提交 689d5ee1 编写于 作者: Z zchen0211

solve conficts

......@@ -24,7 +24,7 @@
description: Format files with ClangFormat.
entry: clang-format -i
language: system
files: \.(c|cc|cxx|cpp|h|hpp|hxx)$
files: \.(c|cc|cxx|cpp|cu|h|hpp|hxx|proto)$
- repo: https://github.com/PaddlePaddle/pre-commit-golang
sha: 8337620115c25ff8333f1b1a493bd031049bd7c0
hooks:
......
......@@ -38,7 +38,7 @@ before_install:
# Paddle is using protobuf 3.1 currently. Protobuf 3.2 breaks the compatibility. So we specify the python
# protobuf version.
- pip install numpy wheel 'protobuf==3.1' sphinx==1.5.6 recommonmark sphinx-rtd-theme==0.1.9 virtualenv pre-commit requests==2.9.2 LinkChecker
- pip install rarfile
- pip install rarfile nltk==3.2.2 scipy==0.19.0 recordio matplotlib Pillow
- curl https://glide.sh/get | bash
- eval "$(GIMME_GO_VERSION=1.8.3 gimme)"
- go get -u github.com/alecthomas/gometalinter
......
......@@ -36,8 +36,8 @@ include(simd)
################################ Configurations #######################################
option(WITH_GPU "Compile PaddlePaddle with NVIDIA GPU" ${CUDA_FOUND})
option(WITH_AVX "Compile PaddlePaddle with AVX intrinsics" ${AVX_FOUND})
option(WITH_MKLDNN "Compile PaddlePaddle with mkl-dnn support." OFF)
option(WITH_MKLML "Compile PaddlePaddle with mklml package." OFF)
option(WITH_MKLDNN "Compile PaddlePaddle with mkl-dnn support." ${AVX_FOUND})
option(WITH_MKLML "Compile PaddlePaddle with mklml package." ${AVX_FOUND})
option(WITH_DSO "Compile PaddlePaddle with dynamic linked CUDA" ON)
option(WITH_TESTING "Compile PaddlePaddle with unit testing" ON)
option(WITH_SWIG_PY "Compile PaddlePaddle with inference api" ON)
......
......@@ -27,25 +27,27 @@ RUN apt-get update && \
git python-pip python-dev openssh-server bison \
wget unzip unrar tar xz-utils bzip2 gzip coreutils ntp \
curl sed grep graphviz libjpeg-dev zlib1g-dev \
python-numpy python-matplotlib gcc g++ \
python-matplotlib gcc-4.8 g++-4.8 \
automake locales clang-format-3.8 swig doxygen cmake \
liblapack-dev liblapacke-dev libboost-dev \
clang-3.8 llvm-3.8 libclang-3.8-dev \
net-tools && \
apt-get clean -y
# paddle is using numpy.flip, which is introduced since 1.12.0
RUN pip --no-cache-dir install 'numpy>=1.12.0'
# Install Go and glide
RUN wget -O go.tgz https://storage.googleapis.com/golang/go1.8.1.linux-amd64.tar.gz && \
tar -C /usr/local -xzf go.tgz && \
RUN wget -qO- https://storage.googleapis.com/golang/go1.8.1.linux-amd64.tar.gz | \
tar -xz -C /usr/local && \
mkdir /root/gopath && \
mkdir /root/gopath/bin && \
mkdir /root/gopath/src && \
rm go.tgz
mkdir /root/gopath/src
ENV GOROOT=/usr/local/go GOPATH=/root/gopath
# should not be in the same line with GOROOT definition, otherwise docker build could not find GOROOT.
ENV PATH=${PATH}:${GOROOT}/bin:${GOPATH}/bin
# install glide
RUN curl -q https://glide.sh/get | sh
RUN curl -s -q https://glide.sh/get | sh
# git credential to skip password typing
RUN git config --global credential.helper store
......
......@@ -72,7 +72,7 @@ We provide [English](http://doc.paddlepaddle.org/develop/doc/) and
- [Deep Learning 101](http://book.paddlepaddle.org/index.html)
You might want to start from the this online interactive book that can run in Jupyter Notebook.
You might want to start from this online interactive book that can run in Jupyter Notebook.
- [Distributed Training](http://doc.paddlepaddle.org/develop/doc/howto/usage/cluster/cluster_train_en.html)
......
......@@ -74,8 +74,6 @@ if(WITH_MKLDNN)
set(OPENMP_FLAGS "-fopenmp")
set(CMAKE_C_CREATE_SHARED_LIBRARY_FORBIDDEN_FLAGS ${OPENMP_FLAGS})
set(CMAKE_CXX_CREATE_SHARED_LIBRARY_FORBIDDEN_FLAGS ${OPENMP_FLAGS})
set(CMAKE_SHARED_LINKER_FLAGS "${CMAKE_SHARED_LINKER_FLAGS} -L${MKLDNN_IOMP_DIR} -liomp5 -Wl,--as-needed")
set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -L${MKLDNN_IOMP_DIR} -liomp5 -Wl,--as-needed")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${OPENMP_FLAGS}")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OPENMP_FLAGS}")
else()
......
......@@ -42,26 +42,21 @@ macro(add_style_check_target TARGET_NAME)
if(WITH_STYLE_CHECK)
set(SOURCES_LIST ${ARGN})
list(REMOVE_DUPLICATES SOURCES_LIST)
list(SORT SOURCES_LIST)
foreach(filename ${SOURCES_LIST})
set(LINT ON)
foreach(pattern ${IGNORE_PATTERN})
if(filename MATCHES ${pattern})
message(STATUS "DROP LINT ${filename}")
set(LINT OFF)
list(REMOVE_ITEM SOURCES_LIST ${filename})
endif()
endforeach()
if(LINT MATCHES ON)
# cpplint code style
get_filename_component(base_filename ${filename} NAME)
set(CUR_GEN ${CMAKE_CURRENT_BINARY_DIR}/${base_filename}.cpplint)
add_custom_command(TARGET ${TARGET_NAME} PRE_BUILD
endforeach()
if(SOURCES_LIST)
add_custom_command(TARGET ${TARGET_NAME} POST_BUILD
COMMAND "${PYTHON_EXECUTABLE}" "${PROJ_ROOT}/paddle/scripts/cpplint.py"
"--filter=${STYLE_FILTER}"
"--write-success=${CUR_GEN}" ${filename}
${SOURCES_LIST}
COMMENT "cpplint: Checking source code style"
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR})
endif()
endforeach()
endif()
endmacro()
......@@ -7,8 +7,8 @@ INCLUDE_DIRECTORIES(${ANY_SOURCE_DIR}/src/extern_lib_any)
ExternalProject_Add(
extern_lib_any
${EXTERNAL_PROJECT_LOG_ARGS}
GIT_REPOSITORY "https://github.com/thelink2012/any.git"
GIT_TAG "8fef1e93710a0edf8d7658999e284a1142c4c020"
GIT_REPOSITORY "https://github.com/PaddlePaddle/any.git"
GIT_TAG "15595d8324be9e8a9a80d9ae442fdd12bd66df5d"
PREFIX ${ANY_SOURCE_DIR}
UPDATE_COMMAND ""
CONFIGURE_COMMAND ""
......
......@@ -28,7 +28,14 @@ INCLUDE_DIRECTORIES(${GFLAGS_INCLUDE_DIR})
ExternalProject_Add(
extern_gflags
${EXTERNAL_PROJECT_LOG_ARGS}
GIT_REPOSITORY "https://github.com/gflags/gflags.git"
# TODO(yiwang): The annoying warnings mentioned in
# https://github.com/PaddlePaddle/Paddle/issues/3277 are caused by
# gflags. I fired a PR https://github.com/gflags/gflags/pull/230
# to fix it. Before it gets accepted by the gflags team, we use
# my personal fork, which contains above fix, temporarily. Let's
# change this back to the official Github repo once my PR is
# merged.
GIT_REPOSITORY "https://github.com/wangkuiyi/gflags.git"
PREFIX ${GFLAGS_SOURCES_DIR}
UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}
......
......@@ -20,34 +20,30 @@ INCLUDE(ExternalProject)
SET(MKLDNN_PROJECT "extern_mkldnn")
SET(MKLDNN_SOURCES_DIR ${THIRD_PARTY_PATH}/mkldnn)
SET(MKLDNN_INSTALL_ROOT ${CMAKE_INSTALL_PREFIX})
IF(NOT "$ENV{HOME}" STREQUAL "/root")
SET(MKLDNN_INSTALL_ROOT "$ENV{HOME}")
ENDIF()
SET(MKLDNN_INSTALL_DIR "${MKLDNN_INSTALL_ROOT}/opt/paddle/third_party/mkldnn")
SET(MKLDNN_INCLUDE_DIR "${MKLDNN_INSTALL_DIR}/include" CACHE PATH "mkldnn include directory." FORCE)
SET(MKLDNN_INSTALL_DIR ${THIRD_PARTY_PATH}/install/mkldnn)
SET(MKLDNN_INC_DIR "${MKLDNN_INSTALL_DIR}/include" CACHE PATH "mkldnn include directory." FORCE)
IF(WIN32)
MESSAGE(WARNING "It is not supported compiling with mkldnn in windows Paddle yet."
IF(WIN32 OR APPLE)
MESSAGE(WARNING
"Windows or Mac is not supported with MKLDNN in Paddle yet."
"Force WITH_MKLDNN=OFF")
SET(WITH_MKLDNN OFF)
SET(WITH_MKLDNN OFF CACHE STRING "Disable MKLDNN in Windows and MacOS" FORCE)
return()
ELSE(WIN32)
SET(MKLDNN_LIBRARY "${MKLDNN_INSTALL_DIR}/lib/libmkldnn.so" CACHE FILEPATH "mkldnn library." FORCE)
MESSAGE(STATUS "Set ${MKLDNN_INSTALL_DIR}/lib to runtime path")
SET(CMAKE_INSTALL_RPATH_USE_LINK_PATH TRUE)
#SET(CMAKE_MACOSX_RPATH 1) # hold for MacOS
SET(CMAKE_INSTALL_RPATH "${CMAKE_INSTALL_RPATH}" "${MKLDNN_INSTALL_DIR}/lib")
ENDIF(WIN32)
ENDIF()
SET(MKLDNN_LIB "${MKLDNN_INSTALL_DIR}/lib/libmkldnn.so" CACHE FILEPATH "mkldnn library." FORCE)
MESSAGE(STATUS "Set ${MKLDNN_INSTALL_DIR}/lib to runtime path")
SET(CMAKE_INSTALL_RPATH_USE_LINK_PATH TRUE)
SET(CMAKE_INSTALL_RPATH "${CMAKE_INSTALL_RPATH}" "${MKLDNN_INSTALL_DIR}/lib")
INCLUDE_DIRECTORIES(${MKLDNN_INCLUDE_DIR})
INCLUDE_DIRECTORIES(${MKLDNN_INC_DIR})
IF(${CBLAS_PROVIDER} STREQUAL "MKLML")
SET(MKLDNN_DEPENDS ${MKLML_PROJECT})
SET(MKLDNN_MKLROOT ${MKLML_ROOT})
SET(MKLDNN_IOMP_LIB ${MKLML_IOMP_LIB})
SET(MKLDNN_IOMP_DIR ${MKLML_LIB_DIR})
MESSAGE(STATUS "Build MKLDNN with ${MKLDNN_MKLROOT}")
ENDIF()
ExternalProject_Add(
......@@ -57,16 +53,15 @@ ExternalProject_Add(
GIT_REPOSITORY "https://github.com/01org/mkl-dnn.git"
GIT_TAG "v0.9"
PREFIX ${MKLDNN_SOURCES_DIR}
CONFIGURE_COMMAND mkdir -p <SOURCE_DIR>/build
BUILD_COMMAND cd <SOURCE_DIR>/build
&& cmake .. -DCMAKE_INSTALL_PREFIX=${MKLDNN_INSTALL_DIR} -DMKLROOT=${MKLDNN_MKLROOT}
&& $(MAKE)
INSTALL_COMMAND cd <SOURCE_DIR>/build && $(MAKE) install
UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${MKLDNN_INSTALL_DIR}
CMAKE_ARGS -DMKLROOT=${MKLDNN_MKLROOT}
CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${MKLDNN_INSTALL_DIR}
-DMKLROOT:PATH=${MKLDNN_MKLROOT}
)
ADD_LIBRARY(mkldnn SHARED IMPORTED GLOBAL)
SET_PROPERTY(TARGET mkldnn PROPERTY IMPORTED_LOCATION ${MKLDNN_LIBRARY})
SET_PROPERTY(TARGET mkldnn PROPERTY IMPORTED_LOCATION ${MKLDNN_LIB})
ADD_DEPENDENCIES(mkldnn ${MKLDNN_PROJECT})
MESSAGE(STATUS "Mkldnn library: ${MKLDNN_LIBRARY}")
MESSAGE(STATUS "Mkldnn library: ${MKLDNN_LIB}")
LIST(APPEND external_project_dependencies mkldnn)
......@@ -16,19 +16,23 @@ IF(NOT ${WITH_MKLML})
return()
ENDIF(NOT ${WITH_MKLML})
IF(WIN32 OR APPLE)
MESSAGE(WARNING
"Windows or Mac is not supported with MKLML in Paddle yet."
"Force WITH_MKLML=OFF")
SET(WITH_MKLML OFF CACHE STRING "Disable MKLML package in Windows and MacOS" FORCE)
return()
ENDIF()
INCLUDE(ExternalProject)
SET(MKLML_PROJECT "extern_mklml")
SET(MKLML_VER "mklml_lnx_2018.0.20170425")
SET(MKLML_VER "mklml_lnx_2018.0.20170720")
SET(MKLML_URL "https://github.com/01org/mkl-dnn/releases/download/v0.9/${MKLML_VER}.tgz")
SET(MKLML_SOURCE_DIR "${THIRD_PARTY_PATH}/mklml")
SET(MKLML_DOWNLOAD_DIR "${MKLML_SOURCE_DIR}/src/${MKLML_PROJECT}")
SET(MKLML_DST_DIR "opt/paddle/third_party/mklml")
SET(MKLML_INSTALL_ROOT "${CMAKE_INSTALL_PREFIX}")
IF(NOT "$ENV{HOME}" STREQUAL "/root")
SET(MKLML_INSTALL_ROOT "$ENV{HOME}")
ENDIF()
SET(MKLML_DST_DIR "mklml")
SET(MKLML_INSTALL_ROOT "${THIRD_PARTY_PATH}/install")
SET(MKLML_INSTALL_DIR ${MKLML_INSTALL_ROOT}/${MKLML_DST_DIR})
SET(MKLML_ROOT ${MKLML_INSTALL_DIR}/${MKLML_VER})
SET(MKLML_INC_DIR ${MKLML_ROOT}/include)
......@@ -39,8 +43,8 @@ SET(CMAKE_INSTALL_RPATH "${CMAKE_INSTALL_RPATH}" "${MKLML_ROOT}/lib")
INCLUDE_DIRECTORIES(${MKLML_INC_DIR})
SET(mklml_cmakefile ${MKLML_DOWNLOAD_DIR}/CMakeLists.txt)
FILE(WRITE ${mklml_cmakefile} "PROJECT(MKLML)\n"
FILE(WRITE ${MKLML_DOWNLOAD_DIR}/CMakeLists.txt
"PROJECT(MKLML)\n"
"cmake_minimum_required(VERSION 3.0)\n"
"install(DIRECTORY ${MKLML_VER}\n"
" DESTINATION ${MKLML_DST_DIR})\n")
......@@ -50,8 +54,7 @@ ExternalProject_Add(
${EXTERNAL_PROJECT_LOG_ARGS}
PREFIX ${MKLML_SOURCE_DIR}
DOWNLOAD_DIR ${MKLML_DOWNLOAD_DIR}
DOWNLOAD_COMMAND wget --no-check-certificate -O ${MKLML_DOWNLOAD_DIR}/${MKLML_VER}.tgz ${MKLML_URL}
&& tar -xzf ${MKLML_DOWNLOAD_DIR}/${MKLML_VER}.tgz
DOWNLOAD_COMMAND wget --no-check-certificate -qO- ${MKLML_URL} | tar xz -C ${MKLML_DOWNLOAD_DIR}
DOWNLOAD_NO_PROGRESS 1
UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${MKLML_INSTALL_ROOT}
......
......@@ -69,8 +69,13 @@ ENDIF(NOT ${CBLAS_FOUND})
MESSAGE(STATUS "BLAS library: ${CBLAS_LIBRARIES}")
INCLUDE_DIRECTORIES(${CBLAS_INC_DIR})
ADD_LIBRARY(cblas STATIC IMPORTED)
SET_PROPERTY(TARGET cblas PROPERTY IMPORTED_LOCATION ${CBLAS_LIBRARIES})
# FIXME(gangliao): generate cblas target to track all high performance
# linear algebra libraries for cc_library(xxx SRCS xxx.c DEPS cblas)
SET(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/cblas_dummy.c)
FILE(WRITE ${dummyfile} "const char * dummy = \"${dummyfile}\";")
ADD_LIBRARY(cblas STATIC ${dummyfile})
TARGET_LINK_LIBRARIES(cblas ${CBLAS_LIBRARIES})
IF(NOT ${CBLAS_FOUND})
ADD_DEPENDENCIES(cblas extern_openblas)
LIST(APPEND external_project_dependencies cblas)
......
......@@ -24,7 +24,6 @@ IF(WITH_PYTHON)
ENDIF(WITH_PYTHON)
SET(py_env "")
SET(USE_VIRTUALENV_FOR_TEST 1)
IF(PYTHONINTERP_FOUND)
find_python_module(pip REQUIRED)
find_python_module(numpy REQUIRED)
......
......@@ -115,7 +115,7 @@ set(COMMON_FLAGS
-Wno-error=literal-suffix
-Wno-error=sign-compare
-Wno-error=unused-local-typedefs
-Wno-error=parentheses-equality # Warnings in Pybind11
-Wno-error=parentheses-equality # Warnings in pybind11
)
set(GPU_COMMON_FLAGS
......@@ -195,6 +195,7 @@ endif()
# Modern gpu architectures: Pascal
if (CUDA_VERSION VERSION_GREATER "8.0" OR CUDA_VERSION VERSION_EQUAL "8.0")
list(APPEND __arch_flags " -gencode arch=compute_60,code=sm_60")
list(APPEND CUDA_NVCC_FLAGS --expt-relaxed-constexpr)
endif()
# Custom gpu architecture
......
......@@ -187,7 +187,13 @@ function(cc_library TARGET_NAME)
endif()
# cpplint code style
add_style_check_target(${TARGET_NAME} ${cc_library_SRCS})
foreach(source_file ${cc_library_SRCS})
string(REGEX REPLACE "\\.[^.]*$" "" source ${source_file})
if(EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${source}.h)
list(APPEND cc_library_HEADERS ${CMAKE_CURRENT_SOURCE_DIR}/${source}.h)
endif()
endforeach()
add_style_check_target(${TARGET_NAME} ${cc_library_SRCS} ${cc_library_HEADERS})
else(cc_library_SRCS)
if (cc_library_DEPS)
......@@ -239,6 +245,14 @@ function(nv_library TARGET_NAME)
add_dependencies(${TARGET_NAME} ${nv_library_DEPS})
target_link_libraries(${TARGET_NAME} ${nv_library_DEPS})
endif()
# cpplint code style
foreach(source_file ${nv_library_SRCS})
string(REGEX REPLACE "\\.[^.]*$" "" source ${source_file})
if(EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${source}.h)
list(APPEND cc_library_HEADERS ${CMAKE_CURRENT_SOURCE_DIR}/${source}.h)
endif()
endforeach()
add_style_check_target(${TARGET_NAME} ${nv_library_SRCS} ${nv_library_HEADERS})
else(nv_library_SRCS)
if (nv_library_DEPS)
merge_static_libs(${TARGET_NAME} ${nv_library_DEPS})
......@@ -389,3 +403,16 @@ function(py_proto_compile TARGET_NAME)
protobuf_generate_python(py_srcs ${py_proto_compile_SRCS})
add_custom_target(${TARGET_NAME} ALL DEPENDS ${py_srcs})
endfunction()
function(py_test TARGET_NAME)
if(WITH_TESTING)
set(options STATIC static SHARED shared)
set(oneValueArgs "")
set(multiValueArgs SRCS DEPS)
cmake_parse_arguments(py_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
add_test(NAME ${TARGET_NAME}
COMMAND env PYTHONPATH=${PADDLE_PYTHON_PACKAGE_DIR}
python2 ${py_test_SRCS}
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR})
endif()
endfunction()
......@@ -118,7 +118,6 @@ endfunction()
macro(add_unittest_without_exec TARGET_NAME)
add_executable(${TARGET_NAME} ${ARGN})
link_paddle_test(${TARGET_NAME})
add_style_check_target(${TARGET_NAME} ${ARGN})
endmacro()
# add_unittest
......@@ -150,9 +149,12 @@ endfunction()
# Create a python unittest using run_python_tests.sh,
# which takes care of making correct running environment
function(add_python_test TEST_NAME)
add_test(NAME ${TEST_NAME}
COMMAND env PADDLE_PACKAGE_DIR=${PADDLE_PYTHON_PACKAGE_DIR}
bash ${PROJ_ROOT}/paddle/scripts/run_python_tests.sh
${USE_VIRTUALENV_FOR_TEST} ${PYTHON_EXECUTABLE} ${ARGN}
foreach(arg ${ARGN})
get_filename_component(py_fn ${arg} NAME_WE)
set(TRG_NAME ${TEST_NAME}_${py_fn})
add_test(NAME ${TRG_NAME}
COMMAND env PYTHONPATH=${PADDLE_PYTHON_PACKAGE_DIR}
python2 ${arg}
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR})
endforeach()
endfunction()
......@@ -257,6 +257,16 @@ seq_concat
.. autoclass:: paddle.v2.layer.seq_concat
:noindex:
kmax_sequence_score
-------------------
.. autoclass:: paddle.v2.layer.kmax_sequence_score
:noindex:
sub_nested_seq
--------------
.. autoclass:: paddle.v2.layer.sub_nested_seq
:noindex:
Reshaping Layers
================
......@@ -325,6 +335,11 @@ scaling
.. autoclass:: paddle.v2.layer.scaling
:noindex:
clip
----
.. autoclass:: paddle.v2.layer.clip
:noindex:
slope_intercept
---------------
.. autoclass:: paddle.v2.layer.slope_intercept
......
# Intel® MKL-DNN on PaddlePaddle: Design Doc
我们计划将Intel深度神经网络数学库(**MKL-DNN**\[[1](#references)\])集成到PaddlePaddle,充分展现英特尔平台的优势,有效提升PaddlePaddle在英特尔架构上的性能。
我们短期内的基本目标是:
- 完成常用layer的MKL-DNN实现。
- 完成常见深度神经网络VGG,GoogLeNet 和 ResNet的MKL-DNN实现。
## Contents
- [Overview](#overview)
- [Actions](#actions)
- [CMake](#cmake)
- [Layers](#layers)
- [Activations](#activations)
- [Unit Tests](#unit-tests)
- [Protobuf Messages](#protobuf-messages)
- [Python API](#python-api)
- [Demos](#demos)
- [Benchmarking](#benchmarking)
- [Others](#others)
- [Design Concerns](#design-concerns)
## Overview
我们会把MKL-DNN作为第三方库集成进PaddlePaddle,整体框架图
<div align="center">
<img src="image/overview.png" width=350><br/>
Figure 1. PaddlePaddle on IA.
</div>
## Actions
我们把集成方案大致分为了如下几个方面。
### CMake
我们会在`CMakeLists.txt`中会添加`WITH_MKLDNN`的选项,当设置这个值为`ON`的时候会启用编译MKL-DNN功能。同时会自动开启OpenMP用于提高MKL-DNN的性能。
同时,我们会引入`WITH_MKLML`选项,用于选择是否使用MKL-DNN自带的MKLML安装包。这个安装包可以独立于MKL-DNN使用,但是建议在开启MKL-DNN的同时也打开MKLML的开关,这样才能发挥最好的性能。
所以,我们会在`cmake/external`目录新建`mkldnn.cmake``mklml.cmake`文件,它们会在编译PaddlePaddle的时候下载对应的软件包,并放到PaddlePaddle的third party目录中。
**备注**:当`WITH_MKLML=ON`的时候,会优先使用这个包作为PaddlePaddle的CBLAS和LAPACK库,所以会稍微改动`cmake/cblas.cmake`中的逻辑。
### Layers
所有MKL-DNN相关的C++ layers,都会按照PaddlePaddle的目录结构存放在
`paddle/gserver/layers`中,并且文件名都会一以*Mkldnn*开头。
所有MKL-DNN的layers都会继承于一个叫做`MkldnnLayer`的父类,该父类继承于PaddlePaddle的基类`Layer`
### Activations
由于在PaddlePaddle中,激活函数是独立于layer概念的,所以会在`paddle/gserver/activations`目录下添加一个`MkldnnActivation.h`文件定义一些用于MKL-DNN的接口,实现方法还是会在`ActivationFunction.cpp`文件。
### Unit Tests
会在`paddle/gserver/test`目录下添加`test_Mkldnn.cpp``MkldnnTester.*`用于MKL-DNN的测试。
Activation的测试,计划在PaddlePaddle原有的测试文件上直接添加新的测试type。
### Protobuf Messages
根据具体layer的需求可能会在`proto/ModelConfig.proto`里面添加必要的选项。
### Python API
目前只考虑**v1 API**
计划在`python/paddle/trainer/config_parser.py`里面添加`use_mkldnn`这个选择,方便用户选择使用MKL-DNN的layers。
具体实现方式比如:
```python
use_mkldnn = bool(int(g_command_config_args.get("use_mkldnn", 0)))
if use_mkldnn
self.layer_type = mkldnn_*
```
所有MKL-DNN的layer type会以*mkldnn_*开头,以示区分。
并且可能在`python/paddle/trainer_config_helper`目录下的`activations.py ``layers.py`里面添加必要的MKL-DNN的接口。
### Demos
会在`v1_api_demo`目录下添加一个`mkldnn`的文件夹,里面放入一些用于MKL-DNN测试的demo脚本。
### Benchmarking
会考虑添加部分逻辑在`benchmark/paddle/image/run.sh`,添加使用MKL-DNN的测试。
### Others
1. 如果在使用MKL-DNN的情况下,会把CPU的Buffer对齐为64。
2. 深入PaddlePaddle,寻找有没有其他可以优化的可能,进一步优化。比如可能会用OpenMP改进SGD的更新性能。
## Design Concerns
为了更好的符合PaddlePaddle的代码风格\[[2](#references)\],同时又尽可能少的牺牲MKL-DNN的性能\[[3](#references)\]
我们总结出一些特别需要注意的点:
1. 使用**deviceId_**。为了尽可能少的在父类Layer中添加变量或者函数,我们决定使用已有的`deviceId_`变量来区分layer的属性,定义`-2``MkldnnLayer`特有的设备ID。
2. 重写父类Layer的**init**函数,修改`deviceId_``-2`,代表这个layer是用于跑在MKL-DNN的环境下。
3. 创建`MkldnnMatrix`,用于管理MKL-DNN会用到的相关memory函数、接口以及会用的到格式信息。
4. 创建`MkldnnBase`,定义一些除了layer和memory相关的类和函数。包括MKL-DNN会用到`MkldnnStream``CpuEngine`,和未来可能还会用到`FPGAEngine`等。
5.**Argument**里添加两个`MkldnnMatrixPtr`,取名为`mkldnnValue``mkldnnGrad`,用于存放`MkldnnLayer`会用到的memory buffer。 并且添加函数cvt(会修改为一个更加合适的函数名),用于处理"CPU device"和"MKL-DNN device"之间memory的相互转化。
6. 在父类`Layer`中的`getOutput`函数中添加一段逻辑,用于判断`deviceId`,并针对device在MKL-DNN和CPU之间不统一的情况,做一个前期转换。 也就是调用`Argument`的cvt函数把output统一到需要的device上。
7. 在原来的`FLAGS`中添加一个`use_mkldnn`的flag,用于选择是否使用MKL-DNN的相关功能。
## References
1. [Intel Math Kernel Library for Deep Neural Networks (Intel MKL-DNN)](https://github.com/01org/mkl-dnn "Intel MKL-DNN")
2. [原来的方案](https://github.com/PaddlePaddle/Paddle/pull/3096)会引入**nextLayer**的信息。但是在PaddlePaddle中,无论是重构前的layer还是重构后的op,都不会想要知道next layer/op的信息。
3. MKL-DNN的高性能格式与PaddlePaddle原有的`NCHW`不同(PaddlePaddle中的CUDNN部分使用的也是`NCHW`,所以不存在这个问题),所以需要引入一个转换方法,并且只需要在必要的时候转换这种格式,才能更好的发挥MKL-DNN的性能。
......@@ -11,6 +11,15 @@ Paddle每次发新的版本,遵循以下流程:
* 编译这个版本的Ubuntu Deb包。如果失败,修复Ubuntu Deb包编译问题,Patch号加一,返回第二步。
* 使用Regression Test List作为检查列表,测试Docker镜像/ubuntu安装包的功能正确性
* 如果失败,记录下所有失败的例子,在这个`release/版本号`分支中,修复所有bug后,Patch号加一,返回第二步
* 编译这个版本的python wheel包,并发布到pypi。
* 由于pypi.python.org目前遵循[严格的命名规范PEP 513](https://www.python.org/dev/peps/pep-0513),在使用twine上传之前,需要重命名wheel包中platform相关的后缀,比如将`linux_x86_64`修改成`manylinux1_x86_64`
* pypi上的package名称为paddlepaddle和paddlepaddle_gpu,如果要上传GPU版本的包,需要修改build/python/setup.py中,name: "paddlepaddle_gpu"并重新打包wheel包:`python setup.py bdist_wheel`
* 上传方法:
```
cd build/python
pip install twine
twine upload dist/[package to upload]
```
4. 第三步完成后,将`release/版本号`分支合入master分支,并删除`release/版本号`分支。将master分支的合入commit打上tag,tag为`版本号`。同时再将`master`分支合入`develop`分支。最后删除`release/版本号`分支。
5. 编译master分支的Docker发行镜像,发布到dockerhub。编译ubuntu的deb包,发布到github release页面
6. 协同完成Release Note的书写
......
......@@ -3,6 +3,43 @@ PaddlePaddle的Docker容器使用方式
PaddlePaddle目前唯一官方支持的运行的方式是Docker容器。因为Docker能在所有主要操作系统(包括Linux,Mac OS X和Windows)上运行。 请注意,您需要更改 `Dockers设置 <https://github.com/PaddlePaddle/Paddle/issues/627>`_ 才能充分利用Mac OS X和Windows上的硬件资源。
Docker使用入门
------------------------------
几个基础的概念帮助理解和使用Docker:
- *镜像*:一个Docker镜像是一个打包好的软件。它包含了这个软件本身和它所依赖的运行环境。PaddlePaddle的Docker镜像就包含了PaddlePaddle的Python库以及其依赖的多个Python库。这样我们可以直接在Docker中运行需要的程序而不需要安装后在执行。可以执行:
.. code-block:: bash
docker images
来列出当前系统中的所有镜像,同样可以执行:
.. code-block:: bash
docker pull paddlepaddle/paddle:0.10.0
来下载Docker镜像,paddlepaddle/paddle是从官方镜像源Dockerhub.com下载的,推荐国内用户使用ocker.paddlepaddle.org/paddle下载。
- *容器*: 如果说一个Docker镜像就是一个程序,那容器就是这个程序运行时产生的“进程”。
实际上,一个容器就是一个操作系统的进程,但是是运行在独立的进程空间,文件系统以及网络之上。
可以执行:
.. code-block:: bash
docker run paddlepaddle/paddle:0.10.0
来使用一个镜像启动一个容器。
- 默认情况下,Docker容器会运行在独立的文件系统空间之上,我们无法在Docker容器中
访问到主机上的文件。可以通过*挂载Volume*的方式,将主机上的文件或目录挂载到
Docker容器中。下面的命令把当前目录挂载到了容器中的 /data 目录下,容器使用
debian镜像,并且启动后执行 :code:`ls /data`。
.. code-block:: bash
docker run --rm -v $(pwd):/data debian ls /data
PaddlePaddle发布的Docker镜像使用说明
------------------------------
......@@ -12,11 +49,11 @@ PaddlePaddle需要的所有编译工具。把编译出来的PaddlePaddle也打
像,称为生产镜像,里面涵盖了PaddlePaddle运行所需的所有环境。每次
PaddlePaddle发布新版本的时候都会发布对应版本的生产镜像以及开发镜像。运
行镜像包括纯CPU版本和GPU版本以及其对应的非AVX版本。我们会在
`dockerhub.com <https://hub.docker.com/r/paddlepaddle/paddle/tags/>`_ 提供最新
的Docker镜像,可以在"tags"标签下找到最新的Paddle镜像版本。为了方便在国
内的开发者下载Docker镜像,我们提供了国内的镜像服务器供大家使用。如果您
在国内,请把文档里命令中的paddlepaddle/paddle替换成
docker.paddlepaddle.org/paddle。
`dockerhub.com <https://hub.docker.com/r/paddlepaddle/paddle/tags/>`_
和国内镜像`docker.paddlepaddle.org` 提供最新
的Docker镜像,可以在"tags"标签下找到最新的Paddle镜像版本。
**注意:为了方便在国内的开发者下载Docker镜像,我们提供了国内的镜像服务器供大家使用。如果您在国内,请把文档里命令中的paddlepaddle/paddle替换成docker.paddlepaddle.org/paddle。**
1. 开发镜像::code:`paddlepaddle/paddle:0.10.0-dev`
......@@ -68,6 +105,8 @@ docker.paddlepaddle.org/paddle。
如果输出是No,就需要选择使用no-AVX的镜像
**注:在0.10.0之后的版本,PaddlePaddle都可以自动判断硬件是否支持AVX,所以无需判断AVX即可使用**
以上方法在GPU镜像里也能用,只是请不要忘记提前在物理机上安装GPU最新驱动。
为了保证GPU驱动能够在镜像里面正常运行,我们推荐使用[nvidia-docker](https://github.com/NVIDIA/nvidia-docker)来运行镜像。
......
......@@ -63,12 +63,35 @@ CPU-only version and a CUDA GPU version and their no-AVX versions.
We put the docker images on `dockerhub.com
<https://hub.docker.com/r/paddlepaddle/paddle/tags/>`_. You can find the
latest versions under "tags" tab at dockerhub.com. If you are in
China, you can use our Docker image registry mirror to speed up the
download process. To use it, please replace all paddlepaddle/paddle in
the commands to docker.paddlepaddle.org/paddle.
latest versions under "tags" tab at dockerhub.com.
1. Production images, this image might have multiple variants:
** NOTE: If you are in China, you can use our Docker image registry mirror to speed up the download process. To use it, please replace all paddlepaddle/paddle in the commands to docker.paddlepaddle.org/paddle.**
1. development image :code:`paddlepaddle/paddle:<version>-dev`
This image has packed related develop tools and runtime
environment. Users and developers can use this image instead of
their own local computer to accomplish development, build,
releasing, document writing etc. While different version of paddle
may depends on different version of libraries and tools, if you
want to setup a local environment, you must pay attention to the
versions. The development image contains:
- gcc/clang
- nvcc
- Python
- sphinx
- woboq
- sshd
Many developers use servers with GPUs, they can use ssh to login to
the server and run :code:`docker exec` to enter the docker
container and start their work. Also they can start a development
docker image with SSHD service, so they can login to the container
and start work.
2. Production images, this image might have multiple variants:
- GPU/AVX::code:`paddlepaddle/paddle:<version>-gpu`
- GPU/no-AVX::code:`paddlepaddle/paddle:<version>-gpu-noavx`
......@@ -84,7 +107,7 @@ the commands to docker.paddlepaddle.org/paddle.
if cat /proc/cpuinfo | grep -i avx; then echo Yes; else echo No; fi
**NOTE:versions after 0.10.0 will automatically detect system AVX support, so manual detect is not needed in this case.**
To run the CPU-only image as an interactive container:
.. code-block:: bash
......@@ -103,29 +126,6 @@ the commands to docker.paddlepaddle.org/paddle.
nvidia-docker run -it --rm paddlepaddle/paddle:0.10.0-gpu /bin/bash
2. development image :code:`paddlepaddle/paddle:<version>-dev`
This image has packed related develop tools and runtime
environment. Users and developers can use this image instead of
their own local computer to accomplish development, build,
releasing, document writing etc. While different version of paddle
may depends on different version of libraries and tools, if you
want to setup a local environment, you must pay attention to the
versions. The development image contains:
- gcc/clang
- nvcc
- Python
- sphinx
- woboq
- sshd
Many developers use servers with GPUs, they can use ssh to login to
the server and run :code:`docker exec` to enter the docker
container and start their work. Also they can start a development
docker image with SSHD service, so they can login to the container
and start work.
Train Model Using Python API
----------------------------
......
......@@ -13,15 +13,11 @@
# serve to show the default.
import sys
import os, subprocess
sys.path.insert(0, os.path.abspath('@PROJ_ROOT@/python'))
import shlex
from recommonmark import parser, transform
try:
import py_paddle
import paddle
import paddle.v2
except ImportError:
print("Must install paddle python package before generating documentation")
sys.exit(1)
import paddle
import paddle.v2
MarkdownParser = parser.CommonMarkParser
AutoStructify = transform.AutoStructify
......
......@@ -13,15 +13,11 @@
# serve to show the default.
import sys
import os, subprocess
sys.path.insert(0, os.path.abspath('@PROJ_ROOT@/python'))
import shlex
from recommonmark import parser, transform
try:
import py_paddle
import paddle
import paddle.v2
except ImportError:
print("Must install paddle python package before generating documentation")
sys.exit(1)
import paddle
import paddle.v2
MarkdownParser = parser.CommonMarkParser
......
......@@ -32,7 +32,7 @@ import (
func main() {
port := flag.Int("port", 0, "port of the pserver")
index := flag.Int("index", -1, "index of this pserver, should be larger or equal than 0")
index := flag.Int("index", -1, "index of the pserver, set to -1 if use etcd for auto pserver index registry")
etcdEndpoint := flag.String("etcd-endpoint", "http://127.0.0.1:2379",
"comma separated endpoint string for pserver to connect to etcd")
dialTimeout := flag.Duration("dial-timeout", 5*time.Second, "dial timeout")
......@@ -60,12 +60,12 @@ func main() {
idx, err = e.Register(*port)
candy.Must(err)
cp, err = pserver.NewCheckpointFromFile(*checkpointPath, idx, e)
cp, err = pserver.LoadCheckpoint(e, idx)
if err != nil {
if err == pserver.ErrCheckpointNotFound {
log.Infof("Could not find the pserver checkpoint.")
} else {
log.Errorf("Fetch checkpoint failed, %s", err)
panic(err)
}
}
}
......
hash: 2a1c0eca5c07a130e3d224f9821f96cfa37a39bf6bce141c855bbc57ef569f1c
updated: 2017-07-29T07:34:48.722757905+08:00
hash: 1b9b07408ca7fac27a374dc2ccd2433e4bff090484008a037df967284949a582
updated: 2017-08-03T21:46:51.744995189Z
imports:
- name: github.com/beorn7/perks
version: 4c0e84591b9aa9e6dcfdf3e020114cd81f89d5f9
......@@ -145,6 +145,8 @@ imports:
version: a1dba9ce8baed984a2495b658c82687f8157b98f
subpackages:
- xfs
- name: github.com/satori/go.uuid
version: 879c5887cd475cd7864858769793b2ceb0d44feb
- name: github.com/sirupsen/logrus
version: a3f95b5c423586578a4e099b11a46c2479628cac
- name: github.com/topicai/candy
......
......@@ -14,11 +14,13 @@ import:
version: ^1.0.0
- package: github.com/topicai/candy
- package: golang.org/x/crypto
vcs: git
repo: https://github.com/golang/crypto.git
- package: golang.org/x/sys
vcs: git
- package: golang.org/x/sys
repo: https://github.com/golang/sys.git
- package: golang.org/x/text
vcs: git
- package: golang.org/x/text
repo: https://github.com/golang/text.git
vcs: git
- package: github.com/satori/go.uuid
version: v1.1.0
......@@ -77,11 +77,12 @@ type taskEntry struct {
NumFailure int
}
type taskQueues struct {
type masterState struct {
Todo []taskEntry
Pending map[int]taskEntry // map from task ID to task entry
Done []taskEntry
Failed []taskEntry
CurPass int
}
// Service is the master server service.
......@@ -95,10 +96,10 @@ type Service struct {
initDone bool
mu sync.Mutex
taskQueues taskQueues
currPass int
jobTasks []taskEntry
// State to be persisted to snapshot.
state masterState
// The trainer that is currently saving model. This state is
// transient, does not need to be persisted to snapshot.
savingTrainer string
}
......@@ -141,8 +142,8 @@ func NewService(store Store, chunksPerTask int, timeoutDur time.Duration, failur
s.chunksPerTask = chunksPerTask
s.timeoutDur = timeoutDur
s.failureMax = failureMax
s.taskQueues = taskQueues{}
s.taskQueues.Pending = make(map[int]taskEntry)
s.state = masterState{}
s.state.Pending = make(map[int]taskEntry)
s.ready = make(chan struct{})
s.store = store
recovered, err := s.recover()
......@@ -180,7 +181,7 @@ func (s *Service) recover() (bool, error) {
}
dec := gob.NewDecoder(gr)
var tqs taskQueues
var tqs masterState
err = dec.Decode(&tqs)
if err != nil {
return false, err
......@@ -193,7 +194,12 @@ func (s *Service) recover() (bool, error) {
log.Errorln(err)
}
s.taskQueues = tqs
s.state = tqs
log.WithFields(s.logFields()).Infof("Master recovered from snapshot, scheduling pending task timeout check.")
for _, t := range s.state.Pending {
time.AfterFunc(s.timeoutDur, s.checkTimeoutFunc(t.Task.Meta.ID, t.Task.Meta.Epoch))
}
return true, nil
}
......@@ -208,7 +214,7 @@ func (s *Service) snapshot() error {
var buf bytes.Buffer
gw := gzip.NewWriter(&buf)
enc := gob.NewEncoder(gw)
err := enc.Encode(s.taskQueues)
err := enc.Encode(s.state)
if err != nil {
return err
}
......@@ -290,8 +296,7 @@ func (s *Service) SetDataset(globPaths []string, _ *int) error {
return err
}
s.jobTasks = partition(chunks, s.chunksPerTask)
s.taskQueues.Todo = s.jobTasks
s.state.Todo = partition(chunks, s.chunksPerTask)
err = s.snapshot()
if err != nil {
......@@ -319,17 +324,17 @@ func (s *Service) processFailedTask(t taskEntry, epoch int) {
}
}()
delete(s.taskQueues.Pending, t.Task.Meta.ID)
delete(s.state.Pending, t.Task.Meta.ID)
t.NumFailure++
if t.NumFailure > s.failureMax {
log.Warningf("Task %v failed %d times, discard.", t.Task, t.NumFailure)
s.taskQueues.Failed = append(s.taskQueues.Failed, t)
s.state.Failed = append(s.state.Failed, t)
return
}
log.Warningf("Task %v failed %d times, re-dispatch.", t.Task, t.NumFailure)
s.taskQueues.Todo = append(s.taskQueues.Todo, t)
s.state.Todo = append(s.state.Todo, t)
return
}
......@@ -338,7 +343,7 @@ func (s *Service) checkTimeoutFunc(taskID int, epoch int) func() {
s.mu.Lock()
defer s.mu.Unlock()
t, ok := s.taskQueues.Pending[taskID]
t, ok := s.state.Pending[taskID]
if !ok {
return
}
......@@ -350,10 +355,11 @@ func (s *Service) checkTimeoutFunc(taskID int, epoch int) func() {
// must be called with lock held.
func (s *Service) logFields() log.Fields {
return log.Fields{
"todoLen": len(s.taskQueues.Todo),
"pendingLen": len(s.taskQueues.Pending),
"doneLen": len(s.taskQueues.Done),
"failedLen": len(s.taskQueues.Failed),
"todoLen": len(s.state.Todo),
"pendingLen": len(s.state.Pending),
"doneLen": len(s.state.Done),
"failedLen": len(s.state.Failed),
"curPass": s.state.CurPass,
}
}
......@@ -366,17 +372,17 @@ func (s *Service) GetTask(passID int, task *Task) error {
s.mu.Lock()
defer s.mu.Unlock()
if passID < s.currPass {
if passID < s.state.CurPass {
return ErrPassBefore
}
if passID > s.currPass {
if passID > s.state.CurPass {
// Client may get run to pass after master when one client faster than the
// other
return ErrPassAfter
}
if len(s.taskQueues.Todo) == 0 {
if len(s.taskQueues.Done) == 0 && len(s.taskQueues.Pending) == 0 {
if len(s.state.Todo) == 0 {
if len(s.state.Done) == 0 && len(s.state.Pending) == 0 {
log.WithFields(s.logFields()).Warningln("All tasks failed, may start next pass")
return ErrAllTaskFailed
}
......@@ -384,10 +390,10 @@ func (s *Service) GetTask(passID int, task *Task) error {
return ErrNoMoreAvailable
}
t := s.taskQueues.Todo[0]
t := s.state.Todo[0]
t.Task.Meta.Epoch++
s.taskQueues.Todo = s.taskQueues.Todo[1:]
s.taskQueues.Pending[t.Task.Meta.ID] = t
s.state.Todo = s.state.Todo[1:]
s.state.Pending[t.Task.Meta.ID] = t
err := s.snapshot()
if err != nil {
return err
......@@ -409,7 +415,7 @@ func (s *Service) TaskFinished(taskID int, dummy *int) error {
s.mu.Lock()
defer s.mu.Unlock()
t, ok := s.taskQueues.Pending[taskID]
t, ok := s.state.Pending[taskID]
if !ok {
log.WithFields(s.logFields()).Warningln("Pending task #%d not found.", taskID)
return nil
......@@ -417,18 +423,18 @@ func (s *Service) TaskFinished(taskID int, dummy *int) error {
// task finished, reset timeout
t.NumFailure = 0
s.taskQueues.Done = append(s.taskQueues.Done, t)
delete(s.taskQueues.Pending, taskID)
s.state.Done = append(s.state.Done, t)
delete(s.state.Pending, taskID)
log.WithFields(s.logFields()).Infof("Task #%d finished.", taskID)
if len(s.taskQueues.Todo) == 0 && len(s.taskQueues.Pending) == 0 {
if len(s.state.Todo) == 0 && len(s.state.Pending) == 0 {
// increase master side pass count if all tasks finished
s.currPass++
s.taskQueues.Todo = s.jobTasks
s.taskQueues.Done = []taskEntry{}
s.state.CurPass++
s.state.Todo = append(s.state.Done, s.state.Failed...)
s.state.Done = []taskEntry{}
// TODO(typhoonzero): deal with failed tasks
s.taskQueues.Failed = []taskEntry{}
log.WithFields(s.logFields()).Warningf("all task finished, add new pass data, newpass: %d.", s.currPass)
s.state.Failed = []taskEntry{}
log.WithFields(s.logFields()).Warningf("all task finished, add new pass data, newpass: %d.", s.state.CurPass)
}
err := s.snapshot()
......@@ -447,7 +453,7 @@ func (s *Service) TaskFailed(meta TaskMeta, dummy *int) error {
s.mu.Lock()
defer s.mu.Unlock()
t, ok := s.taskQueues.Pending[meta.ID]
t, ok := s.state.Pending[meta.ID]
if !ok {
log.WithFields(s.logFields()).Warningln("TaskFailed:Pending task #%v not found.", t.Task.Meta)
return nil
......
......@@ -59,7 +59,7 @@ func initClient() [numPserver]int {
go func(l net.Listener) {
var cp pserver.Checkpoint
s, err := pserver.NewService(0, 1, "", nil, cp)
s, err := pserver.NewService(0, time.Hour, "", nil, cp)
if err != nil {
panic(err)
}
......
......@@ -103,7 +103,7 @@ func (p *EtcdClient) List() []Server {
time.Sleep(p.timeout)
continue
}
log.Infof("got value (%s) for key: %s", psAddr, psKey)
log.Debugf("got value (%s) for key: %s", psAddr, psKey)
servers[i].Index = i
servers[i].Addr = psAddr
}
......
......@@ -206,6 +206,7 @@ func (e *EtcdClient) GetKey(key string, timeout time.Duration) ([]byte, error) {
if err != nil {
return []byte{}, err
}
kvs := resp.Kvs
if len(kvs) == 0 {
return []byte{}, nil
......@@ -215,9 +216,14 @@ func (e *EtcdClient) GetKey(key string, timeout time.Duration) ([]byte, error) {
}
// PutKey put into etcd with value by key specified
func (e *EtcdClient) PutKey(key string, value []byte, timeout time.Duration) error {
func (e *EtcdClient) PutKey(key string, value []byte, timeout time.Duration, withLease bool) error {
ctx, cancel := context.WithTimeout(context.Background(), timeout)
_, err := e.client.Put(ctx, key, string(value), clientv3.WithLease(e.sess.Lease()))
var err error
if withLease {
_, err = e.client.Put(ctx, key, string(value), clientv3.WithLease(e.sess.Lease()))
} else {
_, err = e.client.Put(ctx, key, string(value))
}
cancel()
return err
}
......
......@@ -32,6 +32,7 @@ type optimizer struct {
opt *C.struct_paddle_optimizer
elementType ElementType
contentLen int
config []byte
}
func cArrayToSlice(p unsafe.Pointer, len int) []byte {
......@@ -70,6 +71,7 @@ func newOptimizer(paramWithConfigs ParameterWithConfig, State []byte) *optimizer
cstate = unsafe.Pointer(&s[0])
}
o.config = c
o.opt = C.paddle_create_optimizer((*C.uchar)(&c[0]), C.int(len(c)),
C.paddle_element_type(p.ElementType), cbuffer, C.int(paramBufferSize), (*C.char)(cstate), C.int(len(s)))
return o
......
......@@ -25,11 +25,13 @@ import (
"fmt"
"io/ioutil"
"os"
"path/filepath"
"path"
"strconv"
"sync"
"time"
uuid "github.com/satori/go.uuid"
log "github.com/sirupsen/logrus"
)
......@@ -44,7 +46,7 @@ var ErrCheckpointNotFound = errors.New("checkpoint not found")
const (
AlreadyInitialized = "pserver already initialized"
Uninitialized = "pserver not fully initialized"
CheckpointMD5Failed = "checkpoint file MD5 validation failed"
WrongChecksum = "checkpoint file checksum validation failed"
)
// Supported element types.
......@@ -73,11 +75,12 @@ type ParameterWithConfig struct {
// checkpointMeta saves checkpoint metadata
type checkpointMeta struct {
UUID string `json:"uuid"`
Path string `json:"path"`
MD5 string `json:"md5"`
Timestamp int64 `json:"timestamp"`
}
// Checkpoint is the pserver shard persist in file
// Checkpoint is the pserver shard persist in file.
type Checkpoint []parameterCheckpoint
// Gradient is the gradient of the parameter.
......@@ -90,50 +93,58 @@ type Service struct {
checkpointInterval time.Duration
checkpointPath string
client *EtcdClient
mu sync.Mutex
optMap map[string]*optimizer
}
// parameterCheckpoint saves parameter checkpoint
// parameterCheckpoint saves parameter checkpoint.
type parameterCheckpoint struct {
ParameterWithConfig
State []byte
}
// NewCheckpointFromFile loads parameters and state from checkpoint file
func NewCheckpointFromFile(cpPath string, idx int, e *EtcdClient) (Checkpoint, error) {
v, err := e.GetKey(PsPath+string(idx), 3*time.Second)
func loadMeta(e *EtcdClient, idx int) (meta checkpointMeta, err error) {
v, err := e.GetKey(PsCheckpoint+strconv.Itoa(idx), 3*time.Second)
if err != nil {
return nil, err
return
}
if len(v) == 0 {
return nil, ErrCheckpointNotFound
err = ErrCheckpointNotFound
return
}
var cpMeta checkpointMeta
if err = json.Unmarshal(v, &cpMeta); err != nil {
return nil, err
if err = json.Unmarshal(v, &meta); err != nil {
return
}
fn := filepath.Join(cpPath, cpMeta.UUID)
if _, err = os.Stat(fn); os.IsNotExist(err) {
return
}
// LoadCheckpoint loads checkpoint from file.
func LoadCheckpoint(e *EtcdClient, idx int) (Checkpoint, error) {
cpMeta, err := loadMeta(e, idx)
if err != nil {
return nil, err
}
content, err := ioutil.ReadFile(fn)
content, err := ioutil.ReadFile(cpMeta.Path)
if err != nil {
return nil, err
}
// TODO(helin): change MD5 to CRC since CRC is better for file
// checksum in our use case (emphasize speed over security).
h := md5.New()
md5 := hex.EncodeToString(h.Sum(content))
if md5 != cpMeta.MD5 {
return nil, errors.New(CheckpointMD5Failed)
return nil, errors.New(WrongChecksum)
}
dec := gob.NewDecoder(bytes.NewReader(content))
cp := Checkpoint{}
if err = dec.Decode(cp); err != nil {
var cp Checkpoint
if err = dec.Decode(&cp); err != nil {
return nil, err
}
return cp, nil
......@@ -193,6 +204,15 @@ func (s *Service) FinishInitParams(_ int, _ *int) error {
}
close(s.initialized)
go func() {
t := time.Tick(s.checkpointInterval)
for range t {
err := s.checkpoint()
if err != nil {
log.Errorln(err)
}
}
}()
return nil
}
......@@ -240,23 +260,36 @@ func (s *Service) GetParam(name string, parameter *Parameter) error {
return nil
}
// pserver save checkpoint
func (s *Service) doCheckpoint() (err error) {
<-s.initialized
s.mu.Lock()
defer s.mu.Unlock()
func traceTime(start time.Time, name string) {
elapsed := time.Since(start)
log.Infof("%s took %v", name, elapsed)
}
// checkpoint saves checkpoint to disk.
//
// checkpoint should be only called after the parameters are
// initialized.
func (s *Service) checkpoint() (err error) {
log.Infoln("Begin save checkpoint.")
defer traceTime(time.Now(), "save checkpoint")
s.mu.Lock()
cp := make([]parameterCheckpoint, len(s.optMap))
index := 0
// TODO(helin): write checkpoint incrementally to reduce memory
// footprint during checkpoint.
for name, opt := range s.optMap {
var pc parameterCheckpoint
pc.Param.Name = name
pc.Param.ElementType = opt.elementType
pc.Param.Content = opt.GetWeights()
pc.Config = opt.config
pc.State = opt.GetStates()
cp[index] = pc
index++
}
s.mu.Unlock()
var buf bytes.Buffer
encoder := gob.NewEncoder(&buf)
err = encoder.Encode(cp)
......@@ -264,32 +297,9 @@ func (s *Service) doCheckpoint() (err error) {
return
}
cpMeta := checkpointMeta{}
cpMeta.UUID = s.checkpointPath + strconv.Itoa(s.idx)
cpMeta.Timestamp = time.Now().UnixNano()
h := md5.New()
cpMeta.MD5 = hex.EncodeToString(h.Sum(buf.Bytes()))
cpMetajson, err := json.Marshal(cpMeta)
if err != nil {
return
}
err = s.client.PutKey(filepath.Join(PsCheckpoint, strconv.Itoa(s.idx)), cpMetajson, 3*time.Second)
if err != nil {
return
}
if _, err = os.Stat(cpMeta.UUID); os.IsNotExist(err) {
log.Info("checkpoint does not exists.")
} else {
err = os.Remove(cpMeta.UUID)
if err != nil {
log.Infof("Removing checkpoint %s failed", cpMeta.UUID)
} else {
log.Infof("checkpoint %s already exsits, removing ", cpMeta.UUID)
}
}
f, err := os.Create(cpMeta.UUID)
id := uuid.NewV4().String()
p := path.Join(s.checkpointPath, id)
f, err := os.Create(p)
if err != nil {
return
}
......@@ -317,5 +327,43 @@ func (s *Service) doCheckpoint() (err error) {
return
}
oldMeta, err := loadMeta(s.client, s.idx)
if err == ErrCheckpointNotFound {
log.Infoln("Do not have existing checkpoint.")
err = nil
}
if err != nil {
return
}
h := md5.New()
md5 := hex.EncodeToString(h.Sum(buf.Bytes()))
cpMeta := checkpointMeta{
UUID: id,
Timestamp: time.Now().UnixNano(),
MD5: md5,
Path: p,
}
json, err := json.Marshal(cpMeta)
if err != nil {
return
}
err = s.client.PutKey(PsCheckpoint+strconv.Itoa(s.idx), json, 3*time.Second, false)
if err != nil {
return
}
if oldMeta.Path != "" {
rmErr := os.Remove(oldMeta.Path)
if rmErr != nil {
// log error, but still treat checkpoint as
// successful.
log.Errorln(rmErr)
}
}
return
}
......@@ -30,7 +30,7 @@ const (
func TestServiceFull(t *testing.T) {
var cp pserver.Checkpoint
s, err := pserver.NewService(0, 1, "", nil, cp)
s, err := pserver.NewService(0, time.Hour, "", nil, cp)
if err != nil {
t.Error(err)
}
......@@ -102,7 +102,7 @@ func TestServiceFull(t *testing.T) {
func TestMultipleInit(t *testing.T) {
var cp pserver.Checkpoint
s, err := pserver.NewService(0, 1, "", nil, cp)
s, err := pserver.NewService(0, time.Hour, "", nil, cp)
if err != nil {
t.Fatal(err)
}
......@@ -119,7 +119,7 @@ func TestMultipleInit(t *testing.T) {
func TestUninitialized(t *testing.T) {
var cp pserver.Checkpoint
s, err := pserver.NewService(0, 1, "", nil, cp)
s, err := pserver.NewService(0, time.Hour, "", nil, cp)
err = s.SendGrad(pserver.Gradient{}, nil)
if err.Error() != pserver.Uninitialized {
t.Fatal(err)
......@@ -128,7 +128,7 @@ func TestUninitialized(t *testing.T) {
func TestBlockUntilInitialized(t *testing.T) {
var cp pserver.Checkpoint
s, err := pserver.NewService(0, 1, "", nil, cp)
s, err := pserver.NewService(0, time.Hour, "", nil, cp)
if err != nil {
t.Error(err)
}
......
......@@ -21,22 +21,15 @@
#
# It same as PYTHONPATH=${YOUR_PYTHON_PATH}:$PYTHONPATH {exec...}
#
if ! python -c "import paddle" >/dev/null 2>/dev/null; then
PYPATH=""
set -x
while getopts "d:" opt; do
PYPATH=""
set -x
while getopts "d:" opt; do
case $opt in
d)
PYPATH=$OPTARG
;;
esac
done
shift $(($OPTIND - 1))
export PYTHONPATH=$PYPATH:$PYTHONPATH
$@
else
echo "paddle package is already in your PYTHONPATH. But unittest need a clean environment."
echo "Please uninstall paddle package before start unittest. Try to 'pip uninstall paddle'"
exit 1
fi
done
shift $(($OPTIND - 1))
export PYTHONPATH=$PYPATH:$PYTHONPATH
$@
......@@ -15,7 +15,6 @@ if(Boost_FOUND)
add_subdirectory(platform)
add_subdirectory(framework)
add_subdirectory(operators)
add_subdirectory(pybind)
endif()
if(WITH_C_API)
......@@ -23,7 +22,5 @@ if(WITH_C_API)
endif()
if(WITH_SWIG_PY)
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/setup.py.in
${CMAKE_CURRENT_SOURCE_DIR}/setup.py)
add_subdirectory(api)
endif()
......@@ -82,9 +82,7 @@ SWIG_LINK_LIBRARIES(swig_paddle
add_custom_command(OUTPUT ${PROJ_ROOT}/paddle/py_paddle/_swig_paddle.so
COMMAND cp ${CMAKE_CURRENT_BINARY_DIR}/swig_paddle.py ${PROJ_ROOT}/paddle/py_paddle
COMMAND cp ${CMAKE_CURRENT_BINARY_DIR}/_swig_paddle.so ${PROJ_ROOT}/paddle/py_paddle
COMMAND env ${py_env} ${PYTHON_EXECUTABLE} setup.py bdist_wheel
COMMAND ${CMAKE_COMMAND} -E touch dist/.timestamp
COMMAND rm -rf py_paddle.egg-info build
COMMAND ${CMAKE_COMMAND} -E touch .timestamp
WORKING_DIRECTORY ${PROJ_ROOT}/paddle
DEPENDS _swig_paddle
)
......@@ -92,10 +90,6 @@ add_custom_command(OUTPUT ${PROJ_ROOT}/paddle/py_paddle/_swig_paddle.so
# TODO(yuyang18) : make wheel name calculated by cmake
add_custom_target(python_api_wheel ALL DEPENDS ${PROJ_ROOT}/paddle/py_paddle/_swig_paddle.so)
install(DIRECTORY ${CMAKE_SOURCE_DIR}/paddle/dist/
DESTINATION opt/paddle/share/wheels
)
if(WITH_TESTING)
IF(NOT PY_PIP_FOUND)
SET(PIP_SOURCES_DIR ${PYTHON_SOURCES_DIR}/pip)
......@@ -108,7 +102,7 @@ if(WITH_TESTING)
BUILD_COMMAND ""
INSTALL_COMMAND env ${py_env} ${PYTHON_EXECUTABLE} setup.py install
BUILD_IN_SOURCE 1
DEPENDS python setuptools python_api_wheel
#DEPENDS python setuptools python_api_wheel
)
ENDIF()
add_subdirectory(test)
......
add_python_test(test_swig_api
testArguments.py testGradientMachine.py testMatrix.py testVector.py testTrain.py testTrainer.py)
py_test(testTrain SRCS testTrain.py)
py_test(testMatrix SRCS testMatrix.py)
py_test(testVector SRCS testVector.py)
py_test(testTrainer SRCS testTrainer.py)
py_test(testArguments SRCS testArguments.py)
py_test(testGradientMachine SRCS testGradientMachine.py)
......@@ -39,6 +39,7 @@ set(CUDA_CU_SOURCES
src/hl_cuda_lstm.cu
src/hl_top_k.cu
src/hl_batch_transpose.cu
src/hl_batch_norm.cu
src/hl_cuda_sequence.cu
src/hl_table_apply.cu)
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifndef HL_BATCH_NORM_H_
#define HL_BATCH_NORM_H_
#include "hl_base.h"
/**
* @brief batch norm inferece.
*
* @param[in] input input data.
* @param[out] output output data.
* @param[in] scale batch normalization scale parameter (in original
* paper scale is referred to as gamma).
* @param[in] bias batch normalization bias parameter (in original
* paper scale is referred to as beta).
* @param[in] estimatedMean
* @param[in] estimatedVar The moving mean and variance
* accumulated during the training phase are passed
* as inputs here.
* @param[in] epsilon Epsilon value used in the batch
* normalization formula.
*/
extern void hl_batch_norm_cuda_inference(const real* input,
real* output,
const real* scale,
const real* bias,
const real* estimatedMean,
const real* estimatedVar,
const double epsilon,
size_t batchSize,
size_t channel,
size_t height,
size_t width);
#endif // HL_BATCH_NORM_H_
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "hl_batch_norm.h"
__global__ void batchNormInference(real* output,
const real* input,
const real* scale,
const real* bias,
const real* estimatedMean,
const real* estimatedVar,
const double epsilon,
size_t batchSize,
size_t channel,
size_t height,
size_t width) {
const int tid = threadIdx.x;
const int num = channel * height * width;
const int batch = blockIdx.x;
for (int i = tid; i < num; i += blockDim.x) {
const int c = i / (height * width);
const int id = batch * num + i;
real val = input[id] - estimatedMean[c];
val /= sqrt(estimatedVar[c] + epsilon);
val *= scale[c];
val += bias[c];
output[id] = val;
}
}
void hl_batch_norm_cuda_inference(const real* input,
real* output,
const real* scale,
const real* bias,
const real* estimatedMean,
const real* estimatedVar,
const double epsilon,
size_t batchSize,
size_t channel,
size_t height,
size_t width) {
batchNormInference<<<batchSize, 256, 0, STREAM_DEFAULT>>>(output,
input,
scale,
bias,
estimatedMean,
estimatedVar,
epsilon,
batchSize,
channel,
height,
width);
CHECK_SYNC("hl_batch_norm_cuda_inference failed!");
}
......@@ -12,17 +12,15 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "hl_batch_transpose.h"
#include "hl_base.h"
#include "hl_batch_transpose.h"
const int TILE_DIM = 64;
const int BLOCK_ROWS = 16;
// No bank-conflict transpose for a batch of data.
__global__ void batchTransposeNoBankConflicts(real* odata,
const real* idata,
int numSamples, int width,
int height) {
__global__ void batchTransposeNoBankConflicts(
real* odata, const real* idata, int numSamples, int width, int height) {
__shared__ float tile[TILE_DIM][TILE_DIM + 1];
const int x = blockIdx.x * TILE_DIM + threadIdx.x;
......@@ -50,12 +48,12 @@ __global__ void batchTransposeNoBankConflicts(real* odata,
newX] = tile[threadIdx.x][j];
}
void batchTranspose(const real* input, real* output, int width, int height,
int batchSize) {
void batchTranspose(
const real* input, real* output, int width, int height, int batchSize) {
dim3 dimBlock(TILE_DIM, BLOCK_ROWS, 1);
dim3 dimGrid(DIVUP(width, TILE_DIM), DIVUP(height, TILE_DIM), batchSize);
batchTransposeNoBankConflicts<<<dimGrid, dimBlock, 0, STREAM_DEFAULT>>>
(output, input, batchSize, width, height);
batchTransposeNoBankConflicts<<<dimGrid, dimBlock, 0, STREAM_DEFAULT>>>(
output, input, batchSize, width, height);
CHECK_SYNC("batchTranspose failed!");
}
......@@ -12,27 +12,23 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "hl_aggregate.h"
#include "hl_base.h"
#include "hl_cuda.h"
#include "hl_cuda.ph"
#include "hl_aggregate.h"
#include "hl_thread.ph"
#include "hl_matrix_base.cuh"
#include "hl_thread.ph"
#include "paddle/utils/Logging.h"
/**
* @brief matrix row operator.
*/
template<class Agg, int blockSize>
__global__ void KeMatrixRowOp(Agg agg,
real *E,
real *Sum,
int dimN) {
template <class Agg, int blockSize>
__global__ void KeMatrixRowOp(Agg agg, real *E, real *Sum, int dimN) {
__shared__ real sum_s[blockSize];
int cnt = (dimN + blockSize -1) / blockSize;
int rowId = blockIdx.x + blockIdx.y*gridDim.x;
int index = rowId*dimN;
int cnt = (dimN + blockSize - 1) / blockSize;
int rowId = blockIdx.x + blockIdx.y * gridDim.x;
int index = rowId * dimN;
int tid = threadIdx.x;
int lmt = tid;
......@@ -44,7 +40,7 @@ __global__ void KeMatrixRowOp(Agg agg,
sum_s[tid] = tmp;
__syncthreads();
for (int stride = blockSize/2; stride > 0; stride = stride/2) {
for (int stride = blockSize / 2; stride > 0; stride = stride / 2) {
if (tid < stride) {
sum_s[tid] = agg(sum_s[tid], sum_s[tid + stride]);
}
......@@ -58,29 +54,21 @@ __global__ void KeMatrixRowOp(Agg agg,
}
template <class Agg>
void hl_matrix_row_op(Agg agg,
real *A_d,
real *C_d,
int dimM,
int dimN) {
void hl_matrix_row_op(Agg agg, real *A_d, real *C_d, int dimM, int dimN) {
int blocksX = dimM;
int blocksY = 1;
dim3 threads(128, 1);
dim3 grid(blocksX, blocksY);
KeMatrixRowOp<Agg, 128><<< grid, threads, 0, STREAM_DEFAULT >>>
(agg, A_d, C_d, dimN);
KeMatrixRowOp<Agg, 128><<<grid, threads, 0, STREAM_DEFAULT>>>(
agg, A_d, C_d, dimN);
}
void hl_matrix_row_sum(real *A_d, real *C_d, int dimM, int dimN) {
CHECK_NOTNULL(A_d);
CHECK_NOTNULL(C_d);
hl_matrix_row_op(aggregate::sum(),
A_d,
C_d,
dimM,
dimN);
hl_matrix_row_op(aggregate::sum(), A_d, C_d, dimM, dimN);
CHECK_SYNC("hl_matrix_row_sum failed");
}
......@@ -88,11 +76,7 @@ void hl_matrix_row_max(real *A_d, real *C_d, int dimM, int dimN) {
CHECK_NOTNULL(A_d);
CHECK_NOTNULL(C_d);
hl_matrix_row_op(aggregate::max(),
A_d,
C_d,
dimM,
dimN);
hl_matrix_row_op(aggregate::max(), A_d, C_d, dimM, dimN);
CHECK_SYNC("hl_matrix_row_max failed");
}
......@@ -100,23 +84,16 @@ void hl_matrix_row_min(real *A_d, real *C_d, int dimM, int dimN) {
CHECK_NOTNULL(A_d);
CHECK_NOTNULL(C_d);
hl_matrix_row_op(aggregate::min(),
A_d,
C_d,
dimM,
dimN);
hl_matrix_row_op(aggregate::min(), A_d, C_d, dimM, dimN);
CHECK_SYNC("hl_matrix_row_min failed");
}
/**
* @brief matrix column operator.
*/
template<class Agg>
__global__ void KeMatrixColumnOp(Agg agg,
real *E,
real *Sum,
int dimM,
int dimN) {
template <class Agg>
__global__ void KeMatrixColumnOp(
Agg agg, real *E, real *Sum, int dimM, int dimN) {
int rowIdx = blockIdx.x * blockDim.x + threadIdx.x;
real tmp = agg.init();
if (rowIdx < dimN) {
......@@ -127,13 +104,10 @@ __global__ void KeMatrixColumnOp(Agg agg,
}
}
template<class Agg, int blockDimX, int blockDimY>
__global__ void KeMatrixColumnOp_S(Agg agg,
real *E,
real *Sum,
int dimM,
int dimN) {
__shared__ real _sum[blockDimX*blockDimY];
template <class Agg, int blockDimX, int blockDimY>
__global__ void KeMatrixColumnOp_S(
Agg agg, real *E, real *Sum, int dimM, int dimN) {
__shared__ real _sum[blockDimX * blockDimY];
int rowIdx = blockIdx.x * blockDim.x + threadIdx.x;
int index = threadIdx.y;
......@@ -144,14 +118,14 @@ __global__ void KeMatrixColumnOp_S(Agg agg,
index += blockDimY;
}
}
_sum[threadIdx.x + threadIdx.y*blockDimX] = tmp;
_sum[threadIdx.x + threadIdx.y * blockDimX] = tmp;
__syncthreads();
if (rowIdx < dimN) {
if (threadIdx.y ==0) {
if (threadIdx.y == 0) {
real tmp = agg.init();
for (int i=0; i < blockDimY; i++) {
tmp = agg(tmp, _sum[threadIdx.x + i*blockDimX]);
for (int i = 0; i < blockDimY; i++) {
tmp = agg(tmp, _sum[threadIdx.x + i * blockDimX]);
}
Sum[rowIdx] = tmp;
}
......@@ -159,25 +133,21 @@ __global__ void KeMatrixColumnOp_S(Agg agg,
}
template <class Agg>
void hl_matrix_column_op(Agg agg,
real *A_d,
real *C_d,
int dimM,
int dimN) {
void hl_matrix_column_op(Agg agg, real *A_d, real *C_d, int dimM, int dimN) {
if (dimN >= 8192) {
int blocksX = (dimN + 128 -1) / 128;
int blocksX = (dimN + 128 - 1) / 128;
int blocksY = 1;
dim3 threads(128, 1);
dim3 grid(blocksX, blocksY);
KeMatrixColumnOp<Agg><<< grid, threads, 0, STREAM_DEFAULT >>>
(agg, A_d, C_d, dimM, dimN);
KeMatrixColumnOp<Agg><<<grid, threads, 0, STREAM_DEFAULT>>>(
agg, A_d, C_d, dimM, dimN);
} else {
int blocksX = (dimN + 32 -1) / 32;
int blocksX = (dimN + 32 - 1) / 32;
int blocksY = 1;
dim3 threads(32, 32);
dim3 grid(blocksX, blocksY);
KeMatrixColumnOp_S<Agg, 32, 32><<< grid, threads, 0, STREAM_DEFAULT>>>
(agg, A_d, C_d, dimM, dimN);
KeMatrixColumnOp_S<Agg, 32, 32><<<grid, threads, 0, STREAM_DEFAULT>>>(
agg, A_d, C_d, dimM, dimN);
}
return;
......@@ -187,11 +157,7 @@ void hl_matrix_column_sum(real *A_d, real *C_d, int dimM, int dimN) {
CHECK_NOTNULL(A_d);
CHECK_NOTNULL(C_d);
hl_matrix_column_op(aggregate::sum(),
A_d,
C_d,
dimM,
dimN);
hl_matrix_column_op(aggregate::sum(), A_d, C_d, dimM, dimN);
CHECK_SYNC("hl_matrix_column_sum failed");
}
......@@ -200,11 +166,7 @@ void hl_matrix_column_max(real *A_d, real *C_d, int dimM, int dimN) {
CHECK_NOTNULL(A_d);
CHECK_NOTNULL(C_d);
hl_matrix_column_op(aggregate::max(),
A_d,
C_d,
dimM,
dimN);
hl_matrix_column_op(aggregate::max(), A_d, C_d, dimM, dimN);
CHECK_SYNC("hl_matrix_column_max failed");
}
......@@ -213,11 +175,7 @@ void hl_matrix_column_min(real *A_d, real *C_d, int dimM, int dimN) {
CHECK_NOTNULL(A_d);
CHECK_NOTNULL(C_d);
hl_matrix_column_op(aggregate::min(),
A_d,
C_d,
dimM,
dimN);
hl_matrix_column_op(aggregate::min(), A_d, C_d, dimM, dimN);
CHECK_SYNC("hl_matrix_column_min failed");
}
......@@ -226,16 +184,16 @@ template <int blockSize>
__global__ void KeVectorSum(real *E, real *Sum, int dimM) {
__shared__ double sum_s[blockSize];
int tid = threadIdx.x;
int index = blockIdx.y*blockDim.x+threadIdx.x;
int index = blockIdx.y * blockDim.x + threadIdx.x;
sum_s[tid] = 0.0f;
while (index < dimM) {
sum_s[tid] += E[index];
index += blockDim.x*gridDim.y;
index += blockDim.x * gridDim.y;
}
__syncthreads();
for (int stride = blockSize/2; stride > 0; stride = stride/2) {
for (int stride = blockSize / 2; stride > 0; stride = stride / 2) {
if (tid < stride) {
sum_s[tid] += sum_s[tid + stride];
}
......@@ -261,36 +219,37 @@ void hl_vector_sum(real *A_d, real *C_h, int dimM) {
struct _hl_event_st hl_event_st = {.cu_event = t_resource.event};
hl_event_t hl_event = &hl_event_st;
while (!hl_cuda_event_is_ready(hl_event)) {}
while (!hl_cuda_event_is_ready(hl_event)) {
}
KeVectorSum<128><<< grid, threads, 0, STREAM_DEFAULT >>>
(A_d, t_resource.gpu_mem, dimM);
KeVectorSum<128><<< 1, threads, 0, STREAM_DEFAULT >>>
(t_resource.gpu_mem, t_resource.cpu_mem, 128);
KeVectorSum<128><<<grid, threads, 0, STREAM_DEFAULT>>>(
A_d, t_resource.gpu_mem, dimM);
KeVectorSum<128><<<1, threads, 0, STREAM_DEFAULT>>>(
t_resource.gpu_mem, t_resource.cpu_mem, 128);
hl_memcpy_async(C_h, t_resource.cpu_mem, sizeof(real), HPPL_STREAM_DEFAULT);
hl_stream_record_event(HPPL_STREAM_DEFAULT, hl_event);
hl_stream_synchronize(HPPL_STREAM_DEFAULT);
cudaError_t err = (cudaError_t)hl_get_device_last_error();
CHECK_EQ(cudaSuccess, err)
<< "CUDA error: " << hl_get_device_error_string((size_t)err);
CHECK_EQ(cudaSuccess, err) << "CUDA error: "
<< hl_get_device_error_string((size_t)err);
}
template <int blockSize>
__global__ void KeVectorAbsSum(real *E, real *Sum, int dimM) {
__shared__ double sum_s[blockSize];
int tid = threadIdx.x;
int index = blockIdx.y*blockDim.x+threadIdx.x;
int index = blockIdx.y * blockDim.x + threadIdx.x;
sum_s[tid] = 0.0f;
while (index < dimM) {
sum_s[tid] += abs(E[index]);
index += blockDim.x*gridDim.y;
index += blockDim.x * gridDim.y;
}
__syncthreads();
for (int stride = blockSize/2; stride > 0; stride = stride/2) {
for (int stride = blockSize / 2; stride > 0; stride = stride / 2) {
if (tid < stride) {
sum_s[tid] += sum_s[tid + stride];
}
......@@ -316,18 +275,19 @@ void hl_vector_abs_sum(real *A_d, real *C_h, int dimM) {
struct _hl_event_st hl_event_st = {.cu_event = t_resource.event};
hl_event_t hl_event = &hl_event_st;
while (!hl_cuda_event_is_ready(hl_event)) {}
while (!hl_cuda_event_is_ready(hl_event)) {
}
KeVectorAbsSum<128><<< grid, threads, 0, STREAM_DEFAULT >>>
(A_d, t_resource.gpu_mem, dimM);
KeVectorAbsSum<128><<< 1, threads, 0, STREAM_DEFAULT >>>
(t_resource.gpu_mem, t_resource.cpu_mem, 128);
KeVectorAbsSum<128><<<grid, threads, 0, STREAM_DEFAULT>>>(
A_d, t_resource.gpu_mem, dimM);
KeVectorAbsSum<128><<<1, threads, 0, STREAM_DEFAULT>>>(
t_resource.gpu_mem, t_resource.cpu_mem, 128);
hl_memcpy_async(C_h, t_resource.cpu_mem, sizeof(real), HPPL_STREAM_DEFAULT);
hl_stream_record_event(HPPL_STREAM_DEFAULT, hl_event);
hl_stream_synchronize(HPPL_STREAM_DEFAULT);
cudaError_t err = (cudaError_t)hl_get_device_last_error();
CHECK_EQ(cudaSuccess, err)
<< "CUDA error: " << hl_get_device_error_string((size_t)err);
CHECK_EQ(cudaSuccess, err) << "CUDA error: "
<< hl_get_device_error_string((size_t)err);
}
此差异已折叠。
......@@ -1022,6 +1022,7 @@ void hl_batch_norm_forward_inference(hl_tensor_descriptor inputDesc,
real alpha = 1.0f;
real beta = 1.0f;
cudnnBatchNormMode_t mode = CUDNN_BATCHNORM_SPATIAL;
CHECK_CUDNN(
dynload::cudnnBatchNormalizationForwardInference(t_resource.cudnn_handle,
mode,
......
此差异已折叠。
......@@ -12,22 +12,21 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "hl_base.h"
#include "hl_device_functions.cuh"
#include "hl_gpu_matrix_kernel.cuh"
#include "hl_matrix.h"
#include "hl_matrix_ops.cuh"
#include "hl_matrix_apply.cuh"
#include "hl_matrix_ops.cuh"
#include "hl_sequence.h"
#include "hl_sparse.ph"
#include "paddle/utils/Logging.h"
#include "hl_device_functions.cuh"
#include "hl_gpu_matrix_kernel.cuh"
DEFINE_MATRIX_UNARY_OP(Zero, a = 0);
DEFINE_MATRIX_TERNARY_PARAMETER_OP(_add, TWO_PARAMETER, c = p1*a + p2*b);
void hl_matrix_add(real *A_d,
real *B_d,
real *C_d,
DEFINE_MATRIX_TERNARY_PARAMETER_OP(_add, TWO_PARAMETER, c = p1 * a + p2 * b);
void hl_matrix_add(real* A_d,
real* B_d,
real* C_d,
int dimM,
int dimN,
real alpha,
......@@ -36,8 +35,8 @@ void hl_matrix_add(real *A_d,
CHECK_NOTNULL(B_d);
CHECK_NOTNULL(C_d);
hl_gpu_apply_ternary_op
<real, ternary::_add<real>, 0, 0>(ternary::_add<real>(alpha, beta),
hl_gpu_apply_ternary_op<real, ternary::_add<real>, 0, 0>(
ternary::_add<real>(alpha, beta),
A_d,
B_d,
C_d,
......@@ -50,12 +49,11 @@ void hl_matrix_add(real *A_d,
}
#ifdef PADDLE_TYPE_DOUBLE
#define THRESHOLD 128
#define THRESHOLD 128
#else
#define THRESHOLD 64
#define THRESHOLD 64
#endif
__device__ __forceinline__
void findMax(real* I,
__device__ __forceinline__ void findMax(real* I,
real* dfMax_s,
int blockSize,
int base,
......@@ -89,8 +87,7 @@ void findMax(real* I,
__syncthreads();
}
__device__ __forceinline__
void subMaxAndExp(real* I,
__device__ __forceinline__ void subMaxAndExp(real* I,
real* O,
int curIdx,
int nextIdx,
......@@ -115,8 +112,7 @@ void subMaxAndExp(real* I,
__syncthreads();
}
__device__ __forceinline__
void valueSum(real* O,
__device__ __forceinline__ void valueSum(real* O,
real* dfMax_s,
int blockSize,
int base,
......@@ -141,13 +137,8 @@ void valueSum(real* O,
__syncthreads();
}
__device__ __forceinline__
void divSum(real* O,
real sum,
int curIdx,
int nextIdx,
int blockSize,
int dimN) {
__device__ __forceinline__ void divSum(
real* O, real sum, int curIdx, int nextIdx, int blockSize, int dimN) {
while (curIdx < dimN) {
O[nextIdx] /= sum;
nextIdx += blockSize;
......@@ -155,8 +146,7 @@ void divSum(real* O,
}
}
__device__ __forceinline__
void softmax(real* I,
__device__ __forceinline__ void softmax(real* I,
real* O,
real* dfMax_s,
int blockSize,
......@@ -167,8 +157,7 @@ void softmax(real* I,
__shared__ real max;
// find the max number
findMax(I, dfMax_s, blockSize, base, curIdx,
nextIdx, dimN, &max);
findMax(I, dfMax_s, blockSize, base, curIdx, nextIdx, dimN, &max);
// sub max Value and do Exp operation
subMaxAndExp(I, O, base, nextIdx, blockSize, dimN, max);
......@@ -181,8 +170,8 @@ void softmax(real* I,
divSum(O, dfMax_s[0], curIdx, nextIdx, blockSize, dimN);
}
template<int blockSize>
__global__ void KeMatrixSoftMax(real *O, real *I, int dimN) {
template <int blockSize>
__global__ void KeMatrixSoftMax(real* O, real* I, int dimN) {
int base = threadIdx.x;
__shared__ real dfMax_s[blockSize];
int nextIdx = blockIdx.x * dimN + base;
......@@ -191,19 +180,18 @@ __global__ void KeMatrixSoftMax(real *O, real *I, int dimN) {
softmax(I, O, dfMax_s, blockSize, base, curIdx, nextIdx, dimN);
}
void hl_matrix_softmax(real *A_d, real *C_d, int dimM, int dimN) {
void hl_matrix_softmax(real* A_d, real* C_d, int dimM, int dimN) {
CHECK_NOTNULL(A_d);
CHECK_NOTNULL(C_d);
dim3 block(512, 1);
dim3 grid(dimM, 1);
KeMatrixSoftMax<512>
<<<grid, block, 0, STREAM_DEFAULT>>>(C_d, A_d, dimN);
KeMatrixSoftMax<512><<<grid, block, 0, STREAM_DEFAULT>>>(C_d, A_d, dimN);
CHECK_SYNC("hl_matrix_softmax failed");
}
template<int blockSize>
__global__ void KeSequenceSoftMax(real *O, real *I, const int* index) {
template <int blockSize>
__global__ void KeSequenceSoftMax(real* O, real* I, const int* index) {
int base = threadIdx.x;
int bid = blockIdx.x;
__shared__ real dfMax_s[blockSize];
......@@ -217,8 +205,8 @@ __global__ void KeSequenceSoftMax(real *O, real *I, const int* index) {
softmax(I, O, dfMax_s, blockSize, base, curIdx, nextIdx, dimN);
}
void hl_sequence_softmax_forward(real *A_d,
real *C_d,
void hl_sequence_softmax_forward(real* A_d,
real* C_d,
const int* index,
int numSequence) {
CHECK_NOTNULL(A_d);
......@@ -226,59 +214,48 @@ void hl_sequence_softmax_forward(real *A_d,
dim3 block(512, 1);
dim3 grid(numSequence, 1);
KeSequenceSoftMax<512>
<<<grid, block, 0, STREAM_DEFAULT>>>(C_d, A_d, index);
KeSequenceSoftMax<512><<<grid, block, 0, STREAM_DEFAULT>>>(C_d, A_d, index);
CHECK_SYNC("hl_sequence_softmax_forward failed");
}
__global__ void KeMatrixDerivative(real *grad_d,
real *output_d,
real *sftmaxSum_d,
int dimM,
int dimN) {
int rowIdx = blockIdx.x*blockDim.x + threadIdx.x;
int colIdx = blockIdx.y*blockDim.y + threadIdx.y;
__global__ void KeMatrixDerivative(
real* grad_d, real* output_d, real* sftmaxSum_d, int dimM, int dimN) {
int rowIdx = blockIdx.x * blockDim.x + threadIdx.x;
int colIdx = blockIdx.y * blockDim.y + threadIdx.y;
int index;
if (rowIdx < dimM && colIdx < dimN) {
index = rowIdx*dimN + colIdx;
index = rowIdx * dimN + colIdx;
grad_d[index] = output_d[index] * (grad_d[index] - sftmaxSum_d[rowIdx]);
}
}
void hl_matrix_softmax_derivative(real *grad_d,
real *output_d,
real *sftmaxSum_d,
int dimM,
int dimN) {
void hl_matrix_softmax_derivative(
real* grad_d, real* output_d, real* sftmaxSum_d, int dimM, int dimN) {
CHECK_NOTNULL(grad_d);
CHECK_NOTNULL(output_d);
CHECK_NOTNULL(sftmaxSum_d);
int blocksX = (dimM + 0) / 1;
int blocksY = (dimN + 1024 -1) / 1024;
int blocksY = (dimN + 1024 - 1) / 1024;
dim3 threads(1, 1024);
dim3 grid(blocksX, blocksY);
KeMatrixDerivative<<< grid, threads, 0, STREAM_DEFAULT >>>
(grad_d, output_d, sftmaxSum_d, dimM, dimN);
KeMatrixDerivative<<<grid, threads, 0, STREAM_DEFAULT>>>(
grad_d, output_d, sftmaxSum_d, dimM, dimN);
CHECK_SYNC("hl_matrix_softmax_derivative failed");
}
__global__ void KeMatrixMultiBinaryCrossEntropy(real* output,
real* entropy,
int* row,
int* col,
int dimM,
int dimN) {
__global__ void KeMatrixMultiBinaryCrossEntropy(
real* output, real* entropy, int* row, int* col, int dimM, int dimN) {
int index = blockIdx.x * blockDim.x + threadIdx.x;
if (index < dimM) {
for (int i = 0; i < dimN; i ++) {
for (int i = 0; i < dimN; i++) {
entropy[index] -= log(1 - output[index * dimN + i]);
}
int *row_col = col + row[index];
int* row_col = col + row[index];
int col_num = row[index + 1] - row[index];
for (int i = 0; i < col_num; i ++) {
for (int i = 0; i < col_num; i++) {
real o = output[index * dimN + row_col[i]];
entropy[index] -= log(o / (1 - o));
}
......@@ -299,37 +276,30 @@ void hl_matrix_multi_binary_cross_entropy(real* output,
dim3 threads(n_threads);
dim3 grid(blocks);
hl_csr_matrix mat = (hl_csr_matrix)(csr_mat->matrix);
KeMatrixMultiBinaryCrossEntropy<<< grid, threads, 0, STREAM_DEFAULT >>>
(output, entropy, mat->csr_row, mat->csr_col, dimM, dimN);
KeMatrixMultiBinaryCrossEntropy<<<grid, threads, 0, STREAM_DEFAULT>>>(
output, entropy, mat->csr_row, mat->csr_col, dimM, dimN);
CHECK_SYNC("hl_matrix_multi_binary_cross_entropy failed");
}
__global__ void KeMatrixMultiBinaryCrossEntropyBp(real* output,
real* grad,
int* row,
int* col,
int dimM,
int dimN) {
__global__ void KeMatrixMultiBinaryCrossEntropyBp(
real* output, real* grad, int* row, int* col, int dimM, int dimN) {
int row_idx = blockIdx.x * blockDim.x + threadIdx.x;
if (row_idx < dimM) {
for (int i = 0; i < dimN; i ++) {
for (int i = 0; i < dimN; i++) {
int index = row_idx * dimN + i;
grad[index] += 1.0 / (1 - output[index]);
}
int col_num = row[row_idx + 1] - row[row_idx];
int *row_col = col + row[row_idx];
for (int i = 0; i < col_num; i ++) {
int* row_col = col + row[row_idx];
for (int i = 0; i < col_num; i++) {
int index = row_idx * dimN + row_col[i];
grad[index] -= 1.0 / (output[index] * (1 - output[index]));
}
}
}
void hl_matrix_multi_binary_cross_entropy_bp(real* output,
real* grad,
hl_sparse_matrix_s csr_mat,
int dimM,
int dimN) {
void hl_matrix_multi_binary_cross_entropy_bp(
real* output, real* grad, hl_sparse_matrix_s csr_mat, int dimM, int dimN) {
CHECK_NOTNULL(output);
CHECK_NOTNULL(grad);
CHECK_NOTNULL(csr_mat);
......@@ -339,16 +309,13 @@ void hl_matrix_multi_binary_cross_entropy_bp(real* output,
dim3 threads(n_threads);
dim3 grid(blocks);
hl_csr_matrix mat = (hl_csr_matrix)(csr_mat->matrix);
KeMatrixMultiBinaryCrossEntropyBp<<< grid, threads, 0, STREAM_DEFAULT >>>
(output, grad, mat->csr_row, mat->csr_col, dimM, dimN);
KeMatrixMultiBinaryCrossEntropyBp<<<grid, threads, 0, STREAM_DEFAULT>>>(
output, grad, mat->csr_row, mat->csr_col, dimM, dimN);
CHECK_SYNC("hl_matrix_multi_binary_cross_entropy_bp failed");
}
__global__ void KeMatrixCrossEntropy(real* O,
real* E,
int* label,
int dimM,
int dimN) {
__global__ void KeMatrixCrossEntropy(
real* O, real* E, int* label, int dimM, int dimN) {
int index = blockIdx.x * blockDim.x + threadIdx.x;
int newBase;
if (index < dimM) {
......@@ -358,59 +325,49 @@ __global__ void KeMatrixCrossEntropy(real* O,
}
}
void hl_matrix_cross_entropy(real* A_d,
real* C_d,
int* label_d,
int dimM,
int dimN) {
void hl_matrix_cross_entropy(
real* A_d, real* C_d, int* label_d, int dimM, int dimN) {
CHECK_NOTNULL(A_d);
CHECK_NOTNULL(C_d);
int blocks = (dimM + 1024 - 1) / 1024;
dim3 threads(1024, 1);
dim3 grid(blocks, 1);
KeMatrixCrossEntropy<<< grid, threads, 0, STREAM_DEFAULT >>>
(A_d, C_d, label_d, dimM, dimN);
KeMatrixCrossEntropy<<<grid, threads, 0, STREAM_DEFAULT>>>(
A_d, C_d, label_d, dimM, dimN);
CHECK_SYNC("hl_matrix_cross_entropy failed");
}
__global__ void KeMatrixCrossEntropyBp(real* grad_d,
real* output_d,
int* label_d,
int dimM,
int dimN) {
int rowIdx = blockIdx.x*blockDim.x + threadIdx.x;
int colIdx = blockIdx.y*blockDim.y + threadIdx.y;
__global__ void KeMatrixCrossEntropyBp(
real* grad_d, real* output_d, int* label_d, int dimM, int dimN) {
int rowIdx = blockIdx.x * blockDim.x + threadIdx.x;
int colIdx = blockIdx.y * blockDim.y + threadIdx.y;
int index;
if (rowIdx < dimM && colIdx < dimN) {
index = rowIdx*dimN + colIdx;
index = rowIdx * dimN + colIdx;
if (label_d[rowIdx] == colIdx) {
grad_d[index] -= 1.0f / output_d[index];
}
}
}
void hl_matrix_cross_entropy_bp(real* grad_d,
real* output_d,
int* label_d,
int dimM,
int dimN) {
void hl_matrix_cross_entropy_bp(
real* grad_d, real* output_d, int* label_d, int dimM, int dimN) {
CHECK_NOTNULL(grad_d);
CHECK_NOTNULL(output_d);
CHECK_NOTNULL(label_d);
int blocksX = (dimM + 0)/1;
int blocksY = (dimN + 1024 -1) / 1024;
int blocksX = (dimM + 0) / 1;
int blocksY = (dimN + 1024 - 1) / 1024;
dim3 threads(1, 1024);
dim3 grid(blocksX, blocksY);
KeMatrixCrossEntropyBp<<< grid, threads, 0, STREAM_DEFAULT >>>
(grad_d, output_d, label_d, dimM, dimN);
KeMatrixCrossEntropyBp<<<grid, threads, 0, STREAM_DEFAULT>>>(
grad_d, output_d, label_d, dimM, dimN);
CHECK_SYNC("hl_matrix_cross_entropy_bp failed");
}
void hl_matrix_zero_mem(real* data, int num) {
hl_gpu_apply_unary_op(
unary::Zero<real>(), data, 1, num, num);
hl_gpu_apply_unary_op(unary::Zero<real>(), data, 1, num, num);
}
__global__ void KeParamReluForward(real* output,
......@@ -423,8 +380,8 @@ __global__ void KeParamReluForward(real* output,
int ty = blockIdx.y * blockDim.y + threadIdx.y;
if (tx < width && ty < height) {
int index = ty * width + tx;
output[index] = input[index] > 0 ? input[index] :
input[index] * w[tx / partial_sum];
output[index] =
input[index] > 0 ? input[index] : input[index] * w[tx / partial_sum];
}
}
......@@ -439,14 +396,14 @@ void hl_param_relu_forward(real* output,
CHECK_NOTNULL(w);
dim3 threads(16, 16);
int blockX = (width + 16 - 1) / 16;
int blockY = (height + 16 -1) / 16;
int blockY = (height + 16 - 1) / 16;
dim3 grid(blockX, blockY);
KeParamReluForward<<<grid, threads, 0, STREAM_DEFAULT>>>
(output, input, w, width, height, partial_sum);
KeParamReluForward<<<grid, threads, 0, STREAM_DEFAULT>>>(
output, input, w, width, height, partial_sum);
CHECK_SYNC("hl_param_relu_forward failed");
}
template<int blockSize>
template <int blockSize>
__global__ void KeParamReluBackWardW(real* grad_w,
real* grad_o,
real* input,
......@@ -491,8 +448,8 @@ void hl_param_relu_backward_w(real* grad_w,
int grid_num = width / partial_sum;
dim3 threads(blockSize, 1);
dim3 grid(grid_num, 1);
KeParamReluBackWardW<blockSize><<<grid, threads, 0, STREAM_DEFAULT>>>
(grad_w, grad_o, input, width, height, partial_sum);
KeParamReluBackWardW<blockSize><<<grid, threads, 0, STREAM_DEFAULT>>>(
grad_w, grad_o, input, width, height, partial_sum);
CHECK_SYNC("hl_param_relu_backward_w failed");
}
......@@ -524,19 +481,15 @@ void hl_param_relu_backward_diff(real* grad_o,
CHECK_NOTNULL(diff);
dim3 threads(16, 16);
int blockX = (width + 16 - 1) / 16;
int blockY = (height + 16 -1) / 16;
int blockY = (height + 16 - 1) / 16;
dim3 grid(blockX, blockY);
KeParamReluBackwardDiff<<<grid, threads, 0, STREAM_DEFAULT>>>
(grad_o, data, w, diff, width, height, partial_sum);
KeParamReluBackwardDiff<<<grid, threads, 0, STREAM_DEFAULT>>>(
grad_o, data, w, diff, width, height, partial_sum);
CHECK_SYNC("hl_param_relu_backward_diff failed");
}
__global__ void KeMatrixAddSharedBias(real* A,
real* B,
const int channel,
const int M,
const int N,
real scale) {
__global__ void KeMatrixAddSharedBias(
real* A, real* B, const int channel, const int M, const int N, real scale) {
int index = blockIdx.x * blockDim.x + threadIdx.x;
int dim = N / channel;
if (index < M * N) {
......@@ -554,15 +507,14 @@ void hl_matrix_add_shared_bias(real* A_d,
real scale) {
const int blocks = 512;
const int grids = DIVUP(dimM * dimN, blocks);
KeMatrixAddSharedBias<<<grids, blocks, 0, STREAM_DEFAULT>>>
(A_d, B_d, channel, dimM, dimN, scale);
KeMatrixAddSharedBias<<<grids, blocks, 0, STREAM_DEFAULT>>>(
A_d, B_d, channel, dimM, dimN, scale);
CHECK_SYNC("hl_matrix_add_shared_bias failed");
}
template <int blockSize>
__global__ void KeMatrixCollectSharedBias(real *B,
real *A,
__global__ void KeMatrixCollectSharedBias(real* B,
real* A,
const int channel,
const int M,
const int N,
......@@ -611,14 +563,13 @@ void hl_matrix_collect_shared_bias(real* B_d,
const int limit = 64;
int grids = (dimM * dim) < limit ? DIVUP(channel, blocks) : channel;
KeMatrixCollectSharedBias<blocks>
<<< grids, blocks, 0, STREAM_DEFAULT>>>
(B_d, A_d, channel, dimM, dimN, dim, limit, scale);
KeMatrixCollectSharedBias<blocks><<<grids, blocks, 0, STREAM_DEFAULT>>>(
B_d, A_d, channel, dimM, dimN, dim, limit, scale);
CHECK_SYNC("hl_matrix_collect_shared_bias failed");
}
__global__ void keMatrixRotate(real* mat, real* matRot,
int dimM, int dimN, bool clockWise) {
__global__ void keMatrixRotate(
real* mat, real* matRot, int dimM, int dimN, bool clockWise) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < dimM * dimN) {
int i = idx / dimN;
......@@ -631,13 +582,13 @@ __global__ void keMatrixRotate(real* mat, real* matRot,
}
}
void hl_matrix_rotate(real *mat, real* matRot,
int dimM, int dimN, bool clockWise) {
void hl_matrix_rotate(
real* mat, real* matRot, int dimM, int dimN, bool clockWise) {
CHECK_NOTNULL(mat);
CHECK_NOTNULL(matRot);
const int threads = 512;
const int blocks = DIVUP(dimM * dimN, threads);
keMatrixRotate<<< blocks, threads, 0, STREAM_DEFAULT >>>
(mat, matRot, dimM, dimN, clockWise);
keMatrixRotate<<<blocks, threads, 0, STREAM_DEFAULT>>>(
mat, matRot, dimM, dimN, clockWise);
CHECK_SYNC("hl_matrix_rotate failed");
}
......@@ -16,36 +16,36 @@ limitations under the License. */
#include "hl_device_functions.cuh"
#include "paddle/utils/Logging.h"
__global__ void KeMaxSequenceForward(real *input,
const int *sequence,
__global__ void KeMaxSequenceForward(real* input,
const int* sequence,
real* output,
int *index,
int* index,
int numSequences,
int dim) {
int dimIdx = threadIdx.x;
int sequenceId = blockIdx.x;
if (sequenceId >= numSequences) return;
int start = sequence[sequenceId];
int end = sequence[sequenceId+1];
int end = sequence[sequenceId + 1];
for (int i = dimIdx; i < dim; i += blockDim.x) {
real tmp = -HL_FLOAT_MAX;
int tmpId = -1;
for (int insId = start; insId < end; insId++) {
if (tmp < input[insId*dim + i]) {
tmp = input[insId*dim + i];
if (tmp < input[insId * dim + i]) {
tmp = input[insId * dim + i];
tmpId = insId;
}
}
output[sequenceId*dim + i] = tmp;
index[sequenceId*dim + i] = tmpId;
output[sequenceId * dim + i] = tmp;
index[sequenceId * dim + i] = tmpId;
}
}
void hl_max_sequence_forward(real* input,
const int* sequence,
real* output,
int *index,
int* index,
int numSequences,
int dim) {
CHECK_NOTNULL(input);
......@@ -55,29 +55,23 @@ void hl_max_sequence_forward(real* input,
dim3 threads(256, 1);
dim3 grid(numSequences, 1);
KeMaxSequenceForward<<< grid, threads, 0, STREAM_DEFAULT >>>
(input, sequence, output, index, numSequences, dim);
KeMaxSequenceForward<<<grid, threads, 0, STREAM_DEFAULT>>>(
input, sequence, output, index, numSequences, dim);
CHECK_SYNC("hl_max_sequence_forward failed");
}
__global__ void KeMaxSequenceBackward(real *outputGrad,
int *index,
real* inputGrad,
int numSequences,
int dim) {
__global__ void KeMaxSequenceBackward(
real* outputGrad, int* index, real* inputGrad, int numSequences, int dim) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
int colIdx = idx % dim;
if (idx < numSequences*dim) {
if (idx < numSequences * dim) {
int insId = index[idx];
inputGrad[insId * dim + colIdx] += outputGrad[idx];
}
}
void hl_max_sequence_backward(real* outputGrad,
int *index,
real* inputGrad,
int numSequences,
int dim) {
void hl_max_sequence_backward(
real* outputGrad, int* index, real* inputGrad, int numSequences, int dim) {
CHECK_NOTNULL(outputGrad);
CHECK_NOTNULL(index);
CHECK_NOTNULL(inputGrad);
......@@ -85,12 +79,12 @@ void hl_max_sequence_backward(real* outputGrad,
unsigned int blocks = (numSequences * dim + 128 - 1) / 128;
dim3 threads(128, 1);
dim3 grid(blocks, 1);
KeMaxSequenceBackward<<< grid, threads, 0, STREAM_DEFAULT >>>
(outputGrad, index, inputGrad, numSequences, dim);
KeMaxSequenceBackward<<<grid, threads, 0, STREAM_DEFAULT>>>(
outputGrad, index, inputGrad, numSequences, dim);
CHECK_SYNC("hl_max_sequence_backward failed");
}
template<int blockDimX, int blockDimY, int gridDimX, bool AddRow>
template <int blockDimX, int blockDimY, int gridDimX, bool AddRow>
__global__ void KeMatrixAddRows(real* output,
real* table,
int* ids,
......@@ -104,8 +98,8 @@ __global__ void KeMatrixAddRows(real* output,
while (sampleId < numSamples) {
int tableId = ids[sampleId];
if ((0 <= tableId) && (tableId < tableSize)) {
real *outputData = output + sampleId * dim;
real *tableData = table + tableId * dim;
real* outputData = output + sampleId * dim;
real* tableData = table + tableId * dim;
for (int i = idx; i < dim; i += blockDimX) {
if (AddRow == 0) {
outputData[i] += tableData[i];
......@@ -114,15 +108,18 @@ __global__ void KeMatrixAddRows(real* output,
}
}
}
sampleId += blockDimY*gridDimX;
sampleId += blockDimY * gridDimX;
}
}
template<int blockDimX, int blockDimY, int gridDimX, bool seq2batch, bool isAdd>
__global__
void KeSequence2Batch(real *batch,
real *sequence,
const int *batchIndex,
template <int blockDimX,
int blockDimY,
int gridDimX,
bool seq2batch,
bool isAdd>
__global__ void KeSequence2Batch(real* batch,
real* sequence,
const int* batchIndex,
int seqWidth,
int batchCount) {
int idx = threadIdx.x;
......@@ -130,8 +127,8 @@ void KeSequence2Batch(real *batch,
int id = blockIdx.x + idy * gridDimX;
while (id < batchCount) {
int seqId = batchIndex[id];
real* batchData = batch + id*seqWidth;
real* seqData = sequence + seqId*seqWidth;
real* batchData = batch + id * seqWidth;
real* seqData = sequence + seqId * seqWidth;
for (int i = idx; i < seqWidth; i += blockDimX) {
if (seq2batch) {
if (isAdd) {
......@@ -147,13 +144,13 @@ void KeSequence2Batch(real *batch,
}
}
}
id += blockDimY*gridDimX;
id += blockDimY * gridDimX;
}
}
void hl_sequence2batch_copy(real *batch,
real *sequence,
const int *batchIndex,
void hl_sequence2batch_copy(real* batch,
real* sequence,
const int* batchIndex,
int seqWidth,
int batchCount,
bool seq2batch) {
......@@ -164,18 +161,18 @@ void hl_sequence2batch_copy(real *batch,
dim3 threads(128, 8);
dim3 grid(8, 1);
if (seq2batch) {
KeSequence2Batch<128, 8, 8, 1, 0><<< grid, threads, 0, STREAM_DEFAULT >>>
(batch, sequence, batchIndex, seqWidth, batchCount);
KeSequence2Batch<128, 8, 8, 1, 0><<<grid, threads, 0, STREAM_DEFAULT>>>(
batch, sequence, batchIndex, seqWidth, batchCount);
} else {
KeSequence2Batch<128, 8, 8, 0, 0><<< grid, threads, 0, STREAM_DEFAULT >>>
(batch, sequence, batchIndex, seqWidth, batchCount);
KeSequence2Batch<128, 8, 8, 0, 0><<<grid, threads, 0, STREAM_DEFAULT>>>(
batch, sequence, batchIndex, seqWidth, batchCount);
}
CHECK_SYNC("hl_sequence2batch_copy failed");
}
void hl_sequence2batch_add(real *batch,
real *sequence,
int *batchIndex,
void hl_sequence2batch_add(real* batch,
real* sequence,
int* batchIndex,
int seqWidth,
int batchCount,
bool seq2batch) {
......@@ -186,18 +183,17 @@ void hl_sequence2batch_add(real *batch,
dim3 threads(128, 8);
dim3 grid(8, 1);
if (seq2batch) {
KeSequence2Batch<128, 8, 8, 1, 1><<< grid, threads, 0, STREAM_DEFAULT >>>
(batch, sequence, batchIndex, seqWidth, batchCount);
KeSequence2Batch<128, 8, 8, 1, 1><<<grid, threads, 0, STREAM_DEFAULT>>>(
batch, sequence, batchIndex, seqWidth, batchCount);
} else {
KeSequence2Batch<128, 8, 8, 0, 1><<< grid, threads, 0, STREAM_DEFAULT >>>
(batch, sequence, batchIndex, seqWidth, batchCount);
KeSequence2Batch<128, 8, 8, 0, 1><<<grid, threads, 0, STREAM_DEFAULT>>>(
batch, sequence, batchIndex, seqWidth, batchCount);
}
CHECK_SYNC("hl_sequence2batch_add failed");
}
template<bool normByTimes, bool seq2batch>
__global__
void KeSequence2BatchPadding(real* batch,
template <bool normByTimes, bool seq2batch>
__global__ void KeSequence2BatchPadding(real* batch,
real* sequence,
const int* sequenceStartPositions,
const size_t sequenceWidth,
......@@ -276,37 +272,49 @@ void hl_sequence2batch_copy_padding(real* batch,
if (seq2batch) {
/* sequence -> batch */
if (normByTimes) {
KeSequence2BatchPadding<1, 1><<< grid, threads, 0, STREAM_DEFAULT >>>(
batch, sequence, sequenceStartPositions,
sequenceWidth, maxSequenceLength, numSequences);
KeSequence2BatchPadding<1, 1><<<grid, threads, 0, STREAM_DEFAULT>>>(
batch,
sequence,
sequenceStartPositions,
sequenceWidth,
maxSequenceLength,
numSequences);
} else {
KeSequence2BatchPadding<0, 1><<< grid, threads, 0, STREAM_DEFAULT >>>(
batch, sequence, sequenceStartPositions,
sequenceWidth, maxSequenceLength, numSequences);
KeSequence2BatchPadding<0, 1><<<grid, threads, 0, STREAM_DEFAULT>>>(
batch,
sequence,
sequenceStartPositions,
sequenceWidth,
maxSequenceLength,
numSequences);
}
} else {
/* batch -> sequence */
if (normByTimes) {
KeSequence2BatchPadding<1, 0><<< grid, threads, 0, STREAM_DEFAULT >>>(
batch, sequence, sequenceStartPositions,
sequenceWidth, maxSequenceLength, numSequences);
KeSequence2BatchPadding<1, 0><<<grid, threads, 0, STREAM_DEFAULT>>>(
batch,
sequence,
sequenceStartPositions,
sequenceWidth,
maxSequenceLength,
numSequences);
} else {
KeSequence2BatchPadding<0, 0><<< grid, threads, 0, STREAM_DEFAULT >>>(
batch, sequence, sequenceStartPositions,
sequenceWidth, maxSequenceLength, numSequences);
KeSequence2BatchPadding<0, 0><<<grid, threads, 0, STREAM_DEFAULT>>>(
batch,
sequence,
sequenceStartPositions,
sequenceWidth,
maxSequenceLength,
numSequences);
}
}
CHECK_SYNC("hl_sequence2batch_copy_padding failed");
}
__device__ inline float my_rsqrt(float x) {
return rsqrtf(x);
}
__device__ inline float my_rsqrt(float x) { return rsqrtf(x); }
__device__ inline double my_rsqrt(double x) {
return rsqrt(x);
}
__device__ inline double my_rsqrt(double x) { return rsqrt(x); }
__global__ void KeSequenceAvgForward(real* dst,
real* src,
......@@ -327,8 +335,8 @@ __global__ void KeSequenceAvgForward(real* dst,
for (int i = start; i < end; i++) {
sum += src[i * width + col];
}
sum = mode == 1 ? sum :
(mode == 0 ? sum / seqLength : sum * my_rsqrt((real)seqLength));
sum = mode == 1 ? sum : (mode == 0 ? sum / seqLength
: sum * my_rsqrt((real)seqLength));
dst[gid] += sum;
}
}
......@@ -349,8 +357,8 @@ void hl_sequence_avg_forward(real* dst,
CHECK(mode == 0 || mode == 1 || mode == 2)
<< "mode error in hl_sequence_avg_forward!";
KeSequenceAvgForward<<< grid, block, 0, STREAM_DEFAULT >>>
(dst, src, starts, height, width, mode);
KeSequenceAvgForward<<<grid, block, 0, STREAM_DEFAULT>>>(
dst, src, starts, height, width, mode);
CHECK_SYNC("hl_sequence_avg_forward failed");
}
......@@ -370,8 +378,8 @@ __global__ void KeSequenceAvgBackward(real* dst,
int seqLength = end - start;
if (seqLength == 0) return;
real grad = src[gid];
grad = mode == 1 ? grad :
(mode == 0 ? grad / seqLength : grad * my_rsqrt((real)seqLength));
grad = mode == 1 ? grad : (mode == 0 ? grad / seqLength
: grad * my_rsqrt((real)seqLength));
for (int i = start; i < end; i++) {
dst[i * width + col] += grad;
}
......@@ -394,7 +402,7 @@ void hl_sequence_avg_backward(real* dst,
CHECK(mode == 0 || mode == 1 || mode == 2)
<< "mode error in hl_sequence_avg_backward!";
KeSequenceAvgBackward<<< grid, block, 0, STREAM_DEFAULT >>>
(dst, src, starts, height, width, mode);
KeSequenceAvgBackward<<<grid, block, 0, STREAM_DEFAULT>>>(
dst, src, starts, height, width, mode);
CHECK_SYNC("hl_sequence_avg_backward failed");
}
此差异已折叠。
此差异已折叠。
此差异已折叠。
......@@ -12,13 +12,15 @@ cc_test(variable_test SRCS variable_test.cc)
cc_library(scope SRCS scope.cc)
cc_test(scope_test SRCS scope_test.cc DEPS scope)
proto_library(attr_type SRCS attr_type.proto)
proto_library(op_proto SRCS op_proto.proto DEPS attr_type)
proto_library(op_desc SRCS op_desc.proto DEPS attr_type)
proto_library(attribute_proto SRCS attribute.proto)
proto_library(op_proto SRCS op_proto.proto DEPS attribute_proto)
proto_library(op_desc SRCS op_desc.proto DEPS attribute_proto)
cc_test(op_proto_test SRCS op_proto_test.cc DEPS op_proto protobuf)
cc_test(op_desc_test SRCS op_desc_test.cc DEPS op_desc protobuf)
cc_library(operator SRCS operator.cc DEPS op_desc device_context tensor scope)
cc_library(attribute SRCS attribute.cc DEPS op_desc op_proto)
cc_library(operator SRCS operator.cc DEPS op_desc device_context tensor scope attribute)
cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry)
cc_library(grad_op_builder SRCS grad_op_builder.cc DEPS op_proto operator)
......@@ -26,13 +28,24 @@ cc_library(op_registry SRCS op_registry.cc DEPS op_desc grad_op_builder)
cc_test(op_registry_test SRCS op_registry_test.cc DEPS op_registry)
cc_test(grad_op_builder_test SRCS grad_op_builder_test.cc DEPS grad_op_builder op_registry add_op)
py_proto_compile(framework_py_proto SRCS attr_type.proto op_proto.proto op_desc.proto)
py_proto_compile(framework_py_proto SRCS attribute.proto op_proto.proto op_desc.proto)
# Generate an empty __init__.py to make framework_py_proto as a valid python module.
add_custom_target(framework_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py)
add_dependencies(framework_py_proto framework_py_proto_init)
cc_library(net SRCS net.cc DEPS op_registry)
cc_test(net_op_test SRCS net_op_test.cc DEPS net)
cc_library(backward SRCS backward.cc DEPS net)
cc_library(backward SRCS backward.cc DEPS net_op)
cc_test(backward_test SRCS backward_test.cc DEPS backward)
if(WITH_PYTHON)
cc_library(paddle_pybind SHARED
SRCS pybind.cc
DEPS pybind python backward
fc_op
sgd_op
add_op
mean_op
cross_entropy_op
recurrent_op
uniform_random_op
fill_zeros_like_op)
endif(WITH_PYTHON)
此差异已折叠。
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <boost/variant.hpp>
......@@ -6,6 +20,9 @@
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "paddle/framework/attribute.pb.h"
#include "paddle/framework/op_desc.pb.h"
#include "paddle/platform/enforce.h"
namespace paddle {
......@@ -14,13 +31,19 @@ namespace framework {
typedef boost::variant<boost::blank, int, float, std::string, std::vector<int>,
std::vector<float>, std::vector<std::string>>
Attribute;
typedef std::unordered_map<std::string, Attribute> AttributeMap;
template <typename T>
AttrType AttrTypeID();
Attribute GetAttrValue(const AttrDesc& attr_desc);
// check whether a value(attribute) fit a certain limit
template <typename T>
class LargerThanChecker {
public:
LargerThanChecker(T lower_bound) : lower_bound_(lower_bound) {}
explicit LargerThanChecker(T lower_bound) : lower_bound_(lower_bound) {}
void operator()(T& value) const {
PADDLE_ENFORCE(value > lower_bound_, "larger_than check fail");
}
......@@ -35,7 +58,8 @@ class LargerThanChecker {
template <typename T>
class DefaultValueSetter {
public:
DefaultValueSetter(T default_value) : default_value_(default_value) {}
explicit DefaultValueSetter(T default_value)
: default_value_(default_value) {}
void operator()(T& value) const { value = default_value_; }
private:
......@@ -78,7 +102,8 @@ class TypedAttrChecker {
typedef std::function<void(T&)> ValueChecker;
public:
TypedAttrChecker(const std::string& attr_name) : attr_name_(attr_name) {}
explicit TypedAttrChecker(const std::string& attr_name)
: attr_name_(attr_name) {}
TypedAttrChecker& InEnum(const std::unordered_set<T>& range) {
value_checkers_.push_back(EnumInContainer<T>(range));
......
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
文件模式从 100644 更改为 100755
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册