Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
669d8689
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
669d8689
编写于
6月 15, 2022
作者:
F
fwenguang
提交者:
GitHub
6月 15, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU] add bce kernel (#43435)
上级
13cf4ced
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
541 addition
and
0 deletion
+541
-0
paddle/fluid/operators/mlu/mlu_baseop.cc
paddle/fluid/operators/mlu/mlu_baseop.cc
+50
-0
paddle/fluid/operators/mlu/mlu_baseop.h
paddle/fluid/operators/mlu/mlu_baseop.h
+17
-0
paddle/fluid/operators/reduce_ops/reduce_sum_op_mlu.cc
paddle/fluid/operators/reduce_ops/reduce_sum_op_mlu.cc
+1
-0
paddle/fluid/operators/sigmoid_cross_entropy_with_logits_op_mlu.cc
...uid/operators/sigmoid_cross_entropy_with_logits_op_mlu.cc
+101
-0
python/paddle/fluid/tests/unittests/mlu/test_bce_with_logits_loss_mlu.py
...luid/tests/unittests/mlu/test_bce_with_logits_loss_mlu.py
+200
-0
python/paddle/fluid/tests/unittests/mlu/test_sigmoid_cross_entropy_with_logits_op_mlu.py
...ests/mlu/test_sigmoid_cross_entropy_with_logits_op_mlu.py
+172
-0
未找到文件。
paddle/fluid/operators/mlu/mlu_baseop.cc
浏览文件 @
669d8689
...
...
@@ -2832,5 +2832,55 @@ MLUCnnlTrigonDesc::~MLUCnnlTrigonDesc() {
diff
,
workspace_ptr
,
workspace_size
,
output_desc
,
output
));
}
/* static */
void
MLUCnnl
::
BceWithLogits
(
const
ExecutionContext
&
ctx
,
cnnlBceWithLogitsReduction_t
reduction
,
const
cnnlTensorDescriptor_t
input_desc
,
const
void
*
input
,
const
cnnlTensorDescriptor_t
target_desc
,
const
void
*
target
,
const
cnnlTensorDescriptor_t
weight_desc
,
const
void
*
weight
,
const
cnnlTensorDescriptor_t
pos_weight_desc
,
const
void
*
pos_weight
,
const
cnnlTensorDescriptor_t
output_desc
,
void
*
output
)
{
cnnlHandle_t
handle
=
GetHandleFromCTX
(
ctx
);
size_t
workspace_size
;
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlGetBceWithLogitsWorkspaceSize
(
handle
,
input_desc
,
weight_desc
,
pos_weight_desc
,
&
workspace_size
));
auto
&
dev_ctx
=
GetDevCtxFromCTX
(
ctx
);
Tensor
workspace
=
ctx
.
AllocateTmpTensor
<
int8_t
,
MLUDeviceContext
>
(
{
static_cast
<
int64_t
>
(
workspace_size
)},
dev_ctx
);
void
*
workspace_ptr
=
workspace
.
mutable_data
(
ctx
.
GetPlace
());
const
cnnlComputationPreference_t
prefer
=
CNNL_COMPUTATION_HIGH_PRECISION
;
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlBceWithLogits_v2
(
handle
,
prefer
,
input_desc
,
input
,
target_desc
,
target
,
weight_desc
,
weight
,
pos_weight_desc
,
pos_weight
,
reduction
,
workspace_ptr
,
workspace_size
,
output_desc
,
output
));
}
/* static */
void
MLUCnnl
::
BceWithLogitsBackward
(
const
ExecutionContext
&
ctx
,
cnnlBceWithLogitsReduction_t
reduction
,
const
cnnlTensorDescriptor_t
grad_desc
,
const
void
*
grad
,
const
cnnlTensorDescriptor_t
input_desc
,
const
void
*
input
,
const
cnnlTensorDescriptor_t
target_desc
,
const
void
*
target
,
const
cnnlTensorDescriptor_t
weight_desc
,
const
void
*
weight
,
const
cnnlTensorDescriptor_t
pos_weight_desc
,
const
void
*
pos_weight
,
const
cnnlTensorDescriptor_t
diff_input_desc
,
void
*
diff_input
)
{
cnnlHandle_t
handle
=
GetHandleFromCTX
(
ctx
);
size_t
workspace_size
;
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlGetBceWithLogitsBackwardWorkspaceSize
(
handle
,
target_desc
,
weight_desc
,
pos_weight_desc
,
&
workspace_size
));
auto
&
dev_ctx
=
GetDevCtxFromCTX
(
ctx
);
Tensor
workspace
=
ctx
.
AllocateTmpTensor
<
int8_t
,
MLUDeviceContext
>
(
{
static_cast
<
int64_t
>
(
workspace_size
)},
dev_ctx
);
void
*
workspace_ptr
=
workspace
.
mutable_data
(
ctx
.
GetPlace
());
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlBceWithLogitsBackward
(
handle
,
grad_desc
,
grad
,
input_desc
,
input
,
target_desc
,
target
,
weight_desc
,
weight
,
pos_weight_desc
,
pos_weight
,
reduction
,
workspace_ptr
,
workspace_size
,
diff_input_desc
,
diff_input
));
}
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/mlu/mlu_baseop.h
浏览文件 @
669d8689
...
...
@@ -1279,6 +1279,23 @@ class MLUCnnl {
const
cnnlTensorDescriptor_t
indices_desc
,
const
void
*
indices
,
const
cnnlTensorDescriptor_t
diff_desc
,
const
void
*
diff
,
const
cnnlTensorDescriptor_t
output_desc
,
void
*
output
);
static
void
BceWithLogits
(
const
ExecutionContext
&
ctx
,
cnnlBceWithLogitsReduction_t
reduction
,
const
cnnlTensorDescriptor_t
input_desc
,
const
void
*
input
,
const
cnnlTensorDescriptor_t
target_desc
,
const
void
*
target
,
const
cnnlTensorDescriptor_t
weight_desc
,
const
void
*
weight
,
const
cnnlTensorDescriptor_t
pos_weight_desc
,
const
void
*
pos_weight
,
const
cnnlTensorDescriptor_t
output_desc
,
void
*
output
);
static
void
BceWithLogitsBackward
(
const
ExecutionContext
&
ctx
,
cnnlBceWithLogitsReduction_t
reduction
,
const
cnnlTensorDescriptor_t
grad_desc
,
const
void
*
grad
,
const
cnnlTensorDescriptor_t
input_desc
,
const
void
*
input
,
const
cnnlTensorDescriptor_t
target_desc
,
const
void
*
target
,
const
cnnlTensorDescriptor_t
weight_desc
,
const
void
*
weight
,
const
cnnlTensorDescriptor_t
pos_weight_desc
,
const
void
*
pos_weight
,
const
cnnlTensorDescriptor_t
diff_input_desc
,
void
*
diff_input
);
};
template
<
typename
T
>
...
...
paddle/fluid/operators/reduce_ops/reduce_sum_op_mlu.cc
浏览文件 @
669d8689
...
...
@@ -73,6 +73,7 @@ namespace ops = paddle::operators;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_MLU_KERNEL
(
reduce_sum
,
ops
::
ReduceSumMLUKernel
<
float
>
,
ops
::
ReduceSumMLUKernel
<
int
>
,
ops
::
ReduceSumMLUKernel
<
plat
::
float16
>
);
REGISTER_OP_MLU_KERNEL
(
reduce_sum_grad
,
ops
::
ReduceSumGradMLUKernel
<
float
>
,
ops
::
ReduceSumGradMLUKernel
<
plat
::
float16
>
);
paddle/fluid/operators/sigmoid_cross_entropy_with_logits_op_mlu.cc
0 → 100644
浏览文件 @
669d8689
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
const
int
kIgnoreIndex
=
-
100
;
void
CheckAttrs
(
const
framework
::
ExecutionContext
&
ctx
)
{
// cnnl not support normalize and ignore_index
bool
normalize
=
ctx
.
Attr
<
bool
>
(
"normalize"
);
int
ignore_index
=
ctx
.
Attr
<
int
>
(
"ignore_index"
);
PADDLE_ENFORCE_EQ
(
normalize
,
false
,
platform
::
errors
::
InvalidArgument
(
"attr normalize must be false, but got true"
));
PADDLE_ENFORCE_EQ
(
ignore_index
,
kIgnoreIndex
,
platform
::
errors
::
InvalidArgument
(
"attr ignore_index must be default %d, but got %d"
,
kIgnoreIndex
,
ignore_index
));
}
template
<
typename
T
>
class
SigmoidCrossEntropyWithLogitsMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
CheckAttrs
(
ctx
);
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
label
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
place
=
ctx
.
GetPlace
();
out
->
mutable_data
<
T
>
(
place
);
MLUCnnlTensorDesc
x_desc
(
*
x
);
MLUCnnlTensorDesc
label_desc
(
*
label
);
MLUCnnlTensorDesc
out_desc
(
*
out
);
MLUCnnl
::
BceWithLogits
(
ctx
,
CNNL_BCE_WITH_LOGITS_NONE
,
x_desc
.
get
(),
GetBasePtr
(
x
),
label_desc
.
get
(),
GetBasePtr
(
label
),
nullptr
,
nullptr
,
nullptr
,
nullptr
,
out_desc
.
get
(),
GetBasePtr
(
out
));
}
};
template
<
typename
T
>
class
SigmoidCrossEntropyWithLogitsMLUGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
CheckAttrs
(
ctx
);
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
label
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
auto
*
dout
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
place
=
ctx
.
GetPlace
();
dx
->
mutable_data
<
T
>
(
place
);
MLUCnnlTensorDesc
x_desc
(
*
x
);
MLUCnnlTensorDesc
label_desc
(
*
label
);
MLUCnnlTensorDesc
dout_desc
(
*
dout
);
MLUCnnl
::
BceWithLogitsBackward
(
ctx
,
CNNL_BCE_WITH_LOGITS_NONE
,
dout_desc
.
get
(),
GetBasePtr
(
dout
),
x_desc
.
get
(),
GetBasePtr
(
x
),
label_desc
.
get
(),
GetBasePtr
(
label
),
nullptr
,
nullptr
,
nullptr
,
nullptr
,
x_desc
.
get
(),
GetBasePtr
(
dx
));
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_MLU_KERNEL
(
sigmoid_cross_entropy_with_logits
,
ops
::
SigmoidCrossEntropyWithLogitsMLUKernel
<
float
>
,
ops
::
SigmoidCrossEntropyWithLogitsMLUKernel
<
plat
::
float16
>
);
REGISTER_OP_MLU_KERNEL
(
sigmoid_cross_entropy_with_logits_grad
,
ops
::
SigmoidCrossEntropyWithLogitsMLUGradKernel
<
float
>
,
ops
::
SigmoidCrossEntropyWithLogitsMLUGradKernel
<
plat
::
float16
>
);
python/paddle/fluid/tests/unittests/mlu/test_bce_with_logits_loss_mlu.py
0 → 100644
浏览文件 @
669d8689
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
import
paddle.fluid
as
fluid
import
numpy
as
np
import
unittest
import
sys
sys
.
path
.
append
(
'..'
)
from
op_test
import
OpTest
from
test_bce_with_logits_loss
import
call_bce_layer
,
call_bce_functional
,
test_dygraph
,
calc_bce_with_logits_loss
def
test_static
(
place
,
logit_np
,
label_np
,
weight_np
=
None
,
reduction
=
'mean'
,
pos_weight_np
=
None
,
functional
=
False
):
paddle
.
enable_static
()
prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
with
paddle
.
static
.
program_guard
(
prog
,
startup_prog
):
logit
=
paddle
.
fluid
.
data
(
name
=
'logit'
,
shape
=
logit_np
.
shape
,
dtype
=
'float32'
)
label
=
paddle
.
fluid
.
data
(
name
=
'label'
,
shape
=
label_np
.
shape
,
dtype
=
'float32'
)
feed_dict
=
{
"logit"
:
logit_np
,
"label"
:
label_np
}
pos_weight
=
None
weight
=
None
if
pos_weight_np
is
not
None
:
pos_weight
=
paddle
.
fluid
.
data
(
name
=
'pos_weight'
,
shape
=
pos_weight_np
.
shape
,
dtype
=
'float32'
)
feed_dict
[
"pos_weight"
]
=
pos_weight_np
if
weight_np
is
not
None
:
weight
=
paddle
.
fluid
.
data
(
name
=
'weight'
,
shape
=
weight_np
.
shape
,
dtype
=
'float32'
)
feed_dict
[
"weight"
]
=
weight_np
if
functional
:
res
=
call_bce_functional
(
logit
,
label
,
weight
,
reduction
,
pos_weight
)
else
:
res
=
call_bce_layer
(
logit
,
label
,
weight
,
reduction
,
pos_weight
)
exe
=
paddle
.
static
.
Executor
(
place
)
static_result
=
exe
.
run
(
prog
,
feed
=
feed_dict
,
fetch_list
=
[
res
])
return
static_result
paddle
.
enable_static
()
class
TestBCEWithLogitsLoss
(
unittest
.
TestCase
):
def
test_BCEWithLogitsLoss
(
self
):
logit_np
=
np
.
random
.
uniform
(
0.1
,
0.8
,
size
=
(
20
,
30
)).
astype
(
np
.
float32
)
label_np
=
np
.
random
.
randint
(
0
,
2
,
size
=
(
20
,
30
)).
astype
(
np
.
float32
)
places
=
[
fluid
.
MLUPlace
(
0
)]
reductions
=
[
'sum'
,
'mean'
,
'none'
]
for
place
in
places
:
for
reduction
in
reductions
:
static_result
=
test_static
(
place
,
logit_np
,
label_np
,
reduction
=
reduction
)
dy_result
=
test_dygraph
(
place
,
logit_np
,
label_np
,
reduction
=
reduction
)
expected
=
calc_bce_with_logits_loss
(
logit_np
,
label_np
,
reduction
)
self
.
assertTrue
(
np
.
allclose
(
static_result
,
expected
))
self
.
assertTrue
(
np
.
allclose
(
static_result
,
dy_result
))
self
.
assertTrue
(
np
.
allclose
(
dy_result
,
expected
))
static_functional
=
test_static
(
place
,
logit_np
,
label_np
,
reduction
=
reduction
,
functional
=
True
)
dy_functional
=
test_dygraph
(
place
,
logit_np
,
label_np
,
reduction
=
reduction
,
functional
=
True
)
self
.
assertTrue
(
np
.
allclose
(
static_functional
,
expected
))
self
.
assertTrue
(
np
.
allclose
(
static_functional
,
dy_functional
))
self
.
assertTrue
(
np
.
allclose
(
dy_functional
,
expected
))
def
test_BCEWithLogitsLoss_weight
(
self
):
logit_np
=
np
.
random
.
uniform
(
0.1
,
0.8
,
size
=
(
2
,
3
,
4
,
10
)).
astype
(
np
.
float32
)
label_np
=
np
.
random
.
randint
(
0
,
2
,
size
=
(
2
,
3
,
4
,
10
)).
astype
(
np
.
float32
)
weight_np
=
np
.
random
.
random
(
size
=
(
2
,
3
,
4
,
10
)).
astype
(
np
.
float32
)
place
=
fluid
.
MLUPlace
(
0
)
for
reduction
in
[
'sum'
,
'mean'
,
'none'
]:
static_result
=
test_static
(
place
,
logit_np
,
label_np
,
weight_np
=
weight_np
,
reduction
=
reduction
)
dy_result
=
test_dygraph
(
place
,
logit_np
,
label_np
,
weight_np
=
weight_np
,
reduction
=
reduction
)
expected
=
calc_bce_with_logits_loss
(
logit_np
,
label_np
,
reduction
,
weight_np
=
weight_np
)
self
.
assertTrue
(
np
.
allclose
(
static_result
,
expected
))
self
.
assertTrue
(
np
.
allclose
(
static_result
,
dy_result
))
self
.
assertTrue
(
np
.
allclose
(
dy_result
,
expected
))
static_functional
=
test_static
(
place
,
logit_np
,
label_np
,
weight_np
=
weight_np
,
reduction
=
reduction
,
functional
=
True
)
dy_functional
=
test_dygraph
(
place
,
logit_np
,
label_np
,
weight_np
=
weight_np
,
reduction
=
reduction
,
functional
=
True
)
self
.
assertTrue
(
np
.
allclose
(
static_functional
,
expected
))
self
.
assertTrue
(
np
.
allclose
(
static_functional
,
dy_functional
))
self
.
assertTrue
(
np
.
allclose
(
dy_functional
,
expected
))
def
test_BCEWithLogitsLoss_pos_weight
(
self
):
logit_np
=
np
.
random
.
uniform
(
0.1
,
0.8
,
size
=
(
2
,
3
,
4
,
10
)).
astype
(
np
.
float32
)
label_np
=
np
.
random
.
randint
(
0
,
2
,
size
=
(
2
,
3
,
4
,
10
)).
astype
(
np
.
float32
)
pos_weight_np
=
np
.
random
.
random
(
size
=
(
3
,
4
,
10
)).
astype
(
np
.
float32
)
weight_np
=
np
.
random
.
random
(
size
=
(
2
,
3
,
4
,
10
)).
astype
(
np
.
float32
)
place
=
fluid
.
MLUPlace
(
0
)
reduction
=
"mean"
static_result
=
test_static
(
place
,
logit_np
,
label_np
,
weight_np
,
reduction
,
pos_weight_np
)
dy_result
=
test_dygraph
(
place
,
logit_np
,
label_np
,
weight_np
,
reduction
,
pos_weight_np
)
expected
=
calc_bce_with_logits_loss
(
logit_np
,
label_np
,
reduction
,
weight_np
,
pos_weight_np
)
self
.
assertTrue
(
np
.
allclose
(
static_result
,
expected
))
self
.
assertTrue
(
np
.
allclose
(
static_result
,
dy_result
))
self
.
assertTrue
(
np
.
allclose
(
dy_result
,
expected
))
static_functional
=
test_static
(
place
,
logit_np
,
label_np
,
weight_np
,
reduction
,
pos_weight_np
,
functional
=
True
)
dy_functional
=
test_dygraph
(
place
,
logit_np
,
label_np
,
weight_np
,
reduction
,
pos_weight_np
,
functional
=
True
)
self
.
assertTrue
(
np
.
allclose
(
static_functional
,
expected
))
self
.
assertTrue
(
np
.
allclose
(
static_functional
,
dy_functional
))
self
.
assertTrue
(
np
.
allclose
(
dy_functional
,
expected
))
def
test_BCEWithLogitsLoss_error
(
self
):
paddle
.
disable_static
()
self
.
assertRaises
(
ValueError
,
paddle
.
nn
.
BCEWithLogitsLoss
,
reduction
=
"unsupport reduction"
)
logit
=
paddle
.
to_tensor
([[
0.1
,
0.3
]],
dtype
=
'float32'
)
label
=
paddle
.
to_tensor
([[
0.0
,
1.0
]],
dtype
=
'float32'
)
self
.
assertRaises
(
ValueError
,
paddle
.
nn
.
functional
.
binary_cross_entropy_with_logits
,
logit
=
logit
,
label
=
label
,
reduction
=
"unsupport reduction"
)
paddle
.
enable_static
()
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/mlu/test_sigmoid_cross_entropy_with_logits_op_mlu.py
0 → 100644
浏览文件 @
669d8689
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
sys
sys
.
path
.
append
(
'..'
)
from
op_test
import
OpTest
from
scipy.special
import
logit
from
scipy.special
import
expit
import
paddle.fluid.core
as
core
import
unittest
from
paddle.fluid
import
compiler
,
Program
,
program_guard
import
paddle.fluid
as
fluid
import
paddle
paddle
.
enable_static
()
class
TestSigmoidCrossEntropyWithLogitsOp1
(
OpTest
):
"""Test sigmoid_cross_entropy_with_logit_op with binary label
"""
def
setUp
(
self
):
self
.
op_type
=
"sigmoid_cross_entropy_with_logits"
self
.
set_mlu
()
self
.
init_dtype
()
batch_size
=
64
num_classes
=
20
self
.
inputs
=
{
'X'
:
logit
(
np
.
random
.
uniform
(
0
,
1
,
(
batch_size
,
num_classes
)).
astype
(
self
.
dtype
)),
'Label'
:
np
.
random
.
randint
(
0
,
2
,
(
batch_size
,
num_classes
)).
astype
(
self
.
dtype
)
}
# Fw Pass is implemented as elementwise sigmoid followed by
# elementwise logistic loss
# Label * -log(sigmoid(X)) + (1 - label) * -log(1 - sigmoid(X))
sigmoid_X
=
expit
(
self
.
inputs
[
'X'
])
term1
=
self
.
inputs
[
'Label'
]
*
np
.
log
(
sigmoid_X
)
term2
=
(
1
-
self
.
inputs
[
'Label'
])
*
np
.
log
(
1
-
sigmoid_X
)
self
.
outputs
=
{
'Out'
:
-
term1
-
term2
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
atol
=
1e-5
)
def
test_check_grad
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
)
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
MLUPlace
(
0
)
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
class
TestSigmoidCrossEntropyWithLogitsOp3
(
TestSigmoidCrossEntropyWithLogitsOp1
):
"""Test sigmoid_cross_entropy_with_logit_op with probabalistic label
"""
def
setUp
(
self
):
self
.
op_type
=
"sigmoid_cross_entropy_with_logits"
self
.
set_mlu
()
self
.
init_dtype
()
batch_size
=
64
num_classes
=
20
self
.
inputs
=
{
'X'
:
logit
(
np
.
random
.
uniform
(
0
,
1
,
(
batch_size
,
num_classes
)).
astype
(
self
.
dtype
)),
'Label'
:
np
.
random
.
uniform
(
0
,
1
,
(
batch_size
,
num_classes
)).
astype
(
self
.
dtype
)
}
# Fw Pass is implemented as elementwise sigmoid followed by
# elementwise logistic loss
# Label * -log(sigmoid(X)) + (1 - label) * -log(1 - sigmoid(X))
sigmoid_X
=
expit
(
self
.
inputs
[
'X'
])
term1
=
self
.
inputs
[
'Label'
]
*
np
.
log
(
sigmoid_X
)
term2
=
(
1
-
self
.
inputs
[
'Label'
])
*
np
.
log
(
1
-
sigmoid_X
)
self
.
outputs
=
{
'Out'
:
-
term1
-
term2
}
class
TestSigmoidCrossEntropyWithLogitsOp5
(
TestSigmoidCrossEntropyWithLogitsOp1
):
"""Test sigmoid_cross_entropy_with_logit_op with probabalistic label
"""
def
setUp
(
self
):
self
.
op_type
=
"sigmoid_cross_entropy_with_logits"
self
.
set_mlu
()
self
.
init_dtype
()
batch_size
=
[
10
,
10
]
num_classes
=
20
self
.
inputs
=
{
'X'
:
logit
(
np
.
random
.
uniform
(
0
,
1
,
tuple
(
batch_size
+
[
num_classes
])).
astype
(
self
.
dtype
)),
'Label'
:
np
.
random
.
uniform
(
0
,
1
,
tuple
(
batch_size
+
[
num_classes
])).
astype
(
self
.
dtype
)
}
# Fw Pass is implemented as elementwise sigmoid followed by
# elementwise logistic loss
# Label * -log(sigmoid(X)) + (1 - label) * -log(1 - sigmoid(X))
sigmoid_X
=
expit
(
self
.
inputs
[
'X'
])
term1
=
self
.
inputs
[
'Label'
]
*
np
.
log
(
sigmoid_X
)
term2
=
(
1
-
self
.
inputs
[
'Label'
])
*
np
.
log
(
1
-
sigmoid_X
)
self
.
outputs
=
{
'Out'
:
-
term1
-
term2
}
class
TestSigmoidCrossEntropyWithLogitsOp6
(
TestSigmoidCrossEntropyWithLogitsOp1
):
"""Test sigmoid_cross_entropy_with_logit_op with binary label
"""
def
setUp
(
self
):
self
.
op_type
=
"sigmoid_cross_entropy_with_logits"
self
.
set_mlu
()
self
.
init_dtype
()
batch_size
=
[
10
,
10
]
num_classes
=
20
self
.
inputs
=
{
'X'
:
logit
(
np
.
random
.
uniform
(
0
,
1
,
tuple
(
batch_size
+
[
num_classes
])).
astype
(
self
.
dtype
)),
'Label'
:
np
.
random
.
randint
(
0
,
2
,
tuple
(
batch_size
+
[
num_classes
])).
astype
(
self
.
dtype
)
}
# Fw Pass is implemented as elementwise sigmoid followed by
# elementwise logistic loss
# Label * -log(sigmoid(X)) + (1 - label) * -log(1 - sigmoid(X))
sigmoid_X
=
expit
(
self
.
inputs
[
'X'
])
term1
=
self
.
inputs
[
'Label'
]
*
np
.
log
(
sigmoid_X
)
term2
=
(
1
-
self
.
inputs
[
'Label'
])
*
np
.
log
(
1
-
sigmoid_X
)
self
.
outputs
=
{
'Out'
:
-
term1
-
term2
}
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录