Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
6ebc6bf5
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6ebc6bf5
编写于
3月 21, 2018
作者:
Y
Yu Yang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
ReorganizeCode
上级
a478a11e
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
244 addition
and
176 deletion
+244
-176
paddle/fluid/framework/CMakeLists.txt
paddle/fluid/framework/CMakeLists.txt
+2
-1
paddle/fluid/framework/details/CMakeLists.txt
paddle/fluid/framework/details/CMakeLists.txt
+1
-0
paddle/fluid/framework/details/var_handle.cc
paddle/fluid/framework/details/var_handle.cc
+32
-0
paddle/fluid/framework/details/var_handle.h
paddle/fluid/framework/details/var_handle.h
+66
-0
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+108
-160
paddle/fluid/framework/parallel_executor.h
paddle/fluid/framework/parallel_executor.h
+0
-14
paddle/fluid/platform/nccl_helper.h
paddle/fluid/platform/nccl_helper.h
+35
-1
未找到文件。
paddle/fluid/framework/CMakeLists.txt
浏览文件 @
6ebc6bf5
add_subdirectory
(
details
)
# ddim lib
proto_library
(
framework_proto SRCS framework.proto
)
...
...
@@ -87,7 +88,7 @@ cc_library(feed_fetch_method SRCS feed_fetch_method.cc DEPS lod_tensor scope glo
cc_library
(
executor SRCS executor.cc DEPS op_registry device_context scope
framework_proto backward glog lod_rank_table feed_fetch_method
)
cc_library
(
parallel_executor SRCS parallel_executor.cc DEPS op_registry device_context scope
framework_proto backward glog lod_rank_table feed_fetch_method executor simple_threadpool
concat
)
framework_proto backward glog lod_rank_table feed_fetch_method executor simple_threadpool
var_handle
)
cc_library
(
prune SRCS prune.cc DEPS framework_proto
)
cc_test
(
prune_test SRCS prune_test.cc DEPS op_info prune recurrent_op device_context
)
...
...
paddle/fluid/framework/details/CMakeLists.txt
0 → 100644
浏览文件 @
6ebc6bf5
cc_library
(
var_handle SRCS var_handle.cc DEPS place
)
paddle/fluid/framework/details/var_handle.cc
0 → 100644
浏览文件 @
6ebc6bf5
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/var_handle.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
VarHandleBase
::~
VarHandleBase
()
{}
std
::
string
VarHandle
::
DebugString
()
const
{
std
::
stringstream
ss
;
ss
<<
name_
<<
":"
<<
place_
;
return
ss
.
str
();
}
std
::
string
DummyVarHandle
::
DebugString
()
const
{
return
"dummy"
;
}
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/var_handle.h
0 → 100644
浏览文件 @
6ebc6bf5
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <sstream>
#include <string>
#include <unordered_set>
#include "paddle/fluid/platform/place.h"
namespace
paddle
{
namespace
framework
{
struct
OpHandleBase
;
namespace
details
{
// VarHandleBase is the var node in the dependency graph.
// A variable can only be generated by a single operator. i.e.
// This is a single assignment graph.
struct
VarHandleBase
{
virtual
~
VarHandleBase
();
virtual
std
::
string
DebugString
()
const
=
0
;
// The operator who generate this variable. nullptr if the variable
// is a root node.
OpHandleBase
*
generated_op_
;
// Operators which depend on this variable ready.
std
::
unordered_set
<
OpHandleBase
*>
pending_ops_
;
};
// VarHandle is actually a single version of Runtime Variable.
// Variable in Runtime mapped to many VarHandles in Graph.
// Each assignment will generate a new var handle with newer version.
//
// NOTE: runtime variables have place.
struct
VarHandle
:
public
VarHandleBase
{
std
::
string
DebugString
()
const
override
;
// version field currently is not used, however, just store the version to
// debug easily.
size_t
version_
;
std
::
string
name_
;
platform
::
Place
place_
;
};
// Dummy Variable. It is used to represent dependencies between operators
struct
DummyVarHandle
:
public
VarHandleBase
{
std
::
string
DebugString
()
const
override
;
};
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
6ebc6bf5
...
...
@@ -18,6 +18,7 @@ limitations under the License. */
#include "lod_tensor.h"
#include "lod_tensor_array.h"
#include "op_registry.h"
#include "paddle/fluid/framework/details/var_handle.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/operators/math/concat.h"
#include "paddle/fluid/platform/nccl_helper.h"
...
...
@@ -25,35 +26,11 @@ limitations under the License. */
namespace
paddle
{
namespace
framework
{
struct
OpHandle
;
using
details
::
DummyVarHandle
;
using
details
::
VarHandle
;
using
details
::
VarHandleBase
;
struct
VarHandleBase
{
virtual
~
VarHandleBase
()
{}
virtual
std
::
string
DebugString
()
const
=
0
;
OpHandle
*
generated_op_
;
std
::
unordered_set
<
OpHandle
*>
pending_ops_
;
};
struct
VarHandle
:
public
VarHandleBase
{
std
::
string
DebugString
()
const
override
{
std
::
stringstream
ss
;
ss
<<
name_
<<
":"
<<
place_
;
return
ss
.
str
();
}
// version field currently is not used, however, just store the version to
// debug easily.
size_t
version_
;
std
::
string
name_
;
platform
::
Place
place_
;
};
struct
DummyVarHandle
:
public
VarHandleBase
{
std
::
string
DebugString
()
const
override
{
return
"dummy"
;
}
};
struct
OpHandle
{
struct
OpHandleBase
{
std
::
vector
<
VarHandleBase
*>
inputs_
;
std
::
vector
<
VarHandleBase
*>
outputs_
;
std
::
unordered_map
<
platform
::
Place
,
platform
::
DeviceContext
*
,
...
...
@@ -76,7 +53,7 @@ struct OpHandle {
return
ss
.
str
();
}
virtual
~
OpHandle
()
{}
virtual
~
OpHandle
Base
()
{}
void
Run
(
bool
use_event
)
{
if
(
events_
.
empty
()
&&
use_event
)
{
...
...
@@ -117,7 +94,7 @@ struct OpHandle {
virtual
void
RunImpl
()
=
0
;
};
struct
ScaleLossGradOpHandle
:
public
OpHandle
{
struct
ScaleLossGradOpHandle
:
public
OpHandle
Base
{
float
coeff_
;
Scope
*
scope_
;
platform
::
Place
place_
;
...
...
@@ -150,7 +127,7 @@ struct ScaleLossGradOpHandle : public OpHandle {
}
};
struct
FetchOpHandle
:
public
OpHandle
{
struct
FetchOpHandle
:
public
OpHandle
Base
{
FeedFetchList
*
data_
;
size_t
offset_
;
std
::
vector
<
Scope
*>
*
local_scopes_
;
...
...
@@ -216,51 +193,13 @@ class ParallelExecutorPrivate {
std
::
vector
<
Scope
*>
local_scopes_
;
Scope
*
global_scope_
;
#ifdef PADDLE_WITH_CUDA
struct
NCCLContext
{
std
::
unique_ptr
<
platform
::
CUDADeviceContext
>
ctx_
;
ncclComm_t
comm
;
explicit
NCCLContext
(
int
dev_id
)
{
ctx_
.
reset
(
new
platform
::
CUDADeviceContext
(
platform
::
CUDAPlace
(
dev_id
)));
}
cudaStream_t
stream
()
const
{
return
ctx_
->
stream
();
}
std
::
unordered_map
<
int
,
platform
::
NCCLContext
>
communication_streams_
;
int
device_id
()
const
{
return
boost
::
get
<
platform
::
CUDAPlace
>
(
ctx_
->
GetPlace
()).
device
;
}
static
void
InitNCCLContext
(
std
::
unordered_map
<
int
,
NCCLContext
>
&
contexts
,
const
std
::
vector
<
platform
::
Place
>
&
places
)
{
std
::
vector
<
ncclComm_t
>
comms
;
std
::
vector
<
int
>
devs
;
comms
.
resize
(
contexts
.
size
());
devs
.
reserve
(
contexts
.
size
());
for
(
auto
&
p
:
places
)
{
devs
.
push_back
(
boost
::
get
<
platform
::
CUDAPlace
>
(
p
).
device
);
}
PADDLE_ENFORCE
(
platform
::
dynload
::
ncclCommInitAll
(
&
comms
[
0
],
static_cast
<
int
>
(
contexts
.
size
()),
&
devs
[
0
]));
int
i
=
0
;
for
(
auto
&
dev_id
:
devs
)
{
contexts
.
at
(
dev_id
).
comm
=
comms
[
i
++
];
}
}
};
std
::
unordered_map
<
int
,
NCCLContext
>
communication_streams_
;
NCCLContext
&
GetNCCLCtx
(
platform
::
Place
p
)
{
platform
::
NCCLContext
&
GetNCCLCtx
(
platform
::
Place
p
)
{
int
dev_id
=
boost
::
get
<
platform
::
CUDAPlace
>
(
p
).
device
;
return
communication_streams_
.
at
(
dev_id
);
}
#endif
platform
::
DeviceContext
*
CommunicationDevCtx
(
const
platform
::
Place
&
place
)
{
if
(
platform
::
is_cpu_place
(
place
)
||
local_scopes_
.
size
()
==
1
)
{
return
const_cast
<
platform
::
DeviceContext
*>
(
...
...
@@ -282,27 +221,95 @@ class ParallelExecutorPrivate {
vars_
;
std
::
unordered_set
<
std
::
unique_ptr
<
VarHandleBase
>>
dep_vars_
;
std
::
vector
<
std
::
unique_ptr
<
OpHandle
>>
ops_
;
std
::
vector
<
std
::
unique_ptr
<
OpHandle
Base
>>
ops_
;
// Use a simpler thread pool, might be faster.
std
::
unique_ptr
<
ThreadPool
>
pool_
;
std
::
unique_ptr
<
platform
::
EnforceNotMet
>
exception_
;
};
struct
NCCLAllReduceOpHandle
:
public
OpHandle
{
ParallelExecutorPrivate
*
member_
;
VarHandle
*
GetVarHandle
(
const
std
::
string
&
each_var_name
,
const
platform
::
Place
&
place
)
{
auto
&
var_holders
=
vars_
[
place
];
auto
&
var_holder
=
var_holders
[
each_var_name
];
VarHandle
*
var
=
nullptr
;
if
(
var_holder
.
empty
())
{
auto
&
init_var
=
var_holder
[
0
];
init_var
.
place_
=
place
;
init_var
.
name_
=
each_var_name
;
init_var
.
generated_op_
=
nullptr
;
init_var
.
version_
=
0
;
var
=
&
init_var
;
}
else
{
var
=
&
var_holder
.
rbegin
()
->
second
;
}
return
var
;
}
explicit
NCCLAllReduceOpHandle
(
ParallelExecutorPrivate
*
member
)
:
member_
(
member
)
{}
void
RunOp
(
bool
use_event
,
std
::
unordered_map
<
VarHandleBase
*
,
std
::
atomic
<
bool
>>
&
pending_vars
,
OpHandleBase
*
op
)
{
std
::
vector
<
std
::
atomic
<
bool
>
*>
*
ready_buffer
=
new
std
::
vector
<
std
::
atomic
<
bool
>
*>
();
for
(
auto
*
var
:
op
->
outputs_
)
{
ready_buffer
->
emplace_back
(
&
pending_vars
[
var
]);
}
auto
op_run
=
[
ready_buffer
,
op
,
this
,
use_event
]
{
try
{
VLOG
(
10
)
<<
op
->
DebugString
();
op
->
Run
(
use_event
);
for
(
auto
*
ready
:
*
ready_buffer
)
{
ready
->
store
(
true
,
std
::
memory_order_release
);
}
delete
ready_buffer
;
}
catch
(
platform
::
EnforceNotMet
ex
)
{
exception_
.
reset
(
new
platform
::
EnforceNotMet
(
ex
));
}
catch
(...)
{
LOG
(
FATAL
)
<<
"Unknown exception catched"
;
}
};
if
(
pool_
)
{
pool_
->
enqueue
(
op_run
);
}
else
{
op_run
();
}
}
void
GenerateVar
(
OpHandleBase
*
op_handle
,
const
std
::
string
&
each_var_name
,
const
platform
::
Place
&
place
)
{
auto
&
vars
=
vars_
[
place
][
each_var_name
];
size_t
version
=
vars
.
size
();
auto
&
var
=
vars
[
version
];
var
.
version_
=
version
;
var
.
generated_op_
=
op_handle
;
var
.
name_
=
each_var_name
;
var
.
place_
=
place
;
op_handle
->
outputs_
.
emplace_back
(
&
var
);
}
};
// namespace framework
struct
NCCLAllReduceOpHandle
:
public
OpHandleBase
{
const
std
::
vector
<
Scope
*>
&
local_scopes_
;
const
std
::
vector
<
platform
::
Place
>
&
places_
;
const
std
::
unordered_map
<
int
,
platform
::
NCCLContext
>
&
communication_ctxs_
;
explicit
NCCLAllReduceOpHandle
(
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
std
::
unordered_map
<
int
,
platform
::
NCCLContext
>
&
ctxs
)
:
local_scopes_
(
local_scopes
),
places_
(
places
),
communication_ctxs_
(
ctxs
)
{}
void
Wait
(
platform
::
DeviceContext
*
waited_dev
)
override
{
OpHandle
::
Wait
(
waited_dev
);
OpHandle
Base
::
Wait
(
waited_dev
);
}
protected:
void
RunImpl
()
override
{
if
(
this
->
inputs_
.
size
()
==
1
)
{
if
(
inputs_
.
size
()
==
1
)
{
return
;
// No need to all reduce when GPU count = 1;
}
else
{
// Wait input done
...
...
@@ -317,9 +324,9 @@ struct NCCLAllReduceOpHandle : public OpHandle {
platform
::
NCCLGroupGuard
guard
;
for
(
size_t
i
=
0
;
i
<
member_
->
local_scopes_
.
size
();
++
i
)
{
auto
&
p
=
member_
->
places_
[
i
];
auto
*
s
=
member_
->
local_scopes_
[
i
];
for
(
size_t
i
=
0
;
i
<
local_scopes_
.
size
();
++
i
)
{
auto
&
p
=
places_
[
i
];
auto
*
s
=
local_scopes_
[
i
];
int
dev_id
=
boost
::
get
<
platform
::
CUDAPlace
>
(
p
).
device
;
auto
&
lod_tensor
=
s
->
FindVar
(
var_name
)
->
Get
<
framework
::
LoDTensor
>
();
...
...
@@ -336,16 +343,16 @@ struct NCCLAllReduceOpHandle : public OpHandle {
if
(
numel
==
0
)
{
numel
=
static_cast
<
size_t
>
(
lod_tensor
.
numel
());
}
auto
&
nccl_ctx
=
member_
->
communication_stream
s_
.
at
(
dev_id
);
auto
&
nccl_ctx
=
communication_ctx
s_
.
at
(
dev_id
);
PADDLE_ENFORCE
(
platform
::
dynload
::
ncclAllReduce
(
buffer
,
buffer
,
numel
,
static_cast
<
ncclDataType_t
>
(
dtype
),
ncclSum
,
nccl_ctx
.
comm
,
nccl_ctx
.
stream
()));
nccl_ctx
.
comm
_
,
nccl_ctx
.
stream
()));
}
}
}
};
struct
ComputationOpHandle
:
public
OpHandle
{
struct
ComputationOpHandle
:
public
OpHandle
Base
{
std
::
unique_ptr
<
OperatorBase
>
op_
;
Scope
*
scope_
;
platform
::
Place
place_
;
...
...
@@ -443,14 +450,14 @@ void ParallelExecutor::ConstructDependencyGraph(
auto
var_names
=
op
->
InputArgumentNames
();
for
(
auto
&
each_var_name
:
var_names
)
{
VarHandle
*
var
=
GetVarHandle
(
each_var_name
,
p
);
VarHandle
*
var
=
member_
->
GetVarHandle
(
each_var_name
,
p
);
op_handle
->
inputs_
.
emplace_back
(
var
);
var
->
pending_ops_
.
emplace
(
op_handle
);
}
var_names
=
op
->
OutputArgumentNames
();
for
(
auto
&
each_var_name
:
var_names
)
{
GenerateVar
(
op_handle
,
each_var_name
,
p
);
member_
->
GenerateVar
(
op_handle
,
each_var_name
,
p
);
}
if
(
is_forwarding
)
{
...
...
@@ -468,7 +475,7 @@ void ParallelExecutor::ConstructDependencyGraph(
// loss->pending_ops_.emplace_back(op_handle);
// op_handle->inputs_.emplace_back(loss);
GenerateVar
(
op_handle
,
loss_var_name
+
"@GRAD"
,
p
);
member_
->
GenerateVar
(
op_handle
,
loss_var_name
+
"@GRAD"
,
p
);
change_forward
=
true
;
}
}
...
...
@@ -483,7 +490,9 @@ void ParallelExecutor::ConstructDependencyGraph(
for
(
auto
&
og
:
var_names
)
{
if
(
grads
.
count
(
og
)
!=
0
)
{
// is param grad
// Insert NCCL AllReduce Op
member_
->
ops_
.
emplace_back
(
new
NCCLAllReduceOpHandle
(
member_
));
member_
->
ops_
.
emplace_back
(
new
NCCLAllReduceOpHandle
(
member_
->
local_scopes_
,
member_
->
places_
,
member_
->
communication_streams_
));
auto
*
op_handle
=
member_
->
ops_
.
back
().
get
();
for
(
size_t
i
=
0
;
i
<
member_
->
places_
.
size
();
++
i
)
{
...
...
@@ -562,37 +571,6 @@ void ParallelExecutor::PolishGraphToSupportDataHazards() const {
}
}
void
ParallelExecutor
::
GenerateVar
(
OpHandle
*
op_handle
,
const
std
::
string
&
each_var_name
,
const
platform
::
Place
&
place
)
const
{
auto
&
vars
=
member_
->
vars_
[
place
][
each_var_name
];
size_t
version
=
vars
.
size
();
auto
&
var
=
vars
[
version
];
var
.
version_
=
version
;
var
.
generated_op_
=
op_handle
;
var
.
name_
=
each_var_name
;
var
.
place_
=
place
;
op_handle
->
outputs_
.
emplace_back
(
&
var
);
}
VarHandle
*
ParallelExecutor
::
GetVarHandle
(
const
std
::
string
&
each_var_name
,
const
platform
::
Place
&
place
)
const
{
auto
&
var_holders
=
member_
->
vars_
[
place
];
auto
&
var_holder
=
var_holders
[
each_var_name
];
VarHandle
*
var
=
nullptr
;
if
(
var_holder
.
empty
())
{
auto
&
init_var
=
var_holder
[
0
];
init_var
.
place_
=
place
;
init_var
.
name_
=
each_var_name
;
init_var
.
generated_op_
=
nullptr
;
init_var
.
version_
=
0
;
var
=
&
init_var
;
}
else
{
var
=
&
var_holder
.
rbegin
()
->
second
;
}
return
var
;
}
void
ParallelExecutor
::
BCastParamsToGPUs
(
const
ProgramDesc
&
startup_program
)
const
{
#ifdef PADDLE_WITH_CUDA
...
...
@@ -621,8 +599,8 @@ void ParallelExecutor::BCastParamsToGPUs(
}
auto
&
nccl_ctx
=
member_
->
GetNCCLCtx
(
place
);
platform
::
dynload
::
ncclBcast
(
buffer
,
numel
,
data_type
,
0
,
nccl_ctx
.
comm
,
nccl_ctx
.
stream
());
platform
::
dynload
::
ncclBcast
(
buffer
,
numel
,
data_type
,
0
,
nccl_ctx
.
comm_
,
nccl_ctx
.
stream
());
}
}
...
...
@@ -640,12 +618,12 @@ void ParallelExecutor::BuildNCCLCommunicator() const {
for
(
auto
&
place
:
member_
->
places_
)
{
int
dev_id
=
boost
::
get
<
platform
::
CUDAPlace
>
(
place
).
device
;
member_
->
communication_streams_
.
emplace
(
dev_id
,
ParallelExecutorPrivate
::
NCCLContext
(
dev_id
));
member_
->
communication_streams_
.
emplace
(
dev_id
,
platform
::
NCCLContext
(
dev_id
));
}
ParallelExecutorPrivate
::
NCCLContext
::
InitNCCLContext
(
member_
->
communication_streams_
,
member_
->
places_
);
platform
::
NCCLContext
::
InitNCCLContext
(
member_
->
communication_streams_
,
member_
->
places_
);
#endif
}
...
...
@@ -656,7 +634,7 @@ void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
// Version --> VarHandle
member_
->
exception_
.
reset
();
std
::
unordered_map
<
VarHandleBase
*
,
std
::
atomic
<
bool
>>
pending_vars
;
std
::
unordered_map
<
OpHandle
*
,
size_t
>
pending_ops
;
std
::
unordered_map
<
OpHandle
Base
*
,
size_t
>
pending_ops
;
std
::
vector
<
DummyVarHandle
>
dummy_vars
;
for
(
auto
&
place_pair
:
member_
->
vars_
)
{
...
...
@@ -672,7 +650,7 @@ void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
pending_vars
[
var
.
get
()]
=
var
->
generated_op_
==
nullptr
;
}
std
::
vector
<
OpHandle
*>
to_run
;
std
::
vector
<
OpHandle
Base
*>
to_run
;
for
(
auto
&
op
:
member_
->
ops_
)
{
if
(
op
->
inputs_
.
empty
())
{
// Special case, Op has no input.
...
...
@@ -722,7 +700,7 @@ void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
}
for
(
auto
*
op
:
to_run
)
{
RunOp
(
use_event
,
pending_vars
,
op
);
member_
->
RunOp
(
use_event
,
pending_vars
,
op
);
}
while
(
!
pending_vars
.
empty
())
{
...
...
@@ -750,7 +728,7 @@ void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
}
for
(
auto
*
op
:
to_run
)
{
pending_ops
.
erase
(
op
);
RunOp
(
use_event
,
pending_vars
,
op
);
member_
->
RunOp
(
use_event
,
pending_vars
,
op
);
}
}
...
...
@@ -762,35 +740,5 @@ void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
fetched_data
;
}
void
ParallelExecutor
::
RunOp
(
bool
use_event
,
std
::
unordered_map
<
VarHandleBase
*
,
std
::
atomic
<
bool
>>
&
pending_vars
,
OpHandle
*
op
)
const
{
std
::
vector
<
std
::
atomic
<
bool
>
*>
*
ready_buffer
=
new
std
::
vector
<
std
::
atomic
<
bool
>
*>
();
for
(
auto
*
var
:
op
->
outputs_
)
{
ready_buffer
->
emplace_back
(
&
pending_vars
[
var
]);
}
auto
op_run
=
[
ready_buffer
,
op
,
this
,
use_event
]
{
try
{
VLOG
(
10
)
<<
op
->
DebugString
();
op
->
Run
(
use_event
);
for
(
auto
*
ready
:
*
ready_buffer
)
{
ready
->
store
(
true
,
std
::
memory_order_release
);
}
delete
ready_buffer
;
}
catch
(
platform
::
EnforceNotMet
ex
)
{
member_
->
exception_
.
reset
(
new
platform
::
EnforceNotMet
(
ex
));
}
catch
(...)
{
LOG
(
FATAL
)
<<
"Unknown exception catched"
;
}
};
if
(
member_
->
pool_
)
{
member_
->
pool_
->
enqueue
(
op_run
);
}
else
{
op_run
();
}
}
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/parallel_executor.h
浏览文件 @
6ebc6bf5
...
...
@@ -29,9 +29,6 @@ namespace paddle {
namespace
framework
{
class
ParallelExecutorPrivate
;
class
VarHandle
;
class
OpHandle
;
class
VarHandleBase
;
class
ParallelExecutor
{
public:
...
...
@@ -50,23 +47,12 @@ class ParallelExecutor {
void
BCastParamsToGPUs
(
const
ProgramDesc
&
startup_program
)
const
;
VarHandle
*
GetVarHandle
(
const
std
::
string
&
each_var_name
,
const
platform
::
Place
&
place
)
const
;
void
GenerateVar
(
OpHandle
*
op_handle
,
const
std
::
string
&
each_var_name
,
const
platform
::
Place
&
place
)
const
;
void
ConstructDependencyGraph
(
const
std
::
unordered_set
<
std
::
string
>&
params
,
const
ProgramDesc
&
main_program
,
const
std
::
string
&
loss_var_name
)
const
;
void
BuildNCCLCommunicator
()
const
;
void
RunOp
(
bool
use_event
,
std
::
unordered_map
<
VarHandleBase
*
,
std
::
atomic
<
bool
>>&
pending_vars
,
OpHandle
*
op
)
const
;
void
PolishGraphToSupportDataHazards
()
const
;
};
...
...
paddle/fluid/platform/nccl_helper.h
浏览文件 @
6ebc6bf5
...
...
@@ -47,11 +47,45 @@ class NCCLGroupGuard {
}
private:
static
std
::
mutex
&
mutex
()
{
static
std
::
mutex
&
mutex
()
{
static
std
::
mutex
mtx
;
return
mtx
;
}
};
struct
NCCLContext
{
std
::
unique_ptr
<
CUDADeviceContext
>
ctx_
;
ncclComm_t
comm_
;
explicit
NCCLContext
(
int
dev_id
)
:
ctx_
(
new
CUDADeviceContext
(
CUDAPlace
(
dev_id
)))
{}
cudaStream_t
stream
()
const
{
return
ctx_
->
stream
();
}
int
device_id
()
const
{
return
boost
::
get
<
platform
::
CUDAPlace
>
(
ctx_
->
GetPlace
()).
device
;
}
static
void
InitNCCLContext
(
std
::
unordered_map
<
int
,
NCCLContext
>
&
contexts
,
const
std
::
vector
<
platform
::
Place
>
&
places
)
{
std
::
vector
<
ncclComm_t
>
comms
;
std
::
vector
<
int
>
devs
;
comms
.
resize
(
contexts
.
size
());
devs
.
reserve
(
contexts
.
size
());
for
(
auto
&
p
:
places
)
{
devs
.
push_back
(
boost
::
get
<
platform
::
CUDAPlace
>
(
p
).
device
);
}
PADDLE_ENFORCE
(
platform
::
dynload
::
ncclCommInitAll
(
&
comms
[
0
],
static_cast
<
int
>
(
contexts
.
size
()),
&
devs
[
0
]));
int
i
=
0
;
for
(
auto
&
dev_id
:
devs
)
{
contexts
.
at
(
dev_id
).
comm_
=
comms
[
i
++
];
}
}
};
}
// namespace platform
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录