Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
68e9b841
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
68e9b841
编写于
12月 27, 2018
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add support for optimizer
上级
224c90a8
变更
11
显示空白变更内容
内联
并排
Showing
11 changed file
with
139 addition
and
38 deletion
+139
-38
paddle/fluid/imperative/layer.cc
paddle/fluid/imperative/layer.cc
+1
-1
paddle/fluid/imperative/layer.h
paddle/fluid/imperative/layer.h
+9
-0
paddle/fluid/imperative/tracer.h
paddle/fluid/imperative/tracer.h
+6
-2
paddle/fluid/operators/optimizers/sgd_op.h
paddle/fluid/operators/optimizers/sgd_op.h
+5
-0
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+13
-0
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+27
-1
python/paddle/fluid/initializer.py
python/paddle/fluid/initializer.py
+1
-0
python/paddle/fluid/layer_helper.py
python/paddle/fluid/layer_helper.py
+1
-1
python/paddle/fluid/layers/tensor.py
python/paddle/fluid/layers/tensor.py
+35
-22
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+35
-10
python/paddle/fluid/tests/unittests/test_imperative_mnist.py
python/paddle/fluid/tests/unittests/test_imperative_mnist.py
+6
-1
未找到文件。
paddle/fluid/imperative/layer.cc
浏览文件 @
68e9b841
...
@@ -104,7 +104,7 @@ class Autograd {
...
@@ -104,7 +104,7 @@ class Autograd {
framework
::
Variable
*
CreateVariable
(
const
std
::
string
&
name
,
framework
::
Variable
*
CreateVariable
(
const
std
::
string
&
name
,
const
framework
::
DDim
&
dim
,
float
val
,
const
framework
::
DDim
&
dim
,
float
val
,
framework
::
Scope
*
scope
,
framework
::
Scope
*
scope
,
bool
random_name
=
tru
e
)
{
bool
random_name
=
fals
e
)
{
std
::
string
varname
=
name
;
std
::
string
varname
=
name
;
if
(
random_name
)
{
if
(
random_name
)
{
std
::
mt19937
rng
;
std
::
mt19937
rng
;
...
...
paddle/fluid/imperative/layer.h
浏览文件 @
68e9b841
...
@@ -45,6 +45,15 @@ class VarBase {
...
@@ -45,6 +45,15 @@ class VarBase {
framework
::
LoDTensor
&
Grad
();
framework
::
LoDTensor
&
Grad
();
inline
framework
::
Variable
*
GradVar
()
{
return
grads_
;
}
inline
std
::
string
GradName
()
const
{
PADDLE_ENFORCE
(
var_desc_
,
"Couldn't get gradient variable's name, please call backward() first"
);
return
string
::
Sprintf
(
"%s@IGrad"
,
var_desc_
->
Name
());
}
OpBase
*
pre_op_
;
OpBase
*
pre_op_
;
int
pre_op_out_idx_
;
int
pre_op_out_idx_
;
...
...
paddle/fluid/imperative/tracer.h
浏览文件 @
68e9b841
...
@@ -52,7 +52,7 @@ class Tracer {
...
@@ -52,7 +52,7 @@ class Tracer {
const
std
::
vector
<
VarBase
*>&
outputs
,
framework
::
BlockDesc
*
block
,
const
std
::
vector
<
VarBase
*>&
outputs
,
framework
::
BlockDesc
*
block
,
const
bool
stop_gradient
)
{
const
bool
stop_gradient
)
{
framework
::
OpDesc
*
op_desc
=
op
->
op_desc_
;
framework
::
OpDesc
*
op_desc
=
op
->
op_desc_
;
VLOG
(
3
)
<<
"tracer tracing "
<<
op_desc
->
Type
();
LOG
(
ERROR
)
<<
"tracer tracing "
<<
op_desc
->
Type
();
op_desc
->
InferShape
(
*
block
);
op_desc
->
InferShape
(
*
block
);
op_desc
->
InferVarType
(
block
);
op_desc
->
InferVarType
(
block
);
std
::
unique_ptr
<
framework
::
OperatorBase
>
op_base
=
std
::
unique_ptr
<
framework
::
OperatorBase
>
op_base
=
...
@@ -61,7 +61,10 @@ class Tracer {
...
@@ -61,7 +61,10 @@ class Tracer {
*
op
->
input_vars_
=
inputs
;
*
op
->
input_vars_
=
inputs
;
for
(
VarBase
*
input
:
inputs
)
{
for
(
VarBase
*
input
:
inputs
)
{
const
std
::
string
vname
=
input
->
var_desc_
->
Name
();
const
std
::
string
vname
=
input
->
var_desc_
->
Name
();
LOG
(
ERROR
)
<<
"input: "
<<
vname
;
LOG
(
ERROR
)
<<
"input var: "
<<
input
->
var_
;
framework
::
Variable
*
var
=
root_scope_
->
Var
(
vname
);
framework
::
Variable
*
var
=
root_scope_
->
Var
(
vname
);
LOG
(
ERROR
)
<<
"var_ in tracer pointer: "
<<
var
;
input
->
var_
=
var
;
input
->
var_
=
var
;
if
(
!
var
->
IsInitialized
())
{
if
(
!
var
->
IsInitialized
())
{
framework
::
VarDesc
*
var_desc
=
block
->
FindVar
(
vname
);
framework
::
VarDesc
*
var_desc
=
block
->
FindVar
(
vname
);
...
@@ -84,6 +87,7 @@ class Tracer {
...
@@ -84,6 +87,7 @@ class Tracer {
*
op
->
output_vars_
=
outputs
;
*
op
->
output_vars_
=
outputs
;
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
++
i
)
{
const
std
::
string
vname
=
outputs
[
i
]
->
var_desc_
->
Name
();
const
std
::
string
vname
=
outputs
[
i
]
->
var_desc_
->
Name
();
LOG
(
ERROR
)
<<
"output name: "
<<
vname
;
framework
::
Variable
*
var
=
root_scope_
->
Var
(
vname
);
framework
::
Variable
*
var
=
root_scope_
->
Var
(
vname
);
if
(
!
var
->
IsInitialized
())
{
if
(
!
var
->
IsInitialized
())
{
framework
::
VarDesc
*
var_desc
=
block
->
FindVar
(
vname
);
framework
::
VarDesc
*
var_desc
=
block
->
FindVar
(
vname
);
...
@@ -98,7 +102,7 @@ class Tracer {
...
@@ -98,7 +102,7 @@ class Tracer {
outputs
[
i
]
->
pre_op_out_idx_
=
i
;
outputs
[
i
]
->
pre_op_out_idx_
=
i
;
}
}
VLOG
(
3
)
<<
"tracer running "
<<
op_desc
->
Type
();
LOG
(
ERROR
)
<<
"tracer running "
<<
op_desc
->
Type
();
op_base
->
Run
(
*
root_scope_
,
platform
::
CPUPlace
());
op_base
->
Run
(
*
root_scope_
,
platform
::
CPUPlace
());
if
(
!
stop_gradient
)
{
if
(
!
stop_gradient
)
{
framework
::
OpDesc
*
grad_op_desc
;
framework
::
OpDesc
*
grad_op_desc
;
...
...
paddle/fluid/operators/optimizers/sgd_op.h
浏览文件 @
68e9b841
...
@@ -29,6 +29,8 @@ class SGDOpKernel : public framework::OpKernel<T> {
...
@@ -29,6 +29,8 @@ class SGDOpKernel : public framework::OpKernel<T> {
const
auto
*
param_var
=
ctx
.
InputVar
(
"Param"
);
const
auto
*
param_var
=
ctx
.
InputVar
(
"Param"
);
const
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
const
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
LOG
(
ERROR
)
<<
"grad_var: "
<<
grad_var
;
if
(
param_var
->
IsType
<
framework
::
LoDTensor
>
())
{
if
(
param_var
->
IsType
<
framework
::
LoDTensor
>
())
{
const
auto
*
param
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Param"
);
const
auto
*
param
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Param"
);
auto
*
param_out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
auto
*
param_out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
...
@@ -39,8 +41,11 @@ class SGDOpKernel : public framework::OpKernel<T> {
...
@@ -39,8 +41,11 @@ class SGDOpKernel : public framework::OpKernel<T> {
const
auto
*
grad
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Grad"
);
const
auto
*
grad
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Grad"
);
auto
p
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
param
);
auto
p
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
param
);
LOG
(
ERROR
)
<<
"param flattened"
;
auto
g
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
grad
);
auto
g
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
grad
);
LOG
(
ERROR
)
<<
"grad flattened"
;
auto
o
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
param_out
);
auto
o
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
param_out
);
LOG
(
ERROR
)
<<
"paramout flattened"
;
auto
*
lr
=
learning_rate
->
data
<
T
>
();
auto
*
lr
=
learning_rate
->
data
<
T
>
();
o
=
p
-
lr
[
0
]
*
g
;
o
=
p
-
lr
[
0
]
*
g
;
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
68e9b841
...
@@ -117,10 +117,23 @@ PYBIND11_MODULE(core, m) {
...
@@ -117,10 +117,23 @@ PYBIND11_MODULE(core, m) {
[](
imperative
::
VarBase
&
self
,
framework
::
Scope
*
scope
)
{
[](
imperative
::
VarBase
&
self
,
framework
::
Scope
*
scope
)
{
self
.
RunBackward
(
scope
);
self
.
RunBackward
(
scope
);
})
})
.
def
(
"_grad_var"
,
[](
const
imperative
::
VarBase
&
self
)
{
LOG
(
ERROR
)
<<
"grad_var_ pointer: "
<<
self
.
grads_
;
return
self
.
grads_
;
},
py
::
return_value_policy
::
reference
)
.
def
(
"_grad_name"
,
&
imperative
::
VarBase
::
GradName
)
.
def
(
"_grad"
,
&
imperative
::
VarBase
::
Grad
)
.
def
(
"_grad"
,
&
imperative
::
VarBase
::
Grad
)
.
def
(
"_print_var_pointer"
,
[](
const
imperative
::
VarBase
&
self
)
{
LOG
(
ERROR
)
<<
self
.
var_desc_
->
Name
()
<<
" print_var pointer: "
<<
self
.
var_
;
})
.
def_property
(
"value"
,
.
def_property
(
"value"
,
[](
const
imperative
::
VarBase
&
self
)
{
return
self
.
var_
;
},
[](
const
imperative
::
VarBase
&
self
)
{
return
self
.
var_
;
},
[](
imperative
::
VarBase
&
self
,
framework
::
Variable
*
var
)
{
[](
imperative
::
VarBase
&
self
,
framework
::
Variable
*
var
)
{
LOG
(
ERROR
)
<<
"set var to pointer: "
<<
var
;
self
.
var_
=
var
;
self
.
var_
=
var
;
},
},
py
::
return_value_policy
::
reference
)
py
::
return_value_policy
::
reference
)
...
...
python/paddle/fluid/framework.py
浏览文件 @
68e9b841
...
@@ -19,7 +19,6 @@ import contextlib
...
@@ -19,7 +19,6 @@ import contextlib
import
os
import
os
import
re
import
re
import
six
import
six
import
sys
import
numpy
as
np
import
numpy
as
np
...
@@ -369,6 +368,7 @@ class Variable(object):
...
@@ -369,6 +368,7 @@ class Variable(object):
self
.
_ivar
.
stop_gradient
=
stop_gradient
self
.
_ivar
.
stop_gradient
=
stop_gradient
def
_numpy
(
self
):
def
_numpy
(
self
):
print
(
"get_variable_tensor"
,
self
.
desc
.
name
())
scope
=
_imperative_tracer
().
get_scope
()
scope
=
_imperative_tracer
().
get_scope
()
tensor
=
core
.
get_variable_tensor
(
scope
,
self
.
desc
.
name
())
tensor
=
core
.
get_variable_tensor
(
scope
,
self
.
desc
.
name
())
return
np
.
array
(
tensor
)
return
np
.
array
(
tensor
)
...
@@ -380,6 +380,14 @@ class Variable(object):
...
@@ -380,6 +380,14 @@ class Variable(object):
def
_gradient
(
self
):
def
_gradient
(
self
):
return
np
.
array
(
self
.
_ivar
.
_grad
())
return
np
.
array
(
self
.
_ivar
.
_grad
())
@
property
def
_value
(
self
):
return
self
.
_ivar
.
value
@
_value
.
setter
def
_value
(
self
,
v
):
self
.
_ivar
.
value
=
v
def
__str__
(
self
):
def
__str__
(
self
):
return
self
.
to_string
(
True
)
return
self
.
to_string
(
True
)
...
@@ -632,6 +640,7 @@ class Operator(object):
...
@@ -632,6 +640,7 @@ class Operator(object):
if
inputs
is
not
None
:
if
inputs
is
not
None
:
for
in_proto
in
proto
.
inputs
:
for
in_proto
in
proto
.
inputs
:
print
(
"create op: find_name"
,
in_proto
.
name
)
found
=
find_name
(
inputs
,
in_proto
.
name
)
found
=
find_name
(
inputs
,
in_proto
.
name
)
assert
found
or
in_proto
.
dispensable
,
"Input {} not found"
.
format
(
assert
found
or
in_proto
.
dispensable
,
"Input {} not found"
.
format
(
in_proto
.
name
)
in_proto
.
name
)
...
@@ -695,9 +704,11 @@ class Operator(object):
...
@@ -695,9 +704,11 @@ class Operator(object):
self
.
_update_desc_attr
(
attr_name
,
attr_val
)
self
.
_update_desc_attr
(
attr_name
,
attr_val
)
self
.
desc
.
check_attrs
()
self
.
desc
.
check_attrs
()
if
self
.
_has_kernel
(
type
):
if
self
.
_has_kernel
(
type
):
self
.
desc
.
infer_var_type
(
self
.
block
.
desc
)
self
.
desc
.
infer_var_type
(
self
.
block
.
desc
)
self
.
desc
.
infer_shape
(
self
.
block
.
desc
)
self
.
desc
.
infer_shape
(
self
.
block
.
desc
)
if
_in_imperative_mode
():
if
_in_imperative_mode
():
self
.
iop
=
core
.
OpBase
()
self
.
iop
=
core
.
OpBase
()
self
.
iop
.
desc
=
self
.
desc
self
.
iop
.
desc
=
self
.
desc
...
@@ -1167,6 +1178,7 @@ class Block(object):
...
@@ -1167,6 +1178,7 @@ class Block(object):
def
create_var
(
self
,
*
args
,
**
kwargs
):
def
create_var
(
self
,
*
args
,
**
kwargs
):
var
=
Variable
(
block
=
self
,
*
args
,
**
kwargs
)
var
=
Variable
(
block
=
self
,
*
args
,
**
kwargs
)
if
'initializer'
in
kwargs
:
if
'initializer'
in
kwargs
:
print
(
"initializer, "
,
type
(
kwargs
[
'initializer'
]))
kwargs
[
'initializer'
](
var
,
self
)
kwargs
[
'initializer'
](
var
,
self
)
return
var
return
var
...
@@ -1281,6 +1293,16 @@ class Block(object):
...
@@ -1281,6 +1293,16 @@ class Block(object):
"""
"""
op_desc
=
self
.
desc
.
append_op
()
op_desc
=
self
.
desc
.
append_op
()
op
=
Operator
(
block
=
self
,
desc
=
op_desc
,
*
args
,
**
kwargs
)
op
=
Operator
(
block
=
self
,
desc
=
op_desc
,
*
args
,
**
kwargs
)
print
(
"op inputs: "
,
[
v
.
_numpy
()
for
v
in
op
.
inputs
])
print
(
"op inputs: "
,
[
v
for
v
in
op
.
inputs
])
import
sys
sys
.
stdout
.
flush
()
for
v
in
op
.
inputs
:
v
.
_ivar
.
_print_var_pointer
()
print
(
"print var pointer end"
)
import
sys
sys
.
stdout
.
flush
()
if
_in_imperative_mode
():
if
_in_imperative_mode
():
_imperative_tracer
().
trace
(
op
.
iop
,
[
v
.
_ivar
for
v
in
op
.
inputs
],
_imperative_tracer
().
trace
(
op
.
iop
,
[
v
.
_ivar
for
v
in
op
.
inputs
],
[
v
.
_ivar
for
v
in
op
.
outputs
],
self
.
desc
,
[
v
.
_ivar
for
v
in
op
.
outputs
],
self
.
desc
,
...
@@ -1338,6 +1360,10 @@ class Block(object):
...
@@ -1338,6 +1360,10 @@ class Block(object):
_imperative_tracer
().
trace
(
op
.
iop
,
[
v
.
_ivar
for
v
in
op
.
inputs
],
_imperative_tracer
().
trace
(
op
.
iop
,
[
v
.
_ivar
for
v
in
op
.
inputs
],
[
v
.
_ivar
for
v
in
op
.
outputs
],
self
.
desc
,
[
v
.
_ivar
for
v
in
op
.
outputs
],
self
.
desc
,
kwargs
.
get
(
"stop_gradient"
,
False
))
kwargs
.
get
(
"stop_gradient"
,
False
))
print
([
v
.
name
for
v
in
op
.
outputs
])
for
v
in
op
.
outputs
:
v
.
_ivar
.
_print_var_pointer
()
print
(
"fill_constant end"
)
self
.
ops
.
insert
(
0
,
op
)
self
.
ops
.
insert
(
0
,
op
)
return
op
return
op
...
...
python/paddle/fluid/initializer.py
浏览文件 @
68e9b841
...
@@ -153,6 +153,7 @@ class ConstantInitializer(Initializer):
...
@@ -153,6 +153,7 @@ class ConstantInitializer(Initializer):
assert
isinstance
(
var
,
framework
.
Variable
)
assert
isinstance
(
var
,
framework
.
Variable
)
assert
isinstance
(
block
,
framework
.
Block
)
assert
isinstance
(
block
,
framework
.
Block
)
# Initialization Ops should be prepended and not appended
# Initialization Ops should be prepended and not appended
print
(
"fill_constant"
)
op
=
block
.
_prepend_op
(
op
=
block
.
_prepend_op
(
type
=
"fill_constant"
,
type
=
"fill_constant"
,
outputs
=
{
"Out"
:
var
},
outputs
=
{
"Out"
:
var
},
...
...
python/paddle/fluid/layer_helper.py
浏览文件 @
68e9b841
...
@@ -369,7 +369,7 @@ class LayerHelper(object):
...
@@ -369,7 +369,7 @@ class LayerHelper(object):
def
set_variable_initializer
(
self
,
var
,
initializer
):
def
set_variable_initializer
(
self
,
var
,
initializer
):
assert
isinstance
(
var
,
Variable
)
assert
isinstance
(
var
,
Variable
)
self
.
startup_program
.
global_block
().
create_var
(
return
self
.
startup_program
.
global_block
().
create_var
(
name
=
var
.
name
,
name
=
var
.
name
,
type
=
var
.
type
,
type
=
var
.
type
,
dtype
=
var
.
dtype
,
dtype
=
var
.
dtype
,
...
...
python/paddle/fluid/layers/tensor.py
浏览文件 @
68e9b841
...
@@ -20,6 +20,7 @@ from ..framework import convert_np_dtype_to_dtype_
...
@@ -20,6 +20,7 @@ from ..framework import convert_np_dtype_to_dtype_
from
..framework
import
Variable
from
..framework
import
Variable
from
..initializer
import
Constant
,
force_init_on_cpu
from
..initializer
import
Constant
,
force_init_on_cpu
from
..core
import
VarDesc
from
..core
import
VarDesc
from
..imperative
import
base
as
imperative_base
from
.layer_function_generator
import
templatedoc
from
.layer_function_generator
import
templatedoc
import
numpy
import
numpy
...
@@ -126,10 +127,22 @@ def create_global_var(shape,
...
@@ -126,10 +127,22 @@ def create_global_var(shape,
"""
"""
helper
=
LayerHelper
(
"global_var"
,
**
locals
())
helper
=
LayerHelper
(
"global_var"
,
**
locals
())
var
=
helper
.
create_global_variable
(
var
=
helper
.
create_global_variable
(
dtype
=
dtype
,
shape
=
shape
,
persistable
=
persistable
,
name
=
name
)
dtype
=
dtype
,
shape
=
shape
,
persistable
=
persistable
,
name
=
name
,
stop_gradient
=
True
)
print
(
"set_variable_initializer, "
,
var
.
name
)
if
imperative_base
.
enabled
():
var
=
helper
.
set_variable_initializer
(
var
,
initializer
=
Constant
(
value
=
float
(
value
),
force_cpu
=
force_cpu
))
print
(
"get var"
,
var
)
else
:
helper
.
set_variable_initializer
(
helper
.
set_variable_initializer
(
var
,
initializer
=
Constant
(
var
,
initializer
=
Constant
(
value
=
float
(
value
),
force_cpu
=
force_cpu
))
value
=
float
(
value
),
force_cpu
=
force_cpu
))
return
var
return
var
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
68e9b841
...
@@ -30,6 +30,7 @@ from .initializer import Constant
...
@@ -30,6 +30,7 @@ from .initializer import Constant
from
.layer_helper
import
LayerHelper
from
.layer_helper
import
LayerHelper
from
.layers
import
ops
from
.layers
import
ops
from
.regularizer
import
append_regularization_ops
from
.regularizer
import
append_regularization_ops
from
.imperative
import
base
as
imperative_base
__all__
=
[
__all__
=
[
'SGD'
,
'Momentum'
,
'Adagrad'
,
'Adam'
,
'Adamax'
,
'DecayedAdagrad'
,
'Ftrl'
,
'SGD'
,
'Momentum'
,
'Adagrad'
,
'Adam'
,
'Adamax'
,
'DecayedAdagrad'
,
'Ftrl'
,
...
@@ -108,6 +109,7 @@ class Optimizer(object):
...
@@ -108,6 +109,7 @@ class Optimizer(object):
# create learning rate variable for every parameter
# create learning rate variable for every parameter
param
=
param_and_grad
[
0
]
param
=
param_and_grad
[
0
]
param_lr
=
param
.
optimize_attr
[
'learning_rate'
]
param_lr
=
param
.
optimize_attr
[
'learning_rate'
]
print
(
"param_lr: "
,
param_lr
,
self
.
_global_learning_rate
().
_numpy
())
if
type
(
param_lr
)
==
Variable
:
if
type
(
param_lr
)
==
Variable
:
return
param_lr
return
param_lr
else
:
else
:
...
@@ -301,6 +303,25 @@ class Optimizer(object):
...
@@ -301,6 +303,25 @@ class Optimizer(object):
This method combines interface `append_backward()` and
This method combines interface `append_backward()` and
`create_optimization_pass()` into one.
`create_optimization_pass()` into one.
"""
"""
if
imperative_base
.
enabled
:
if
parameter_list
is
not
None
:
params_grads
=
parameter_list
else
:
program
=
loss
.
block
.
program
parameters
=
program
.
global_block
().
all_parameters
()
params_grads
=
[]
for
param
in
parameters
:
grad_var
=
Variable
(
block
=
loss
.
block
,
name
=
param
.
_ivar
.
_grad_name
(),
stop_gradient
=
True
)
grad_var
.
_value
=
param
.
_ivar
.
_grad_var
()
print
(
"create grad var: "
,
grad_var
.
name
)
print
(
"grad_var value: "
,
grad_var
.
_numpy
())
import
sys
sys
.
stdout
.
flush
()
params_grads
.
append
((
param
,
grad_var
))
else
:
params_grads
=
append_backward
(
loss
,
parameter_list
,
no_grad_set
,
params_grads
=
append_backward
(
loss
,
parameter_list
,
no_grad_set
,
[
error_clip_callback
])
[
error_clip_callback
])
...
@@ -356,6 +377,10 @@ class SGDOptimizer(Optimizer):
...
@@ -356,6 +377,10 @@ class SGDOptimizer(Optimizer):
def
_append_optimize_op
(
self
,
block
,
param_and_grad
):
def
_append_optimize_op
(
self
,
block
,
param_and_grad
):
assert
isinstance
(
block
,
framework
.
Block
)
assert
isinstance
(
block
,
framework
.
Block
)
print
(
"append sgd"
)
import
sys
sys
.
stdout
.
flush
()
# create the optimize op
# create the optimize op
sgd_op
=
block
.
append_op
(
sgd_op
=
block
.
append_op
(
type
=
self
.
type
,
type
=
self
.
type
,
...
...
python/paddle/fluid/tests/unittests/test_imperative_mnist.py
浏览文件 @
68e9b841
...
@@ -18,6 +18,7 @@ import numpy as np
...
@@ -18,6 +18,7 @@ import numpy as np
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddle.fluid
import
core
from
paddle.fluid
import
core
from
paddle.fluid.optimizer
import
SGDOptimizer
from
paddle.fluid.imperative.nn
import
Conv2D
,
Pool2D
,
FC
from
paddle.fluid.imperative.nn
import
Conv2D
,
Pool2D
,
FC
from
paddle.fluid.imperative.base
import
to_variable
from
paddle.fluid.imperative.base
import
to_variable
...
@@ -119,7 +120,11 @@ class TestImperativeMnist(unittest.TestCase):
...
@@ -119,7 +120,11 @@ class TestImperativeMnist(unittest.TestCase):
out
.
_backward
()
out
.
_backward
()
filter_grad
=
mnist
.
_simple_img_conv_pool_1
.
_conv2d
.
_filter_param
.
_gradient
(
filter_grad
=
mnist
.
_simple_img_conv_pool_1
.
_conv2d
.
_filter_param
.
_gradient
(
)
)
print
(
filter_grad
)
# print(filter_grad)
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
sgd
.
minimize
(
out
)
# np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
# np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
# with fluid.imperative.guard():
# with fluid.imperative.guard():
# mlp = MLP()
# mlp = MLP()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录