
file_start_idx
+
i
]
<<
" , retry_num="
<<
retry_num
;
}
if
(
retry_num
>
paddle
::
distributed
::
FLAGS_pslib_table_save_max_retry
)
{
LOG
(
ERROR
)
<<
"MemorySparseTable load failed reach max limit!"
;
exit
(
-
1
);
}
}
while
(
is_read_failed
);
}
LOG
(
INFO
)
<<
"MemorySparseTable load success, path from "
<<
file_list
[
file_start_idx
]
<<
" to "
<<
file_list
[
file_start_idx
+
real_local_shard_num_
-
1
];
return
0
;
}
int32_t
MemorySparseTable
::
save
(
const
std
::
string
&
dirname
,
const
std
::
string
&
param
)
{
VLOG
(
0
)
<<
"MemorySparseTable::save dirname: "
<<
dirname
;
int
save_param
=
atoi
(
param
.
c_str
());
// checkpoint:0 xbox delta:1 xbox base:2
std
::
string
table_path
=
table_dir
(
dirname
);
_afs_client
.
remove
(
paddle
::
string
::
format_string
(
"%s/part-%03d-*"
,
table_path
.
c_str
(),
_shard_idx
));
// int thread_num = shard_values_.size() < 20 ? shard_values_.size() : 20;
std
::
atomic
<
uint32_t
>
feasign_size_all
{
0
};
size_t
file_start_idx
=
avg_local_shard_num_
*
_shard_idx
;
// TODO(zhaocaibei123): openmp
// omp_set_num_threads(thread_num);
// #pragma omp parallel for schedule(dynamic)
for
(
size_t
i
=
0
;
i
<
real_local_shard_num_
;
++
i
)
{
FsChannelConfig
channel_config
;
if
(
_config
.
compress_in_save
()
&&
(
save_param
==
0
||
save_param
==
3
))
{
channel_config
.
path
=
paddle
::
string
::
format_string
(
"%s/part-%03d-%05d.gz"
,
table_path
.
c_str
(),
_shard_idx
,
file_start_idx
+
i
);
}
else
{
channel_config
.
path
=
paddle
::
string
::
format_string
(
"%s/part-%03d-%05d"
,
table_path
.
c_str
(),
_shard_idx
,
file_start_idx
+
i
);
}
channel_config
.
converter
=
_value_accesor
->
converter
(
save_param
).
converter
;
channel_config
.
deconverter
=
_value_accesor
->
converter
(
save_param
).
deconverter
;
bool
is_write_failed
=
false
;
int
feasign_size
=
0
;
int
retry_num
=
0
;
int
err_no
=
0
;
auto
&
shard
=
shard_values_
[
i
];
do
{
err_no
=
0
;
feasign_size
=
0
;
is_write_failed
=
false
;
auto
write_channel
=
_afs_client
.
open_w
(
channel_config
,
1024
*
1024
*
40
,
&
err_no
);
for
(
auto
&
table
:
shard
->
values_
)
{
for
(
auto
&
value
:
table
)
{
if
(
_value_accesor
->
save
(
value
.
second
->
data
(),
save_param
))
{
std
::
string
format_value
=
_value_accesor
->
parse_to_string
(
value
.
second
->
data
(),
value
.
second
->
size
());
if
(
0
!=
write_channel
->
write_line
(
paddle
::
string
::
format_string
(
"%lu %s"
,
value
.
first
,
format_value
.
c_str
())))
{
++
retry_num
;
is_write_failed
=
true
;
LOG
(
ERROR
)
<<
"MemorySparseTable save prefix failed, retry it! path:"
<<
channel_config
.
path
<<
" , retry_num="
<<
retry_num
;
break
;
}
++
feasign_size
;
}
}
}
write_channel
->
close
();
if
(
err_no
==
-
1
)
{
++
retry_num
;
is_write_failed
=
true
;
LOG
(
ERROR
)
<<
"MemorySparseTable save prefix failed after write, retry it! "
<<
"path:"
<<
channel_config
.
path
<<
" , retry_num="
<<
retry_num
;
}
if
(
is_write_failed
)
{
_afs_client
.
remove
(
channel_config
.
path
);
}
if
(
retry_num
>
paddle
::
distributed
::
FLAGS_pslib_table_save_max_retry
)
{
LOG
(
ERROR
)
<<
"MemorySparseTable save prefix failed reach max limit!"
;
exit
(
-
1
);
}
}
while
(
is_write_failed
);
feasign_size_all
+=
feasign_size
;
for
(
auto
&
table
:
shard
->
values_
)
{
for
(
auto
&
value
:
table
)
{
_value_accesor
->
update_stat_after_save
(
value
.
second
->
data
(),
save_param
);
}
}
LOG
(
INFO
)
<<
"MemorySparseTable save prefix success, path: "
<<
channel_config
.
path
;
}
// int32 may overflow need to change return value
return
0
;
}
int32_t
MemorySparseTable
::
save_local_fs
(
const
std
::
string
&
dirname
,
const
std
::
string
&
param
,
const
std
::
string
&
prefix
)
{
int
save_param
=
atoi
(
param
.
c_str
());
// checkpoint:0 xbox delta:1 xbox base:2
std
::
string
table_path
=
table_dir
(
dirname
);
int
feasign_cnt
=
0
;
size_t
file_start_idx
=
avg_local_shard_num_
*
_shard_idx
;
for
(
size_t
i
=
0
;
i
<
real_local_shard_num_
;
++
i
)
{
feasign_cnt
=
0
;
auto
&
shard
=
shard_values_
[
i
];
std
::
string
file_name
=
paddle
::
string
::
format_string
(
"%s/part-%s-%03d-%05d"
,
table_path
.
c_str
(),
prefix
.
c_str
(),
_shard_idx
,
file_start_idx
+
i
);
std
::
ofstream
os
;
os
.
open
(
file_name
);
for
(
auto
&
table
:
shard
->
values_
)
{
for
(
auto
&
value
:
table
)
{
if
(
_value_accesor
->
save
(
value
.
second
->
data
(),
save_param
))
{
std
::
string
format_value
=
_value_accesor
->
parse_to_string
(
value
.
second
->
data
(),
value
.
second
->
size
());
std
::
string
out_line
=
paddle
::
string
::
format_string
(
"%lu %s
\n
"
,
value
.
first
,
format_value
.
c_str
());
// VLOG(2) << out_line.c_str();
os
.
write
(
out_line
.
c_str
(),
sizeof
(
char
)
*
out_line
.
size
());
++
feasign_cnt
;
}
}
}
os
.
close
();
LOG
(
INFO
)
<<
"MemorySparseTable save prefix success, path:"
<<
file_name
<<
"feasign_cnt: "
<<
feasign_cnt
;
}
return
0
;
}
std
::
pair
<
int64_t
,
int64_t
>
MemorySparseTable
::
print_table_stat
()
{
int64_t
feasign_size
=
0
;
int64_t
mf_size
=
0
;
for
(
auto
&
shard
:
shard_values_
)
{
for
(
auto
&
table
:
shard
->
values_
)
{
feasign_size
+=
table
.
size
();
}
}
return
{
feasign_size
,
mf_size
};
}
int32_t
MemorySparseTable
::
pull_sparse
(
float
*
pull_values
,
const
PullSparseValue
&
pull_value
)
{
std
::
vector
<
std
::
future
<
int
>>
tasks
(
real_local_shard_num_
);
const
size_t
value_size
=
_value_accesor
->
size
()
/
sizeof
(
float
);
size_t
mf_value_size
=
_value_accesor
->
mf_size
()
/
sizeof
(
float
);
size_t
select_value_size
=
_value_accesor
->
select_size
()
/
sizeof
(
float
);
// std::atomic<uint32_t> missed_keys{0};
std
::
vector
<
std
::
vector
<
std
::
pair
<
uint64_t
,
int
>>>
task_keys
(
real_local_shard_num_
);
size_t
num
=
pull_value
.
numel_
;
for
(
size_t
i
=
0
;
i
<
num
;
++
i
)
{
int
shard_id
=
(
pull_value
.
feasigns_
[
i
]
%
sparse_table_shard_num_
)
%
avg_local_shard_num_
;
task_keys
[
shard_id
].
push_back
({
pull_value
.
feasigns_
[
i
],
i
});
}
for
(
int
shard_id
=
0
;
shard_id
<
real_local_shard_num_
;
++
shard_id
)
{
tasks
[
shard_id
]
=
shards_task_pool_
[
shard_id
%
shards_task_pool_
.
size
()]
->
enqueue
(
[
this
,
shard_id
,
&
task_keys
,
value_size
,
pull_values
,
mf_value_size
,
select_value_size
]()
->
int
{
auto
&
local_shard
=
shard_values_
[
shard_id
];
float
data_buffer
[
value_size
];
// NOLINT
float
*
data_buffer_ptr
=
data_buffer
;
auto
&
keys
=
task_keys
[
shard_id
];
for
(
size_t
i
=
0
;
i
<
keys
.
size
();
i
++
)
{
uint64_t
key
=
keys
[
i
].
first
;
auto
itr
=
local_shard
->
Find
(
key
);
size_t
data_size
=
value_size
-
mf_value_size
;
if
(
itr
==
local_shard
->
end
())
{
// ++missed_keys;
if
(
FLAGS_pslib_create_value_when_push
)
{
memset
(
data_buffer
,
0
,
sizeof
(
float
)
*
data_size
);
}
else
{
auto
*
feature_value
=
local_shard
->
Init
(
key
);
feature_value
->
resize
(
data_size
);
float
*
data_ptr
=
feature_value
->
data
();
_value_accesor
->
create
(
&
data_buffer_ptr
,
1
);
memcpy
(
data_ptr
,
data_buffer_ptr
,
data_size
*
sizeof
(
float
));
}
}
else
{
data_size
=
itr
->
second
->
size
();
memcpy
(
data_buffer_ptr
,
itr
->
second
->
data
(),
data_size
*
sizeof
(
float
));
}
for
(
int
mf_idx
=
data_size
;
mf_idx
<
value_size
;
++
mf_idx
)
{
data_buffer
[
mf_idx
]
=
0.0
;
}
auto
offset
=
keys
[
i
].
second
;
float
*
select_data
=
pull_values
+
select_value_size
*
offset
;
_value_accesor
->
select
(
&
select_data
,
(
const
float
**
)
&
data_buffer_ptr
,
1
);
}
return
0
;
});
}
for
(
size_t
shard_id
=
0
;
shard_id
<
tasks
.
size
();
++
shard_id
)
{
tasks
[
shard_id
].
wait
();
}
return
0
;
}
int32_t
MemorySparseTable
::
pull_sparse_ptr
(
char
**
pull_values
,
const
uint64_t
*
keys
,
size_t
num
)
{
return
0
;
}
int32_t
MemorySparseTable
::
push_sparse
(
const
uint64_t
*
keys
,
const
float
*
values
,
size_t
num
)
{
std
::
vector
<
std
::
future
<
int
>>
tasks
(
real_local_shard_num_
);
std
::
vector
<
std
::
vector
<
std
::
pair
<
uint64_t
,
int
>>>
task_keys
(
real_local_shard_num_
);
for
(
size_t
i
=
0
;
i
<
num
;
++
i
)
{
int
shard_id
=
(
keys
[
i
]
%
sparse_table_shard_num_
)
%
avg_local_shard_num_
;
task_keys
[
shard_id
].
push_back
({
keys
[
i
],
i
});
}
const
size_t
value_col
=
_value_accesor
->
size
()
/
sizeof
(
float
);
size_t
mf_value_col
=
_value_accesor
->
mf_size
()
/
sizeof
(
float
);
size_t
update_value_col
=
_value_accesor
->
update_size
()
/
sizeof
(
float
);
for
(
size_t
shard_id
=
0
;
shard_id
<
real_local_shard_num_
;
++
shard_id
)
{
tasks
[
shard_id
]
=
shards_task_pool_
[
shard_id
%
task_pool_size_
]
->
enqueue
(
[
this
,
shard_id
,
value_col
,
mf_value_col
,
update_value_col
,
values
,
&
task_keys
]()
->
int
{
auto
&
keys
=
task_keys
[
shard_id
];
auto
&
local_shard
=
shard_values_
[
shard_id
];
float
data_buffer
[
value_col
];
// NOLINT
float
*
data_buffer_ptr
=
data_buffer
;
for
(
int
i
=
0
;
i
<
keys
.
size
();
++
i
)
{
uint64_t
key
=
keys
[
i
].
first
;
uint64_t
push_data_idx
=
keys
[
i
].
second
;
const
float
*
update_data
=
values
+
push_data_idx
*
update_value_col
;
auto
itr
=
local_shard
->
Find
(
key
);
if
(
itr
==
local_shard
->
end
())
{
VLOG
(
0
)
<<
"sparse table push_sparse: "
<<
key
<<
"not found!"
;
if
(
FLAGS_pslib_enable_create_feasign_randomly
&&
!
_value_accesor
->
create_value
(
1
,
update_data
))
{
continue
;
}
auto
value_size
=
value_col
-
mf_value_col
;
auto
*
feature_value
=
local_shard
->
Init
(
key
);
feature_value
->
resize
(
value_size
);
_value_accesor
->
create
(
&
data_buffer_ptr
,
1
);
memcpy
(
feature_value
->
data
(),
data_buffer_ptr
,
value_size
*
sizeof
(
float
));
itr
=
local_shard
->
Find
(
key
);
}
else
{
VLOG
(
2
)
<<
"sparse table debug push_sparse: "
<<
key
<<
" found!"
;
}
auto
*
feature_value
=
itr
->
second
;
float
*
value_data
=
feature_value
->
data
();
size_t
value_size
=
feature_value
->
size
();
if
(
value_size
==
value_col
)
{
// 已拓展到最大size, 则就地update
_value_accesor
->
update
(
&
value_data
,
&
update_data
,
1
);
}
else
{
// 拷入buffer区进行update,然后再回填,不需要的mf则回填时抛弃了
memcpy
(
data_buffer_ptr
,
value_data
,
value_size
*
sizeof
(
float
));
_value_accesor
->
update
(
&
data_buffer_ptr
,
&
update_data
,
1
);
if
(
_value_accesor
->
need_extend_mf
(
data_buffer
))
{
feature_value
->
resize
(
value_col
);
value_data
=
feature_value
->
data
();
_value_accesor
->
create
(
&
value_data
,
1
);
}
memcpy
(
value_data
,
data_buffer_ptr
,
value_size
*
sizeof
(
float
));
}
}
return
0
;
});
}
for
(
size_t
shard_id
=
0
;
shard_id
<
tasks
.
size
();
++
shard_id
)
{
tasks
[
shard_id
].
wait
();
}
return
0
;
}
int32_t
MemorySparseTable
::
push_sparse
(
const
uint64_t
*
keys
,
const
float
**
values
,
size_t
num
)
{
_push_sparse
(
keys
,
values
,
num
);
return
0
;
}
int32_t
MemorySparseTable
::
_push_sparse
(
const
uint64_t
*
keys
,
const
float
**
values
,
size_t
num
)
{
std
::
vector
<
std
::
future
<
int
>>
tasks
(
real_local_shard_num_
);
std
::
vector
<
std
::
vector
<
std
::
pair
<
uint64_t
,
int
>>>
task_keys
(
real_local_shard_num_
);
for
(
size_t
i
=
0
;
i
<
num
;
++
i
)
{
int
shard_id
=
(
keys
[
i
]
%
sparse_table_shard_num_
)
%
avg_local_shard_num_
;
task_keys
[
shard_id
].
push_back
({
keys
[
i
],
i
});
}
size_t
value_col
=
_value_accesor
->
size
()
/
sizeof
(
float
);
size_t
mf_value_col
=
_value_accesor
->
mf_size
()
/
sizeof
(
float
);
size_t
update_value_col
=
_value_accesor
->
update_size
()
/
sizeof
(
float
);
for
(
int
shard_id
=
0
;
shard_id
<
real_local_shard_num_
;
++
shard_id
)
{
tasks
[
shard_id
]
=
shards_task_pool_
[
shard_id
%
task_pool_size_
]
->
enqueue
(
[
this
,
shard_id
,
value_col
,
mf_value_col
,
update_value_col
,
values
,
&
task_keys
]()
->
int
{
auto
&
keys
=
task_keys
[
shard_id
];
auto
&
local_shard
=
shard_values_
[
shard_id
];
float
data_buffer
[
value_col
];
// NOLINT
float
*
data_buffer_ptr
=
data_buffer
;
for
(
int
i
=
0
;
i
<
keys
.
size
();
++
i
)
{
uint64_t
key
=
keys
[
i
].
first
;
uint64_t
push_data_idx
=
keys
[
i
].
second
;
const
float
*
update_data
=
values
[
push_data_idx
];
auto
itr
=
local_shard
->
Find
(
key
);
if
(
itr
==
local_shard
->
end
())
{
if
(
FLAGS_pslib_enable_create_feasign_randomly
&&
!
_value_accesor
->
create_value
(
1
,
update_data
))
{
continue
;
}
auto
value_size
=
value_col
-
mf_value_col
;
auto
*
feature_value
=
local_shard
->
Init
(
key
);
feature_value
->
resize
(
value_size
);
_value_accesor
->
create
(
&
data_buffer_ptr
,
1
);
memcpy
(
feature_value
->
data
(),
data_buffer_ptr
,
value_size
*
sizeof
(
float
));
itr
=
local_shard
->
Find
(
key
);
}
auto
*
feature_value
=
itr
->
second
;
float
*
value_data
=
feature_value
->
data
();
size_t
value_size
=
feature_value
->
size
();
if
(
value_size
==
value_col
)
{
// 已拓展到最大size, 则就地update
_value_accesor
->
update
(
&
value_data
,
&
update_data
,
1
);
}
else
{
// 拷入buffer区进行update,然后再回填,不需要的mf则回填时抛弃了
memcpy
(
data_buffer_ptr
,
value_data
,
value_size
*
sizeof
(
float
));
_value_accesor
->
update
(
&
data_buffer_ptr
,
&
update_data
,
1
);
if
(
_value_accesor
->
need_extend_mf
(
data_buffer
))
{
feature_value
->
resize
(
value_col
);
value_data
=
feature_value
->
data
();
_value_accesor
->
create
(
&
value_data
,
1
);
}
memcpy
(
value_data
,
data_buffer_ptr
,
value_size
*
sizeof
(
float
));
}
}
return
0
;
});
}
for
(
size_t
shard_id
=
0
;
shard_id
<
tasks
.
size
();
++
shard_id
)
{
tasks
[
shard_id
].
wait
();
}
return
0
;
}
int32_t
MemorySparseTable
::
flush
()
{
return
0
;
}
int32_t
MemorySparseTable
::
shrink
(
const
std
::
string
&
param
)
{
VLOG
(
0
)
<<
"MemorySparseTable::shrink"
;
// TODO(zhaocaibei123): implement with multi-thread
for
(
int
shard_id
=
0
;
shard_id
<
real_local_shard_num_
;
++
shard_id
)
{
// shrink
auto
&
shard
=
shard_values_
[
shard_id
];
for
(
auto
&
table
:
shard
->
values_
)
{
for
(
auto
iter
=
table
.
begin
();
iter
!=
table
.
end
();)
{
if
(
_value_accesor
->
shrink
(
iter
->
second
->
data
()))
{
butil
::
return_object
(
iter
->
second
);
iter
=
table
.
erase
(
iter
);
VLOG
(
1
)
<<
"shrink erase key: "
<<
iter
->
first
;
}
else
{
++
iter
;
}
}
}
}
return
0
;
}
void
MemorySparseTable
::
clear
()
{
VLOG
(
0
)
<<
"clear coming soon"
;
}
}
// namespace distributed
}
// namespace paddle
paddle/fluid/distributed/table/memory_sparse_table.h
0 → 100644
浏览文件 @
703487c6
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <ThreadPool.h>
#include <assert.h>
#include <pthread.h>
#include <memory>
#include <mutex> // NOLINT
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include "Eigen/Dense"
#include "paddle/fluid/distributed/table/accessor.h"
#include "paddle/fluid/distributed/table/common_table.h"
#include "paddle/fluid/distributed/table/depends/feature_value.h"
#include "paddle/fluid/string/string_helper.h"
#define PSERVER_SAVE_SUFFIX ".shard"
namespace
paddle
{
namespace
distributed
{
class
MemorySparseTable
:
public
SparseTable
{
public:
MemorySparseTable
()
{}
virtual
~
MemorySparseTable
()
{}
// unused method begin
virtual
int32_t
pull_dense
(
float
*
pull_values
,
size_t
num
)
{
return
0
;
}
virtual
int32_t
push_dense_param
(
const
float
*
values
,
size_t
num
)
{
return
0
;
}
virtual
int32_t
push_dense
(
const
float
*
values
,
size_t
num
)
{
return
0
;
}
// unused method end
virtual
int32_t
initialize
();
virtual
int32_t
initialize_shard
()
{
return
0
;
}
virtual
int32_t
initialize_value
();
virtual
int32_t
load
(
const
std
::
string
&
path
,
const
std
::
string
&
param
);
virtual
int32_t
save
(
const
std
::
string
&
path
,
const
std
::
string
&
param
);
int32_t
load_local_fs
(
const
std
::
string
&
path
,
const
std
::
string
&
param
);
int32_t
save_local_fs
(
const
std
::
string
&
path
,
const
std
::
string
&
param
,
const
std
::
string
&
prefix
);
virtual
std
::
pair
<
int64_t
,
int64_t
>
print_table_stat
();
virtual
int32_t
pull_sparse
(
float
*
values
,
const
PullSparseValue
&
pull_value
);
virtual
int32_t
pull_sparse_ptr
(
char
**
pull_values
,
const
uint64_t
*
keys
,
size_t
num
);
virtual
int32_t
push_sparse
(
const
uint64_t
*
keys
,
const
float
*
values
,
size_t
num
);
virtual
int32_t
push_sparse
(
const
uint64_t
*
keys
,
const
float
**
values
,
size_t
num
);
virtual
int32_t
flush
();
virtual
int32_t
shrink
(
const
std
::
string
&
param
);
virtual
void
clear
();
protected:
virtual
int32_t
_push_sparse
(
const
uint64_t
*
keys
,
const
float
**
values
,
size_t
num
);
protected:
const
int
task_pool_size_
=
24
;
size_t
avg_local_shard_num_
;
size_t
real_local_shard_num_
;
size_t
sparse_table_shard_num_
;
std
::
vector
<
std
::
shared_ptr
<::
ThreadPool
>>
shards_task_pool_
;
std
::
vector
<
std
::
shared_ptr
<
SparseTableShard
>>
shard_values_
;
};
}
// namespace distributed
}
// namespace paddle
paddle/fluid/distributed/table/table.cc
浏览文件 @
703487c6
...
...
@@ -24,6 +24,8 @@
#ifdef PADDLE_WITH_HETERPS
#include "paddle/fluid/distributed/table/ssd_sparse_table.h"
#endif
#include "paddle/fluid/distributed/table/ctr_accessor.h"
#include "paddle/fluid/distributed/table/memory_sparse_table.h"
#include "paddle/fluid/distributed/table/tensor_accessor.h"
#include "paddle/fluid/distributed/table/tensor_table.h"
...
...
@@ -40,7 +42,13 @@ REGISTER_PSCORE_CLASS(Table, BarrierTable);
REGISTER_PSCORE_CLASS
(
Table
,
TensorTable
);
REGISTER_PSCORE_CLASS
(
Table
,
DenseTensorTable
);
REGISTER_PSCORE_CLASS
(
Table
,
GlobalStepTable
);
REGISTER_PSCORE_CLASS
(
Table
,
MemorySparseTable
);
REGISTER_PSCORE_CLASS
(
ValueAccessor
,
CommMergeAccessor
);
REGISTER_PSCORE_CLASS
(
ValueAccessor
,
CtrCommonAccessor
);
REGISTER_PSCORE_CLASS
(
SparseValueSGDRule
,
StdAdaGradSGDRule
);
REGISTER_PSCORE_CLASS
(
SparseValueSGDRule
,
SparseAdamSGDRule
);
REGISTER_PSCORE_CLASS
(
SparseValueSGDRule
,
SparseNaiveSGDRule
);
REGISTER_PSCORE_CLASS
(
SparseValueSGDRule
,
SparseAdaGradSGDRule
);
int32_t
TableManager
::
initialize
()
{
static
bool
initialized
=
false
;
...
...
@@ -58,6 +66,11 @@ int32_t Table::initialize(const TableParameter &config,
LOG
(
WARNING
)
<<
"Table accessor initialize failed"
;
return
-
1
;
}
if
(
_afs_client
.
initialize
(
fs_config
)
!=
0
)
{
LOG
(
WARNING
)
<<
"Table fs_client initialize failed"
;
// return -1;
}
return
initialize
();
}
...
...
@@ -67,6 +80,9 @@ int32_t Table::initialize_accessor() {
<<
_config
.
table_id
();
return
-
1
;
}
LOG
(
INFO
)
<<
"accessor initializing: table_id: "
<<
_config
.
table_id
()
<<
", accessor_name: "
<<
_config
.
accessor
().
accessor_class
();
auto
*
accessor
=
CREATE_PSCORE_CLASS
(
ValueAccessor
,
_config
.
accessor
().
accessor_class
())
if
(
accessor
==
NULL
)
{
...
...
paddle/fluid/distributed/table/table.h
浏览文件 @
703487c6
...
...
@@ -20,6 +20,7 @@
#include <memory>
#include <string>
#include <utility>
#include "paddle/fluid/distributed/common/afs_warpper.h"
#include "paddle/fluid/distributed/table/accessor.h"
#include "paddle/fluid/distributed/table/depends/sparse_utils.h"
#include "paddle/fluid/distributed/table/graph/graph_node.h"
...
...
@@ -103,10 +104,10 @@ class Table {
virtual
int32_t
flush
()
=
0
;
virtual
int32_t
shrink
(
const
std
::
string
&
param
)
=
0
;
//指定加载路径
//
指定加载路径
virtual
int32_t
load
(
const
std
::
string
&
path
,
const
std
::
string
&
converter
)
=
0
;
//指定保存路径
//
指定保存路径
virtual
int32_t
save
(
const
std
::
string
&
path
,
const
std
::
string
&
converter
)
=
0
;
...
...
@@ -137,6 +138,7 @@ class Table {
TableParameter
_config
;
float
*
_global_lr
=
nullptr
;
std
::
shared_ptr
<
ValueAccessor
>
_value_accesor
;
AfsClient
_afs_client
;
};
REGISTER_PSCORE_REGISTERER
(
Table
);
...
...
paddle/fluid/distributed/test/CMakeLists.txt
浏览文件 @
703487c6
...
...
@@ -29,3 +29,6 @@ cc_test(sparse_sgd_rule_test SRCS sparse_sgd_rule_test.cc DEPS ${COMMON_DEPS} bo
set_source_files_properties
(
ctr_accessor_test.cc PROPERTIES COMPILE_FLAGS
${
DISTRIBUTE_COMPILE_FLAGS
}
)
cc_test
(
ctr_accessor_test SRCS ctr_accessor_test.cc DEPS
${
COMMON_DEPS
}
boost table
)
set_source_files_properties
(
memory_sparse_table_test.cc PROPERTIES COMPILE_FLAGS
${
DISTRIBUTE_COMPILE_FLAGS
}
)
cc_test
(
memory_sparse_table_test SRCS memory_sparse_table_test.cc DEPS
${
COMMON_DEPS
}
boost table
)
paddle/fluid/distributed/test/memory_sparse_table_test.cc
0 → 100644
浏览文件 @
703487c6
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <ThreadPool.h>
#include <unistd.h>
#include <string>
#include <thread> // NOLINT
#include "google/protobuf/text_format.h"
#include "gtest/gtest.h"
#include "paddle/fluid/distributed/ps.pb.h"
#include "paddle/fluid/distributed/table/memory_sparse_table.h"
#include "paddle/fluid/distributed/table/table.h"
namespace
paddle
{
namespace
distributed
{
TEST
(
MemorySparseTable
,
SGD
)
{
int
emb_dim
=
8
;
int
trainers
=
2
;
TableParameter
table_config
;
table_config
.
set_table_class
(
"MemorySparseTable"
);
table_config
.
set_shard_num
(
10
);
FsClientParameter
fs_config
;
Table
*
table
=
new
MemorySparseTable
();
table
->
set_shard
(
0
,
1
);
TableAccessorParameter
*
accessor_config
=
table_config
.
mutable_accessor
();
accessor_config
->
set_accessor_class
(
"CtrCommonAccessor"
);
accessor_config
->
set_fea_dim
(
11
);
accessor_config
->
set_embedx_dim
(
8
);
accessor_config
->
set_embedx_threshold
(
5
);
accessor_config
->
mutable_ctr_accessor_param
()
->
set_nonclk_coeff
(
0.2
);
accessor_config
->
mutable_ctr_accessor_param
()
->
set_click_coeff
(
1
);
accessor_config
->
mutable_ctr_accessor_param
()
->
set_base_threshold
(
0.5
);
accessor_config
->
mutable_ctr_accessor_param
()
->
set_delta_threshold
(
0.2
);
accessor_config
->
mutable_ctr_accessor_param
()
->
set_delta_keep_days
(
16
);
accessor_config
->
mutable_ctr_accessor_param
()
->
set_show_click_decay_rate
(
0.99
);
accessor_config
->
mutable_embed_sgd_param
()
->
set_name
(
"SparseNaiveSGDRule"
);
auto
*
naive_param
=
accessor_config
->
mutable_embed_sgd_param
()
->
mutable_naive
();
naive_param
->
set_learning_rate
(
0.1
);
naive_param
->
set_initial_range
(
0.3
);
naive_param
->
add_weight_bounds
(
-
10.0
);
naive_param
->
add_weight_bounds
(
10.0
);
accessor_config
->
mutable_embedx_sgd_param
()
->
set_name
(
"SparseNaiveSGDRule"
);
naive_param
=
accessor_config
->
mutable_embedx_sgd_param
()
->
mutable_naive
();
naive_param
->
set_learning_rate
(
0.1
);
naive_param
->
set_initial_range
(
0.3
);
naive_param
->
add_weight_bounds
(
-
10.0
);
naive_param
->
add_weight_bounds
(
10.0
);
auto
ret
=
table
->
initialize
(
table_config
,
fs_config
);
ASSERT_EQ
(
ret
,
0
);
// pull parameters for create and check
std
::
vector
<
uint64_t
>
init_keys
=
{
0
,
1
,
2
,
3
,
4
};
std
::
vector
<
uint32_t
>
init_fres
=
{
1
,
1
,
1
,
1
,
1
};
std
::
vector
<
float
>
init_values
;
init_values
.
resize
(
init_keys
.
size
()
*
(
emb_dim
+
1
));
auto
value
=
PullSparseValue
(
init_keys
,
init_fres
,
emb_dim
);
table
->
pull_sparse
(
init_values
.
data
(),
value
);
// for check
std
::
vector
<
float
>
total_gradients
;
total_gradients
.
resize
(
init_keys
.
size
()
*
(
4
+
emb_dim
));
memset
(
total_gradients
.
data
(),
0
,
sizeof
(
float
)
*
total_gradients
.
size
());
// push gradient
std
::
vector
<
std
::
vector
<
uint64_t
>>
trainer_keys
;
std
::
vector
<
std
::
vector
<
float
>>
trainer_gradient_values
;
trainer_keys
.
resize
(
trainers
);
trainer_gradient_values
.
resize
(
trainers
);
float
start
=
0.0
;
for
(
int
i
=
0
;
i
<
trainers
;
i
++
)
{
start
=
0.0
;
trainer_keys
[
i
]
=
init_keys
;
for
(
size_t
j
=
0
;
j
<
trainer_keys
[
i
].
size
();
j
++
)
{
auto
id
=
trainer_keys
[
i
][
j
];
for
(
int
k
=
0
;
k
<
emb_dim
+
4
;
k
++
)
{
trainer_gradient_values
[
i
].
push_back
(
start
);
total_gradients
[
id
*
(
emb_dim
+
4
)
+
k
]
+=
start
;
start
+=
0.1
;
}
}
}
std
::
shared_ptr
<::
ThreadPool
>
pool_
=
std
::
make_shared
<::
ThreadPool
>
(
trainers
);
std
::
vector
<
std
::
future
<
void
>>
task_status
;
for
(
int
i
=
0
;
i
<
trainers
;
i
++
)
{
auto
&
push_keys
=
trainer_keys
[
i
];
auto
&
push_values
=
trainer_gradient_values
[
i
];
auto
task
=
[
table
,
&
push_keys
,
&
push_values
]
{
table
->
push_sparse
(
push_keys
.
data
(),
push_values
.
data
(),
push_keys
.
size
());
};
task_status
.
push_back
(
pool_
->
enqueue
(
std
::
move
(
task
)));
}
for
(
auto
&
status
:
task_status
)
{
status
.
wait
();
}
std
::
vector
<
float
>
pull_values
;
pull_values
.
resize
(
init_keys
.
size
()
*
(
emb_dim
+
1
));
table
->
pull_sparse
(
pull_values
.
data
(),
value
);
for
(
size_t
i
=
0
;
i
<
init_keys
.
size
();
++
i
)
{
for
(
size_t
j
=
0
;
j
<
emb_dim
+
1
;
++
j
)
{
auto
update_val
=
init_values
[
i
*
(
emb_dim
+
1
)
+
j
]
-
0.1
*
total_gradients
[
3
+
i
*
(
emb_dim
+
4
)
+
j
];
VLOG
(
3
)
<<
total_gradients
[
i
*
(
emb_dim
+
4
)
+
j
+
3
]
<<
":"
<<
init_values
[
i
*
(
emb_dim
+
1
)
+
j
];
VLOG
(
3
)
<<
update_val
<<
": "
<<
pull_values
[
i
*
(
emb_dim
+
1
)
+
j
];
}
}
MemorySparseTable
*
ctr_table
=
dynamic_cast
<
MemorySparseTable
*>
(
table
);
ctr_table
->
save_local_fs
(
"./work/table.save"
,
"0"
,
"test"
);
}
}
// namespace distributed
}
// namespace paddle
paddle/fluid/framework/io/CMakeLists.txt
浏览文件 @
703487c6
cc_library
(
fs SRCS fs.cc DEPS string_helper glog boost enforce
)
cc_library
(
shell SRCS shell.cc DEPS string_helper glog timer enforce
)
cc_library
(
fs SRCS fs.cc DEPS string_helper glog boost enforce shell
)
cc_test
(
test_fs SRCS test_fs.cc DEPS fs shell
)
if
(
WITH_CRYPTO
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录