提交 66468736 编写于 作者: C caoying03

Merge branch 'develop' into refine_doc

...@@ -312,3 +312,9 @@ sequence_softmax ...@@ -312,3 +312,9 @@ sequence_softmax
.. autofunction:: paddle.v2.fluid.layers.sequence_softmax .. autofunction:: paddle.v2.fluid.layers.sequence_softmax
:noindex: :noindex:
reduce_sum
---------
.. autofunction:: paddle.v2.fluid.layers.reduce_sum
:noindex:
## Background
Every operator has many kernels because there are multiple data types, places, data layout that Fluid supports. We use the `KernelType` to describe kernel types that operators can hold.
The `KernelType` is as follows.
```
struct KernelType {
Place place_;
DataType data_type_;
LayoutType layout_;
};
```
The `place_` is a descriptor of the device and the computational library, e.g., `MKLDNNPlace`, `CUDAPlace`.
The `data_type_` is the data type that this kernel performs on, e.g., `FP32`, `INT64`. Note that one kernel may have inputs with different data types. However, it will be a major `data_type`. For example, the `cross_entropy` takes `int64` as it label, and `double`/`float` as its input logit and output cost. The major `data_type` of `cross_entropy` is `float`/`double`.
The `layout` is useful for some computational library. One example is that MKLDNN uses many kinds of layout, such as `nChw8c`. Each kind of layout will invoke the different kernel.
## Problem
We register a kernel for every operator and every kernel type ideally. However, it is impracticable for the following situations.
1. Some operators, like CRF, are complicated and inefficient to be implemented on GPU. The CRF operator will only have a CPU kernel.
2. Some operators will take too many memory. It is better to force them into CPU. However, the rest of operators in this neural network will be performed on GPU, i.e., model parallel problem.
3. Some layout and place are particular. One example is that MKLDNN uses `nChw8` and there is no other library uses `nChw8c`.
Problems under these situations are similar. We can formalise this problem as follow.
We register kernels with types $KT = \{kt_1, kt_2, kt_3, ...\}$ for one operator. The inputs of this operator should be run on kernel type $kt_{?}$, which the $kt_{?} \notin KT$. How to cast the input of this operator from $kt_{?}$ to any of kernel type in $KT$.
## Solution
It is clearly that transforming inputs of an operator toadapt another kernel type is not related to the particular operator. So we should register these transformation methods as global methods.
We can infer a kernel type from the inputs of an operators. We let this kernel type as `actual kernel type`, which means this kernel type is the actually kernel type that operator should be performed.
We can get a kernel type by 1) The configuration of operator description. (Users may want to force use `MKL` for `conv` operator). 2) The place of the current executor. (Executor is running on GPU). This kernel type is what we expect the operator will be performed on. We let this kernel type as `expect kernel type`.
We transform the input data from `actual` to `expect` if the expect kernel type is not as same as actual kernel type.
The algorithm is described as follow
```cpp
using DataTransformationFN = std::function<void(const Tensor& in, Tensor* out)>;
using KernelTypePair = std::pair<KernelType, KernelType>;
map<KernelTypePair, DataTransformationFN> g_data_transformation_;
void OpWithKernel::Run() {
vec<Tensor> inputs = ...
auto actual_kernel_type = GetActualKernelType(inputs);
// The expected kernel type is related to actual kernel type.
// For the most operators, the expected kernel type is as same as
// actual kernel type.
//
// So we pass `actual_kernel_type` as a parameter of
// GetExpectedKernelType
auto expect_kernel_type = GetExpectedKernelType(actual_kernel_type);
auto trans = g_data_transformation_[{actual_kernel_type, expect_kernel_type}];
kernel.run(trans(inputs));
}
```
...@@ -46,4 +46,13 @@ void LoDRankTable::Reset(const LoD& lod, size_t level) { ...@@ -46,4 +46,13 @@ void LoDRankTable::Reset(const LoD& lod, size_t level) {
} }
} // namespace framework } // namespace framework
std::ostream& operator<<(std::ostream& out,
const framework::LoDRankTable& table) {
out << "NumOfSequence " << table.items().size() << "\n";
for (auto& each_item : table.items()) {
out << "\tSeq #" << each_item.index << ", Len=" << each_item.length << "\n";
}
return out;
}
} // namespace paddle } // namespace paddle
...@@ -13,6 +13,7 @@ ...@@ -13,6 +13,7 @@
limitations under the License. */ limitations under the License. */
#pragma once #pragma once
#include <iosfwd>
#include "paddle/framework/lod_tensor.h" #include "paddle/framework/lod_tensor.h"
namespace paddle { namespace paddle {
...@@ -52,4 +53,8 @@ class LoDRankTable { ...@@ -52,4 +53,8 @@ class LoDRankTable {
}; };
} // namespace framework } // namespace framework
std::ostream& operator<<(std::ostream& out,
const framework::LoDRankTable& table);
} // namespace paddle } // namespace paddle
...@@ -184,6 +184,18 @@ LoDTensor LodExpand(const LoDTensor& source, const LoD& lod, size_t level, ...@@ -184,6 +184,18 @@ LoDTensor LodExpand(const LoDTensor& source, const LoD& lod, size_t level,
return tensor; return tensor;
} }
// Get the absolute offset of a lod[start_level][start_idx:end_idx] and
// relative length of details for every levels(i.e., [start_level: ]).
//
// For example,
// lod = [[0, 3, 4, 8], [0, 9, 10, 11, 13, 17, 19, 22, 24]]
// start_level = 0
// start_idx = 1
// end_idx = 3
//
// Returns:
// LoD = [[1, 4], [2, 4, 2, 3, 2]]
// pair<size_t, size_t> = {11, 24}
std::pair<LoD, std::pair<size_t, size_t>> GetSubLoDAndAbsoluteOffset( std::pair<LoD, std::pair<size_t, size_t>> GetSubLoDAndAbsoluteOffset(
const LoD& lod, size_t start_idx, size_t end_idx, size_t start_level); const LoD& lod, size_t start_idx, size_t end_idx, size_t start_level);
......
...@@ -30,6 +30,7 @@ class LoDRankTableOp : public framework::OperatorBase { ...@@ -30,6 +30,7 @@ class LoDRankTableOp : public framework::OperatorBase {
scope.FindVar(Output("Out"))->GetMutable<framework::LoDRankTable>(); scope.FindVar(Output("Out"))->GetMutable<framework::LoDRankTable>();
VLOG(10) << "Level = " << static_cast<size_t>(Attr<int>("level")); VLOG(10) << "Level = " << static_cast<size_t>(Attr<int>("level"));
out->Reset(x.lod(), static_cast<size_t>(Attr<int>("level"))); out->Reset(x.lod(), static_cast<size_t>(Attr<int>("level")));
VLOG(10) << Input("X") << "'s lod information is " << *out;
} }
}; };
......
...@@ -13,7 +13,7 @@ __all__ = [ ...@@ -13,7 +13,7 @@ __all__ = [
'crf_decoding', 'cos_sim', 'cross_entropy', 'square_error_cost', 'accuracy', 'crf_decoding', 'cos_sim', 'cross_entropy', 'square_error_cost', 'accuracy',
'chunk_eval', 'sequence_conv', 'conv2d', 'sequence_pool', 'pool2d', 'chunk_eval', 'sequence_conv', 'conv2d', 'sequence_pool', 'pool2d',
'batch_norm', 'beam_search_decode', 'conv2d_transpose', 'sequence_expand', 'batch_norm', 'beam_search_decode', 'conv2d_transpose', 'sequence_expand',
'lstm_unit' 'lstm_unit', 'reduce_sum'
] ]
...@@ -421,8 +421,8 @@ def chunk_eval(input, ...@@ -421,8 +421,8 @@ def chunk_eval(input,
}, },
attrs={ attrs={
"num_chunk_types": num_chunk_types, "num_chunk_types": num_chunk_types,
'chunk_scheme': chunk_scheme, "chunk_scheme": chunk_scheme,
'excluded_chunk_types': excluded_chunk_types or [] "excluded_chunk_types": excluded_chunk_types or []
}) })
return precision, recall, f1_score, num_infer_chunks, num_label_chunks, num_correct_chunks return precision, recall, f1_score, num_infer_chunks, num_label_chunks, num_correct_chunks
...@@ -954,3 +954,47 @@ def lstm_unit(x_t, ...@@ -954,3 +954,47 @@ def lstm_unit(x_t,
attrs={"forget_bias": forget_bias}) attrs={"forget_bias": forget_bias})
return h, c return h, c
def reduce_sum(input, dim=None, keep_dim=False):
"""
Computes the sum of tensor elements over the given dimension.
Args:
input (Variable): The input variable which is a Tensor or LoDTensor.
dim (int|None): The dimension along which the sum is performed. If
:attr:`None`, sum all elements of :attr:`input` and return a
Tensor variable with a single element, otherwise must be in the
range :math:`[-rank(input), rank(input))`. If :math:`dim < 0`,
the dimension to reduce is :math:`rank + dim`.
keep_dim (bool): Whether to reserve the reduced dimension in the
output Tensor. The result tensor will have one fewer dimension
than the :attr:`input` unless :attr:`keep_dim` is true.
Returns:
Variable: The reduced Tensor variable.
Examples:
.. code-block:: python
# x is a Tensor variable with following elements:
# [[0.2, 0.3, 0.5, 0.9]
# [0.1, 0.2, 0.6, 0.7]]
# Each example is followed by the correspending output tensor.
fluid.layers.reduce_sum(x) # [3.5]
fluid.layers.reduce_sum(x, dim=0) # [0.3, 0.5, 1.1, 1.6]
fluid.layers.reduce_sum(x, dim=-1) # [1.9, 1.6]
fluid.layers.reduce_sum(x, dim=1, keep_dim=True) # [[1.9], [1.6]]
"""
helper = LayerHelper('reduce_sum', **locals())
out = helper.create_tmp_variable(dtype=helper.input_dtype())
helper.append_op(
type='reduce_sum',
inputs={'X': input},
outputs={'Out': out},
attrs={
'dim': dim if dim != None else 0,
'keep_dim': keep_dim,
'reduce_all': True if dim == None else False
})
return out
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册