From 6e9714a296cf5af524cb982389c63358b4c9dd0f Mon Sep 17 00:00:00 2001 From: furnace <34057289+windstamp@users.noreply.github.com> Date: Tue, 4 Jan 2022 16:02:44 +0800 Subject: [PATCH] [NPU] add pad and pad_grad (#38658) [NPU] add pad and pad_grad --- paddle/fluid/operators/pad_op_npu.cc | 94 +++++++++++++ .../tests/unittests/npu/test_pad_op_npu.py | 125 ++++++++++++++++++ 2 files changed, 219 insertions(+) create mode 100644 paddle/fluid/operators/pad_op_npu.cc create mode 100644 python/paddle/fluid/tests/unittests/npu/test_pad_op_npu.py diff --git a/paddle/fluid/operators/pad_op_npu.cc b/paddle/fluid/operators/pad_op_npu.cc new file mode 100644 index 00000000000..40a416dfda4 --- /dev/null +++ b/paddle/fluid/operators/pad_op_npu.cc @@ -0,0 +1,94 @@ +/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/fluid/framework/op_registry.h" +#include "paddle/fluid/framework/operator.h" +#include "paddle/fluid/platform/device/npu/npu_op_runner.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; + +template +class PadNPUKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + auto* x = context.Input("X"); + auto* out = context.Output("Out"); + auto paddings = context.Attr>("paddings"); + float pad_value = context.Attr("pad_value"); + + PADDLE_ENFORCE_LT(abs(pad_value), 1e-5, + platform::errors::Unimplemented( + "Ascend npu only support pad_value=0 right now," + "but received pad_value is %f .", + pad_value)); + + out->mutable_data(context.GetPlace()); + + NpuOpRunner runner; + runner.SetType("Pad") + .AddInput(*x) + .AddInput(std::move(paddings)) + .AddOutput(*out); + + auto stream = + context.template device_context() + .stream(); + runner.Run(stream); + } +}; + +template +class PadGradNPUKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + auto* d_out = context.Input(framework::GradVarName("Out")); + auto* d_x = context.Output(framework::GradVarName("X")); + auto paddings = context.Attr>("paddings"); + + d_x->mutable_data(context.GetPlace()); + + auto d_x_dims = d_x->dims(); + auto size = paddle::framework::vectorize(d_x_dims); + std::vector offsets(0); + int i = 0; + for (auto iter = paddings.begin(); iter < paddings.end(); ++iter, ++i) { + if (i % 2 == 0) { + offsets.push_back(*iter); + } + } + + auto stream = + context.template device_context() + .stream(); + + const auto& runner = NpuOpRunner("SliceD", {*d_out}, {*d_x}, + {{"offsets", offsets}, {"size", size}}); + runner.Run(stream); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +namespace plat = paddle::platform; + +REGISTER_OP_NPU_KERNEL(pad, ops::PadNPUKernel, + ops::PadNPUKernel, ops::PadNPUKernel); + +REGISTER_OP_NPU_KERNEL(pad_grad, ops::PadNPUKernel, + ops::PadGradNPUKernel); diff --git a/python/paddle/fluid/tests/unittests/npu/test_pad_op_npu.py b/python/paddle/fluid/tests/unittests/npu/test_pad_op_npu.py new file mode 100644 index 00000000000..7d6c3b9bdb4 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/npu/test_pad_op_npu.py @@ -0,0 +1,125 @@ +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import unittest +import numpy as np +import sys +sys.path.append("..") +from op_test import OpTest +import paddle +import paddle.fluid.core as core +import paddle.fluid as fluid +from paddle.fluid import Program, program_guard + +paddle.enable_static() + + +class TestPadOp(OpTest): + def setUp(self): + self.op_type = "pad" + self.set_npu() + self.init_dtype() + self.initTestCase() + + self.inputs = {'X': np.random.random(self.shape).astype(self.dtype), } + self.attrs = {} + self.attrs['paddings'] = np.array(self.paddings).flatten() + self.attrs['pad_value'] = self.pad_value + self.outputs = { + 'Out': np.pad(self.inputs['X'], + self.paddings, + mode='constant', + constant_values=self.pad_value) + } + + def test_check_output(self): + self.check_output_with_place(self.place) + + def test_check_grad_normal(self): + if self.dtype == np.float16: + return + + self.check_grad_with_place(self.place, ['X'], 'Out') + + def set_npu(self): + self.__class__.use_npu = True + self.place = paddle.NPUPlace(0) + + def init_dtype(self): + self.dtype = np.float32 + + def initTestCase(self): + self.shape = (16, 16) + self.paddings = [(1, 1), (2, 3)] + self.pad_value = 0.0 + + +class TestCase1(TestPadOp): + def initTestCase(self): + self.shape = (2, 3, 4, 5) + self.paddings = [(0, 1), (2, 3), (2, 1), (1, 1)] + self.pad_value = 0.0 + + +class TestCase2(TestPadOp): + def initTestCase(self): + self.shape = (5, 5, 5) + self.paddings = [(0, 0), (0, 0), (1, 2)] + self.pad_value = 0.0 + + +class TestCase3(TestPadOp): + def initTestCase(self): + self.shape = (100) + self.paddings = [(0, 1)] + self.pad_value = 0.0 + + +#----------------Pad Fp16---------------- + + +def create_test_fp16(parent): + class TestPadFp16(parent): + def init_dtype(self): + self.dtype = np.float16 + + cls_name = "{0}_{1}".format(parent.__name__, "Fp16") + TestPadFp16.__name__ = cls_name + globals()[cls_name] = TestPadFp16 + + +create_test_fp16(TestPadOp) +create_test_fp16(TestCase1) +create_test_fp16(TestCase2) +create_test_fp16(TestCase3) + + +class TestPadOpError(unittest.TestCase): + def test_errors(self): + with program_guard(Program(), Program()): + input_data = np.random.random((2, 2)).astype("float32") + + def test_Variable(): + fluid.layers.pad(x=input_data, paddings=[1, 1, 1, 1]) + + self.assertRaises(TypeError, test_Variable) + + data = fluid.data(name='data', shape=[4], dtype='float16') + fluid.layers.pad(x=data, paddings=[0, 1]) + + +if __name__ == '__main__': + unittest.main() -- GitLab