<li><strong>name</strong> (<em>basestring</em>) –The name of this layer. It is optional.</li>
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) – batch normalization input. Better be linear activation.
Because there is an activation inside batch_normalization.</li>
<li><strong>batch_norm_type</strong> (<em>None|string</em><em>, </em><em>None</em><em> or </em><em>"batch_norm"</em><em> or </em><em>"cudnn_batch_norm"</em>) – We have batch_norm and cudnn_batch_norm. batch_norm
...
...
@@ -872,7 +876,7 @@ normalization will normalize input near zero.</li>
<li><strong>num_channels</strong> (<em>int</em>) – num of image channels or previous layer’s number of
filters. None will automatically get from layer’s
input.</li>
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em>) –<spanclass="math">\(\beta\)</span>, better be zero when initialize. So the
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute|None|Bool|Any</em>) –<spanclass="math">\(\beta\)</span>, better be zero when initialize. So the
initial_std=0, initial_mean=1 is best practice.</li>
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em>) –<spanclass="math">\(\gamma\)</span>, better be one when initialize. So the
initial_std=0, initial_mean=1 is best practice.</li>
...
...
@@ -923,7 +927,7 @@ and <span class="math">\(out\)</span> is a (batchSize x dataDim) output vector.<
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em><em> or </em><em>None</em><em> or </em><em>bool</em>) – The Bias Attribute. If no bias, then pass False or
something not type of paddle.v2.attr.ParameterAttribute. None will get a
default Bias.</li>
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute|None|Bool|Any</em>) – The Bias Attribute. If the parameter is set to
False or something not type of paddle.v2.attr.ParameterAttribute,
no bias is defined. If the parameter is set to
True, the bias is initialized to zero.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) – The extra layer config. Default is None.</li>
<li><strong>name</strong> (<em>basestring</em>) –Name of this embedding layer.</li>
<li><strong>name</strong> (<em>basestring</em>) –The name of this layer. It is optional.</li>
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) – The input layer for this embedding. NOTE: must be Index Data.</li>
<li><strong>size</strong> (<em>int</em>) – The embedding dimension.</li>
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute|None</em>) – The embedding parameter attribute. See paddle.v2.attr.ParameterAttribute
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) – Extra Layer Attribute.</li>
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em><em> or </em><em>None</em><em> or </em><em>bool</em>) – The Bias Attribute. If no bias, then pass False or
something not type of paddle.v2.attr.ParameterAttribute. None will get a
default Bias.</li>
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute|None|Bool|Any</em>) – The Bias Attribute. If the parameter is set to
False or something not type of paddle.v2.attr.ParameterAttribute,
no bias is defined. If the parameter is set to
True, the bias is initialized to zero.</li>
</ul>
</td>
</tr>
...
...
@@ -2176,7 +2198,7 @@ will be sliced for multiple times.</p>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) – extra layer attributes.</li>
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em><em> or </em><em>None</em><em> or </em><em>bool</em>) – The Bias Attribute. If no bias, then pass False or
something not type of paddle.v2.attr.ParameterAttribute. None will get a
default Bias.</li>
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute|None|Bool|Any</em>) – The Bias Attribute. If the parameter is set to
False or something not type of paddle.v2.attr.ParameterAttribute,
no bias is defined. If the parameter is set to
True, the bias is initialized to zero.</li>
</ul>
</td>
</tr>
...
...
@@ -2513,12 +2538,14 @@ Please refer to dropout for details.</p>
<li><strong>name</strong> (<em>basestring</em>) –The name of this layer. It is optional.</li>
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer|list|tuple</em>) – Input layers. It could be a paddle.v2.config_base.Layer or list/tuple of
paddle.v2.config_base.Layer.</li>
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) – Activation Type, default is tanh.</li>
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute|bool</em>) – Bias attribute. If False, means no bias. None is default
bias.</li>
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute|None|Bool|Any</em>) – The Bias Attribute. If the parameter is set to
False or something not type of paddle.v2.attr.ParameterAttribute,
no bias is defined. If the parameter is set to
True, the bias is initialized to zero.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) – Extra Layer attribute.</li>
</ul>
</td>
...
...
@@ -2581,7 +2608,7 @@ processed in one batch.</p>
<li><strong>weights</strong> (<em>paddle.v2.config_base.Layer</em>) – The weight layer.</li>
<li><strong>vectors</strong> (<em>paddle.v2.config_base.Layer</em>) – The vector layer.</li>
<li><strong>size</strong> (<em>int</em>) – the dimension of this layer.</li>
<li><strong>name</strong> (<em>basestring</em>) – The Layer Name.</li>
<li><strong>name</strong> (<em>basestring</em>) – The name of this layer. It is optional.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttributeNone</em>) – Extra Layer config.</li>
</ul>
</td>
...
...
@@ -2620,7 +2647,7 @@ which is used in NEURAL TURING MACHINE.</p>
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer|list|tuple|collections.Sequence</em>) – input layers. It could be a paddle.v2.config_base.Layer of list/tuple of paddle.v2.config_base.Layer.</li>
<li><strong>name</strong> (<em>basestring</em>) –The name of this layer. It is optional.</li>
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer|list|tuple|collections.Sequence</em>) –The input layers. It could be a paddle.v2.config_base.Layer of list/tuple of paddle.v2.config_base.Layer.</li>
<li><strong>weight</strong> (<em>paddle.v2.config_base.Layer</em>) – weight layer, can be None(default)</li>
<li><strong>num_classes</strong> (<em>int</em>) – number of classes.</li>
...
...
@@ -3802,7 +3833,10 @@ A fast and simple algorithm for training neural probabilistic language models.</
<li><strong>neg_distribution</strong> (<em>list|tuple|collections.Sequence|None</em>) – The distribution for generating the random negative labels.
A uniform distribution will be used if not provided.
If not None, its length must be equal to num_classes.</li>
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute|None|False</em>) – Bias parameter attribute. True if no bias.</li>
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute|None|Bool|Any</em>) – The Bias Attribute. If the parameter is set to
False or something not type of paddle.v2.attr.ParameterAttribute,
no bias is defined. If the parameter is set to
True, the bias is initialized to zero.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) – Extra Layer Attribute.</li>
</ul>
</td>
...
...
@@ -3841,9 +3875,11 @@ Hierarchical Probabilistic Neural Network Language Model.”</p>
<li><strong>name</strong> (<em>basestring</em>) – The Layer Name.</li>
<li><strong>name</strong> (<em>basestring</em>) – The name of this layer. It is optional.</li>
<li><strong>input_loc</strong> (<em>paddle.v2.config_base.Layer | List of paddle.v2.config_base.Layer</em>) – The input predict locations.</li>
<li><strong>input_conf</strong> (<em>paddle.v2.config_base.Layer | List of paddle.v2.config_base.Layer</em>) – The input priorbox confidence.</li>
<li><strong>priorbox</strong> (<em>paddle.v2.config_base.Layer</em>) – The input priorbox location and the variance.</li>
...
...
@@ -3955,7 +3991,7 @@ It is used by recurrent layer group.</p>
<dd><p>The gated unit layer implements a simple gating mechanism over the input.
The input <spanclass="math">\(X\)</span> is first projected into a new space <spanclass="math">\(X'\)</span>, and
it is also used to produce a gate weight <spanclass="math">\(\sigma\)</span>. Element-wise
prodict between <ahref="#id12"><spanclass="problematic"id="id13">:match:`X’`</span></a> and <spanclass="math">\(\sigma\)</span> is finally returned.</p>
product between <ahref="#id11"><spanclass="problematic"id="id12">:match:`X’`</span></a> and <spanclass="math">\(\sigma\)</span> is finally returned.</p>
<dlclass="docutils">
<dt>Reference:</dt>
<dd>Language Modeling with Gated Convolutional Networks
...
...
@@ -4077,7 +4119,7 @@ prodict between <a href="#id12"><span class="problematic" id="id13">:match:`X
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) – input for this layer.</li>
<li><strong>size</strong> (<em>int</em>) – output size of the gated unit.</li>
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) – activation type of the projected input.</li>
<li><strong>name</strong> (<em>basestring</em>) –name of this layer.</li>
<li><strong>name</strong> (<em>basestring</em>) –The name of this layer. It is optional.</li>
<li><strong>gate_attr</strong> (<em>paddle.v2.attr.ExtraAttributeNone</em>) – Attributes to tune the gate output, for example, error
clipping threshold, dropout and so on. See paddle.v2.attr.ExtraAttribute for
<li><strong>name</strong> (<em>basestring</em>) – The Layer Name.</li>
<li><strong>name</strong> (<em>basestring</em>) – The name of this layer. It is optional.</li>
<li><strong>input_loc</strong> (<em>paddle.v2.config_base.Layer | List of paddle.v2.config_base.Layer.</em>) – The input predict locations.</li>
<li><strong>input_conf</strong> (<em>paddle.v2.config_base.Layer | List of paddle.v2.config_base.Layer.</em>) – The input priorbox confidence.</li>
<li><strong>priorbox</strong> (<em>paddle.v2.config_base.Layer</em>) – The input priorbox location and the variance.</li>
<li><strong>name</strong> (<em>basestring</em>) –The name of this layer. It is optional.</li>
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) – batch normalization input. Better be linear activation.
Because there is an activation inside batch_normalization.</li>
<li><strong>batch_norm_type</strong> (<em>None|string</em><em>, </em><em>None</em><em> or </em><em>"batch_norm"</em><em> or </em><em>"cudnn_batch_norm"</em>) – We have batch_norm and cudnn_batch_norm. batch_norm
...
...
@@ -879,7 +883,7 @@ normalization will normalize input near zero.</li>
<li><strong>num_channels</strong> (<em>int</em>) – num of image channels or previous layer’s number of
filters. None will automatically get from layer’s
input.</li>
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em>) –<spanclass="math">\(\beta\)</span>, better be zero when initialize. So the
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute|None|Bool|Any</em>) –<spanclass="math">\(\beta\)</span>, better be zero when initialize. So the
initial_std=0, initial_mean=1 is best practice.</li>
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em>) –<spanclass="math">\(\gamma\)</span>, better be one when initialize. So the
initial_std=0, initial_mean=1 is best practice.</li>
...
...
@@ -930,7 +934,7 @@ and <span class="math">\(out\)</span> is a (batchSize x dataDim) output vector.<
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em><em> or </em><em>None</em><em> or </em><em>bool</em>) – The Bias Attribute. If no bias, then pass False or
something not type of paddle.v2.attr.ParameterAttribute. None will get a
default Bias.</li>
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute|None|Bool|Any</em>) – The Bias Attribute. If the parameter is set to
False or something not type of paddle.v2.attr.ParameterAttribute,
no bias is defined. If the parameter is set to
True, the bias is initialized to zero.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) – The extra layer config. Default is None.</li>
<li><strong>name</strong> (<em>basestring</em>) –Name of this embedding layer.</li>
<li><strong>name</strong> (<em>basestring</em>) –The name of this layer. It is optional.</li>
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) – The input layer for this embedding. NOTE: must be Index Data.</li>
<li><strong>size</strong> (<em>int</em>) – The embedding dimension.</li>
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute|None</em>) – The embedding parameter attribute. See paddle.v2.attr.ParameterAttribute
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) – Extra Layer Attribute.</li>
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em><em> or </em><em>None</em><em> or </em><em>bool</em>) – The Bias Attribute. If no bias, then pass False or
something not type of paddle.v2.attr.ParameterAttribute. None will get a
default Bias.</li>
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute|None|Bool|Any</em>) – The Bias Attribute. If the parameter is set to
False or something not type of paddle.v2.attr.ParameterAttribute,
no bias is defined. If the parameter is set to
True, the bias is initialized to zero.</li>
</ul>
</td>
</tr>
...
...
@@ -2183,7 +2205,7 @@ will be sliced for multiple times.</p>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) – extra layer attributes.</li>
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em><em> or </em><em>None</em><em> or </em><em>bool</em>) – The Bias Attribute. If no bias, then pass False or
something not type of paddle.v2.attr.ParameterAttribute. None will get a
default Bias.</li>
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute|None|Bool|Any</em>) – The Bias Attribute. If the parameter is set to
False or something not type of paddle.v2.attr.ParameterAttribute,
no bias is defined. If the parameter is set to
True, the bias is initialized to zero.</li>
</ul>
</td>
</tr>
...
...
@@ -2520,12 +2545,14 @@ Please refer to dropout for details.</p>
<li><strong>name</strong> (<em>basestring</em>) –The name of this layer. It is optional.</li>
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer|list|tuple</em>) – Input layers. It could be a paddle.v2.config_base.Layer or list/tuple of
paddle.v2.config_base.Layer.</li>
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) – Activation Type, default is tanh.</li>
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute|bool</em>) – Bias attribute. If False, means no bias. None is default
bias.</li>
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute|None|Bool|Any</em>) – The Bias Attribute. If the parameter is set to
False or something not type of paddle.v2.attr.ParameterAttribute,
no bias is defined. If the parameter is set to
True, the bias is initialized to zero.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) – Extra Layer attribute.</li>
</ul>
</td>
...
...
@@ -2588,7 +2615,7 @@ processed in one batch.</p>
<li><strong>weights</strong> (<em>paddle.v2.config_base.Layer</em>) – The weight layer.</li>
<li><strong>vectors</strong> (<em>paddle.v2.config_base.Layer</em>) – The vector layer.</li>
<li><strong>size</strong> (<em>int</em>) – the dimension of this layer.</li>
<li><strong>name</strong> (<em>basestring</em>) – The Layer Name.</li>
<li><strong>name</strong> (<em>basestring</em>) – The name of this layer. It is optional.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttributeNone</em>) – Extra Layer config.</li>
</ul>
</td>
...
...
@@ -2627,7 +2654,7 @@ which is used in NEURAL TURING MACHINE.</p>
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer|list|tuple|collections.Sequence</em>) – input layers. It could be a paddle.v2.config_base.Layer of list/tuple of paddle.v2.config_base.Layer.</li>
<li><strong>name</strong> (<em>basestring</em>) –The name of this layer. It is optional.</li>
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer|list|tuple|collections.Sequence</em>) –The input layers. It could be a paddle.v2.config_base.Layer of list/tuple of paddle.v2.config_base.Layer.</li>
<li><strong>weight</strong> (<em>paddle.v2.config_base.Layer</em>) – weight layer, can be None(default)</li>
<li><strong>num_classes</strong> (<em>int</em>) – number of classes.</li>
...
...
@@ -3809,7 +3840,10 @@ A fast and simple algorithm for training neural probabilistic language models.</
<li><strong>neg_distribution</strong> (<em>list|tuple|collections.Sequence|None</em>) – The distribution for generating the random negative labels.
A uniform distribution will be used if not provided.
If not None, its length must be equal to num_classes.</li>
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute|None|False</em>) – Bias parameter attribute. True if no bias.</li>
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute|None|Bool|Any</em>) – The Bias Attribute. If the parameter is set to
False or something not type of paddle.v2.attr.ParameterAttribute,
no bias is defined. If the parameter is set to
True, the bias is initialized to zero.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) – Extra Layer Attribute.</li>
</ul>
</td>
...
...
@@ -3848,9 +3882,11 @@ Hierarchical Probabilistic Neural Network Language Model.”</p>
<li><strong>name</strong> (<em>basestring</em>) – The Layer Name.</li>
<li><strong>name</strong> (<em>basestring</em>) – The name of this layer. It is optional.</li>
<li><strong>input_loc</strong> (<em>paddle.v2.config_base.Layer | List of paddle.v2.config_base.Layer</em>) – The input predict locations.</li>
<li><strong>input_conf</strong> (<em>paddle.v2.config_base.Layer | List of paddle.v2.config_base.Layer</em>) – The input priorbox confidence.</li>
<li><strong>priorbox</strong> (<em>paddle.v2.config_base.Layer</em>) – The input priorbox location and the variance.</li>
...
...
@@ -3962,7 +3998,7 @@ It is used by recurrent layer group.</p>
<dd><p>The gated unit layer implements a simple gating mechanism over the input.
The input <spanclass="math">\(X\)</span> is first projected into a new space <spanclass="math">\(X'\)</span>, and
it is also used to produce a gate weight <spanclass="math">\(\sigma\)</span>. Element-wise
prodict between <ahref="#id12"><spanclass="problematic"id="id13">:match:`X’`</span></a> and <spanclass="math">\(\sigma\)</span> is finally returned.</p>
product between <ahref="#id11"><spanclass="problematic"id="id12">:match:`X’`</span></a> and <spanclass="math">\(\sigma\)</span> is finally returned.</p>
<dlclass="docutils">
<dt>Reference:</dt>
<dd>Language Modeling with Gated Convolutional Networks
...
...
@@ -4084,7 +4126,7 @@ prodict between <a href="#id12"><span class="problematic" id="id13">:match:`X
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) – input for this layer.</li>
<li><strong>size</strong> (<em>int</em>) – output size of the gated unit.</li>
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) – activation type of the projected input.</li>
<li><strong>name</strong> (<em>basestring</em>) –name of this layer.</li>
<li><strong>name</strong> (<em>basestring</em>) –The name of this layer. It is optional.</li>
<li><strong>gate_attr</strong> (<em>paddle.v2.attr.ExtraAttributeNone</em>) – Attributes to tune the gate output, for example, error
clipping threshold, dropout and so on. See paddle.v2.attr.ExtraAttribute for
<li><strong>name</strong> (<em>basestring</em>) – The Layer Name.</li>
<li><strong>name</strong> (<em>basestring</em>) – The name of this layer. It is optional.</li>
<li><strong>input_loc</strong> (<em>paddle.v2.config_base.Layer | List of paddle.v2.config_base.Layer.</em>) – The input predict locations.</li>
<li><strong>input_conf</strong> (<em>paddle.v2.config_base.Layer | List of paddle.v2.config_base.Layer.</em>) – The input priorbox confidence.</li>
<li><strong>priorbox</strong> (<em>paddle.v2.config_base.Layer</em>) – The input priorbox location and the variance.</li>
<li><aclass="reference internal"href="#cp27mu-linux-x86-64-whl-is-not-a-supported-wheel-on-this-platform"id="id22">7. *-cp27mu-linux_x86_64.whl is not a supported wheel on this platform.</a></li>
<li><aclass="reference internal"href="#docker-gpu-cuda-driver-version-is-insufficient"id="id24">9. 运行Docker GPU镜像出现 “CUDA driver version is insufficient”</a></li>
<li><aclass="reference internal"href="#a-protocol-message-was-rejected-because-it-was-too-big"id="id27">12. A protocol message was rejected because it was too big</a></li>
<li><aclass="reference internal"href="#import-paddle-v2-as-paddle-importerror-no-module-named-v2"id="id30">15. 编译安装后执行 import paddle.v2 as paddle 报ImportError: No module named v2</a></li>
<li><aclass="reference internal"href="#cp27mu-linux-x86-64-whl-is-not-a-supported-wheel-on-this-platform"id="id24">7. *-cp27mu-linux_x86_64.whl is not a supported wheel on this platform.</a></li>
<li><aclass="reference internal"href="#docker-gpu-cuda-driver-version-is-insufficient"id="id26">9. 运行Docker GPU镜像出现 “CUDA driver version is insufficient”</a></li>
<li><aclass="reference internal"href="#a-protocol-message-was-rejected-because-it-was-too-big"id="id29">12. A protocol message was rejected because it was too big</a></li>
<li><aclass="reference internal"href="#import-paddle-v2-as-paddle-importerror-no-module-named-v2"id="id32">15. 编译安装后执行 import paddle.v2 as paddle 报ImportError: No module named v2</a></li>
<h2><aclass="toc-backref"href="#id22">7. *-cp27mu-linux_x86_64.whl is not a supported wheel on this platform.</a><aclass="headerlink"href="#cp27mu-linux-x86-64-whl-is-not-a-supported-wheel-on-this-platform"title="永久链接至标题">¶</a></h2>
<h2><aclass="toc-backref"href="#id24">7. *-cp27mu-linux_x86_64.whl is not a supported wheel on this platform.</a><aclass="headerlink"href="#cp27mu-linux-x86-64-whl-is-not-a-supported-wheel-on-this-platform"title="永久链接至标题">¶</a></h2>
<h2><aclass="toc-backref"href="#id24">9. 运行Docker GPU镜像出现 “CUDA driver version is insufficient”</a><aclass="headerlink"href="#docker-gpu-cuda-driver-version-is-insufficient"title="永久链接至标题">¶</a></h2>
<h2><aclass="toc-backref"href="#id26">9. 运行Docker GPU镜像出现 “CUDA driver version is insufficient”</a><aclass="headerlink"href="#docker-gpu-cuda-driver-version-is-insufficient"title="永久链接至标题">¶</a></h2>
<p>用户在使用PaddlePaddle GPU的Docker镜像的时候,常常出现 <cite>Cuda Error: CUDA driver version is insufficient for CUDA runtime version</cite>, 原因在于没有把机器上CUDA相关的驱动和库映射到容器内部。
<divclass="highlight-bash"><divclass="highlight"><pre><span></span>CMake Warning at cmake/version.cmake:20 <spanclass="o">(</span>message<spanclass="o">)</span>:
<h2><aclass="toc-backref"href="#id27">12. A protocol message was rejected because it was too big</a><aclass="headerlink"href="#a-protocol-message-was-rejected-because-it-was-too-big"title="永久链接至标题">¶</a></h2>
<h2><aclass="toc-backref"href="#id29">12. A protocol message was rejected because it was too big</a><aclass="headerlink"href="#a-protocol-message-was-rejected-because-it-was-too-big"title="永久链接至标题">¶</a></h2>
<p>如果在训练NLP相关模型时,出现以下错误:</p>
<divclass="highlight-bash"><divclass="highlight"><pre><span></span><spanclass="o">[</span>libprotobuf ERROR google/protobuf/io/coded_stream.cc:171<spanclass="o">]</span> A protocol message was rejected because it was too big <spanclass="o">(</span>more than <spanclass="m">67108864</span> bytes<spanclass="o">)</span>. To increase the limit <spanclass="o">(</span>or to disable these warnings<spanclass="o">)</span>, see CodedInputStream::SetTotalBytesLimit<spanclass="o">()</span> in google/protobuf/io/coded_stream.h.
<h2><aclass="toc-backref"href="#id30">15. 编译安装后执行 import paddle.v2 as paddle 报ImportError: No module named v2</a><aclass="headerlink"href="#import-paddle-v2-as-paddle-importerror-no-module-named-v2"title="永久链接至标题">¶</a></h2>
<h2><aclass="toc-backref"href="#id32">15. 编译安装后执行 import paddle.v2 as paddle 报ImportError: No module named v2</a><aclass="headerlink"href="#import-paddle-v2-as-paddle-importerror-no-module-named-v2"title="永久链接至标题">¶</a></h2>