diff --git a/paddle/fluid/operators/eye_op_npu.cc b/paddle/fluid/operators/eye_op_npu.cc new file mode 100644 index 0000000000000000000000000000000000000000..c23f24b78441f14c86955ed4ee7c90c30bd8a84e --- /dev/null +++ b/paddle/fluid/operators/eye_op_npu.cc @@ -0,0 +1,59 @@ +/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/fluid/operators/eye_op.h" +#include "paddle/fluid/operators/npu_op_runner.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; + +template +class EyeNPUKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto num_rows = ctx.Attr("num_rows"); + + auto d_nums = ctx.Attr("dtype"); + auto dtype = + ConvertToNpuDtype(static_cast(d_nums)); + + auto num_columns = ctx.Attr("num_columns"); + if (num_columns == -1) num_columns = num_rows; + + framework::NPUAttributeMap attr_input = { + {"num_rows", num_rows}, {"num_columns", num_columns}, {"dtype", dtype}}; + + auto* out = ctx.Output("Out"); + out->mutable_data(ctx.GetPlace()); + + const auto& runner = NpuOpRunner("Eye", {}, {*out}, attr_input); + auto stream = + ctx.template device_context() + .stream(); + runner.Run(stream); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; + +REGISTER_OP_NPU_KERNEL( + eye, ops::EyeNPUKernel, + ops::EyeNPUKernel, + ops::EyeNPUKernel); diff --git a/python/paddle/fluid/tests/unittests/npu/test_eye_op_npu.py b/python/paddle/fluid/tests/unittests/npu/test_eye_op_npu.py new file mode 100755 index 0000000000000000000000000000000000000000..abe981399a96266b3b8fa09a18c8531798caf0ed --- /dev/null +++ b/python/paddle/fluid/tests/unittests/npu/test_eye_op_npu.py @@ -0,0 +1,195 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import numpy as np +import unittest +import sys +sys.path.append("..") +from op_test import OpTest +import paddle +import paddle.fluid as fluid +from paddle.fluid import core +import paddle.fluid.framework as framework + +paddle.enable_static() +np.random.seed(10) + + +class TestEyeOp(OpTest): + def setUp(self): + ''' + Test eye op with specified shape + ''' + self.set_npu() + self.place = paddle.NPUPlace(0) + self.op_type = "eye" + self.inputs = {} + + self.num_rows = 0 + self.num_columns = 0 + self.dtype = np.float32 + + self.initTestCase() + + if self.num_columns == 0: + self.attrs = { + 'num_rows': self.num_rows, + 'dtype': framework.convert_np_dtype_to_dtype_(self.dtype) + } + self.outputs = {'Out': np.eye(self.num_rows, dtype=self.dtype)} + else: + self.attrs = { + 'num_rows': self.num_rows, + 'num_columns': self.num_columns, + 'dtype': framework.convert_np_dtype_to_dtype_(self.dtype) + } + self.outputs = { + 'Out': np.eye(self.num_rows, self.num_columns, dtype=self.dtype) + } + + def initTestCase(self): + self.num_rows = 219 + self.num_columns = 319 + self.dtype = np.int32 + + def set_npu(self): + self.__class__.use_npu = True + + def test_check_output(self): + self.check_output_with_place(self.place) + + +class TestEyeOp1(TestEyeOp): + def initTestCase(self): + self.num_rows = 50 + + +class TestEyeOp2(TestEyeOp): + def initTestCase(self): + self.num_rows = 50 + self.dtype = np.int32 + + +class TestEyeOp3(TestEyeOp): + def initTestCase(self): + self.num_rows = 50 + self.dtype = np.float16 + + +class TestEyeOp4(TestEyeOp): + def initTestCase(self): + self.num_rows = 1 + self.num_columns = 99 + + +class TestEyeOp5(TestEyeOp): + def initTestCase(self): + self.num_rows = 100 + self.num_columns = 100 + + +class TestEyeOp6(TestEyeOp): + def initTestCase(self): + self.num_rows = 100 + self.num_columns = 100 + self.dtype = np.float32 + + +class API_TestTensorEye(unittest.TestCase): + def test_out(self): + with paddle.static.program_guard(paddle.static.Program()): + data = paddle.eye(10) + place = paddle.NPUPlace(0) + exe = paddle.static.Executor(place) + result, = exe.run(fetch_list=[data]) + expected_result = np.eye(10, dtype="float32") + self.assertEqual((result == expected_result).all(), True) + + with paddle.static.program_guard(paddle.static.Program()): + data = paddle.eye(10, num_columns=7, dtype="float16") + place = paddle.NPUPlace(0) + exe = paddle.static.Executor(place) + result, = exe.run(fetch_list=[data]) + expected_result = np.eye(10, 7, dtype="float16") + self.assertEqual((result == expected_result).all(), True) + + with paddle.static.program_guard(paddle.static.Program()): + data = paddle.eye(10, dtype="int32") + place = paddle.NPUPlace(0) + exe = paddle.static.Executor(place) + result, = exe.run(fetch_list=[data]) + expected_result = np.eye(10, dtype="int32") + self.assertEqual((result == expected_result).all(), True) + + paddle.disable_static(paddle.NPUPlace(0)) + out = paddle.eye(10, dtype="int32") + expected_result = np.eye(10, dtype="int32") + paddle.enable_static() + self.assertEqual((out.numpy() == expected_result).all(), True) + + paddle.disable_static(paddle.NPUPlace(0)) + batch_shape = [2] + out = fluid.layers.eye(10, 10, dtype="int32", batch_shape=batch_shape) + result = np.eye(10, dtype="int32") + expected_result = [] + for index in reversed(batch_shape): + tmp_result = [] + for i in range(index): + tmp_result.append(result) + result = tmp_result + expected_result = np.stack(result, axis=0) + paddle.enable_static() + self.assertEqual(out.numpy().shape == np.array(expected_result).shape, + True) + self.assertEqual((out.numpy() == expected_result).all(), True) + + paddle.disable_static(paddle.NPUPlace(0)) + batch_shape = [3, 2] + out = fluid.layers.eye(10, 10, dtype="int32", batch_shape=batch_shape) + result = np.eye(10, dtype="int32") + expected_result = [] + for index in reversed(batch_shape): + tmp_result = [] + for i in range(index): + tmp_result.append(result) + result = tmp_result + expected_result = np.stack(result, axis=0) + paddle.enable_static() + self.assertEqual(out.numpy().shape == np.array(expected_result).shape, + True) + self.assertEqual((out.numpy() == expected_result).all(), True) + + def test_errors(self): + with paddle.static.program_guard(paddle.static.Program()): + + def test_num_rows_type_check(): + paddle.eye(-1, dtype="int64") + + self.assertRaises(TypeError, test_num_rows_type_check) + + def test_num_columns_type_check(): + paddle.eye(10, num_columns=5.2, dtype="int64") + + self.assertRaises(TypeError, test_num_columns_type_check) + + def test_num_columns_type_check1(): + paddle.eye(10, num_columns=10, dtype="int8") + + self.assertRaises(TypeError, test_num_columns_type_check1) + + +if __name__ == "__main__": + unittest.main()