From 6a2a9a8350cecfcb12a2f945ad5960b3ac2760e1 Mon Sep 17 00:00:00 2001 From: tensor-tang Date: Tue, 14 Aug 2018 11:37:58 +0800 Subject: [PATCH] Revert "Refine elementwise_add op" --- paddle/fluid/operators/elementwise_add_op.cu | 54 -------------------- paddle/fluid/operators/elementwise_add_op.h | 41 +++------------ 2 files changed, 8 insertions(+), 87 deletions(-) diff --git a/paddle/fluid/operators/elementwise_add_op.cu b/paddle/fluid/operators/elementwise_add_op.cu index 6cbf6066c92..dfff518f170 100644 --- a/paddle/fluid/operators/elementwise_add_op.cu +++ b/paddle/fluid/operators/elementwise_add_op.cu @@ -16,60 +16,6 @@ limitations under the License. */ #include "paddle/fluid/operators/elementwise_add_op.h" #include "paddle/fluid/platform/float16.h" -namespace paddle { -namespace operators { - -template -__global__ void ElementwiseAddCUDAKernel(const T *x, const T *y, T *z, int n, - int post, int size) { - int idx_x = threadIdx.x + blockIdx.x * blockDim.x; - if (idx_x < size) { - int idx_y = idx_x / post - (idx_x / (n * post)) * n; - z[idx_x] = x[idx_x] + y[idx_y]; - } -} - -template -class ElementwiseAddKernel - : public framework::OpKernel { - public: - void Compute(const framework::ExecutionContext &ctx) const override { - using Tensor = framework::Tensor; - - const auto x = ctx.Input("X"); - const auto y = ctx.Input("Y"); - auto z = ctx.Output("Out"); - auto *z_data = z->mutable_data(ctx.GetPlace()); - - auto &device = *(ctx.cuda_device_context().eigen_device()); - const framework::DDim &x_dim = x->dims(); - framework::DDim y_dim = y->dims(); - int size = x->numel(); - if (x_dim == y_dim) { - auto dim = framework::make_ddim({size}); - auto z_eigen = framework::EigenTensor::From(*z, dim); - auto x_eigen = framework::EigenTensor::From(*x, dim); - auto y_eigen = framework::EigenTensor::From(*y, dim); - z_eigen.device(device) = x_eigen + y_eigen; - } else { - int axis = ctx.Attr("axis"); - axis = (axis == -1 ? x_dim.size() - y_dim.size() : axis); - y_dim = trim_trailing_singular_dims(y_dim); - axis = (y_dim.size() == 0) ? x_dim.size() : axis; - int pre, n, post; - get_mid_dims(x_dim, y_dim, axis, &pre, &n, &post); - int threads = 512; - int grids = (size + threads - 1) / threads; - auto stream = ctx.cuda_device_context().stream(); - ElementwiseAddCUDAKernel<<>>( - x->data(), y->data(), z_data, n, post, size); - } - } -}; - -} // namespace operators -} // namespace paddle - namespace ops = paddle::operators; namespace plat = paddle::platform; diff --git a/paddle/fluid/operators/elementwise_add_op.h b/paddle/fluid/operators/elementwise_add_op.h index 0b197237201..5356105e2e5 100644 --- a/paddle/fluid/operators/elementwise_add_op.h +++ b/paddle/fluid/operators/elementwise_add_op.h @@ -144,41 +144,16 @@ class ElementwiseAddGradKernel : public framework::OpKernel { auto* dout = ctx.Input(framework::GradVarName("Out")); auto* dx = ctx.Output(framework::GradVarName("X")); auto* dy = ctx.Output(framework::GradVarName("Y")); + // skip out, x, y + auto* out = dout; + auto *x = dout, *y = dout; - if (dx != nullptr) { - // In fact, we can just share memory, but it may cause a bug of memory - // optimizer - // dx->ShareDataWith(*dout); - framework::TensorCopy(*dout, ctx.GetPlace(), - ctx.template device_context(), dx); - } - - if (dy == nullptr) return; - - const framework::DDim& x_dim = dout->dims(); - framework::DDim y_dim = dy->dims(); - if (x_dim == y_dim) { - // dy->ShareDataWith(*dout); - framework::TensorCopy(*dout, ctx.GetPlace(), - ctx.template device_context(), dy); + if (platform::is_cpu_place(ctx.GetPlace()) && dx != nullptr && + dy != nullptr && (dx->dims() == dy->dims())) { + elementwise_add_grad(ctx, x, y, out, dout, dx, dy); } else { - dy->mutable_data(ctx.GetPlace()); - // Perform reduction to dout to calculate dy - int axis = ctx.Attr("axis"); - axis = (axis == -1 ? x_dim.size() - y_dim.size() : axis); - y_dim = trim_trailing_singular_dims(y_dim); - axis = (y_dim.size() == 0) ? x_dim.size() : axis; - - auto& device = - *(ctx.template device_context().eigen_device()); - int pre, n, post; - get_mid_dims(x_dim, y_dim, axis, &pre, &n, &post); - auto eigen_dout = framework::EigenTensor::From( - *dout, framework::make_ddim({pre, n, post})); - auto eigen_dy = - framework::EigenTensor::From(*dy, framework::make_ddim({n})); - eigen_dy.device(device) = eigen_dout.sum( - framework::EigenDim<2>::From(framework::make_ddim({0, 2}))); + default_elementwise_add_grad(ctx, x, y, out, dout, dx, + dy); } } }; -- GitLab