Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
66321576
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
66321576
编写于
8月 27, 2020
作者:
S
seiriosPlus
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add large scale optimizer fuse
上级
0f26cee1
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
520 addition
and
0 deletion
+520
-0
paddle/fluid/operators/distributed_ops/lookup_sparse_table_fuse_adam_op.cc
...ators/distributed_ops/lookup_sparse_table_fuse_adam_op.cc
+155
-0
paddle/fluid/operators/distributed_ops/lookup_sparse_table_fuse_adam_op.h
...rators/distributed_ops/lookup_sparse_table_fuse_adam_op.h
+140
-0
paddle/fluid/operators/distributed_ops/lookup_sparse_table_fuse_sgd_op.cc
...rators/distributed_ops/lookup_sparse_table_fuse_sgd_op.cc
+121
-0
paddle/fluid/operators/distributed_ops/lookup_sparse_table_fuse_sgd_op.h
...erators/distributed_ops/lookup_sparse_table_fuse_sgd_op.h
+104
-0
未找到文件。
paddle/fluid/operators/distributed_ops/lookup_sparse_table_fuse_adam_op.cc
0 → 100644
浏览文件 @
66321576
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/distributed_ops/lookup_sparse_table_fuse_adam_op.h"
#include <string>
namespace
paddle
{
namespace
operators
{
class
LargeScaleFuseAdamOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Grad"
),
"Input(Grad) of LargeScaleFuseAdamOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"LearningRate"
),
"Input(LearningRate) of LargeScaleFuseAdamOp should not be null."
);
auto
lr_dims
=
ctx
->
GetInputDim
(
"LearningRate"
);
PADDLE_ENFORCE_NE
(
framework
::
product
(
lr_dims
),
0
,
"Maybe the Input variable LearningRate has not "
"been initialized. You may need to confirm "
"if you put exe.run(startup_program) "
"after optimizer.minimize function."
);
PADDLE_ENFORCE_EQ
(
framework
::
product
(
lr_dims
),
1
,
"Learning rate should have 1 element"
);
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
data_type
=
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"Grad"
);
return
framework
::
OpKernelType
(
data_type
,
ctx
.
device_context
());
}
framework
::
OpKernelType
GetKernelTypeForVar
(
const
std
::
string
&
var_name
,
const
framework
::
Tensor
&
tensor
,
const
framework
::
OpKernelType
&
expected_kernel_type
)
const
{
if
(
var_name
==
"LearningRate"
)
{
return
framework
::
OpKernelType
(
tensor
.
type
(),
tensor
.
place
(),
tensor
.
layout
());
}
return
framework
::
OpKernelType
(
expected_kernel_type
.
data_type_
,
tensor
.
place
(),
tensor
.
layout
());
}
};
class
LargeScaleFuseAdamOpInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
in_var_type
=
ctx
->
GetInputType
(
"Grad"
);
PADDLE_ENFORCE_EQ
(
in_var_type
==
framework
::
proto
::
VarType
::
SELECTED_ROWS
||
in_var_type
==
framework
::
proto
::
VarType
::
LOD_TENSOR
,
true
,
platform
::
errors
::
InvalidArgument
(
"The input Var's type should be LoDtensor or "
"SelectedRows, but the received type is %s"
,
in_var_type
));
}
};
class
LargeScaleFuseAdamOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"Grad"
,
"(SelectedRows) Ids's type should be SelectedRows"
"THe ids to be looked up in W."
);
AddInput
(
"Beta1Pow"
,
"(Tensor) Input beta1 power accumulator"
);
AddInput
(
"Beta2Pow"
,
"(Tensor) Input beta2 power accumulator"
);
AddOutput
(
"Beta1PowOut"
,
"(Tensor) Output beta1 power accumulator"
);
AddOutput
(
"Beta2PowOut"
,
"(Tensor) Output beta2 power accumulator"
);
AddAttr
<
float
>
(
"beta1"
,
"(float, default 0.9) "
"Exponential decay rate for the "
"first moment estimates."
)
.
SetDefault
(
0.9
f
);
AddAttr
<
float
>
(
"beta2"
,
"(float, default 0.999) "
"exponential decay rate for the "
"second moment estimates."
)
.
SetDefault
(
0.999
f
);
AddAttr
<
float
>
(
"epsilon"
,
"(float, default 1.0e-8) "
"Constant for numerical stability"
)
.
SetDefault
(
1.0e-8
f
);
AddAttr
<
bool
>
(
"is_entry"
,
"(bool)"
"sparse table need entry"
);
AddAttr
<
std
::
string
>
(
"tablename"
,
"(string)"
"sparse table name"
);
AddAttr
<
std
::
vector
<
std
::
string
>>
(
"value_names"
,
"(strings)"
"sparse table name"
);
AddComment
(
R"DOC(
Adam Optimizer.
This implements the Adam optimizer from Section 2 of the Adam
paper : https://arxiv.org/abs/1412.6980.
Adam is a first-order gradient-based optimization method based on
adaptive estimates of lower-order moments.
Adam updates:
$$
moment\_1\_out = \beta_1 * moment\_1 + (1 - \beta_1) * grad \\
moment\_2_\out = \beta_2 * moment\_2 + (1 - \beta_2) * grad * grad \\
learning\_rate = learning\_rate *
\frac{\sqrt{1 - \beta_{2\_pow}}}{1 - \beta_{1\_pow}} \\
param\_out = param - learning\_rate * \frac{moment\_1}{\sqrt{moment\_2} + \epsilon}
$$
)DOC"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
lookup_sparse_table_fuse_adam
,
ops
::
LargeScaleFuseAdamOp
,
ops
::
LargeScaleFuseAdamOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
imperative
::
OpBase
>
,
ops
::
LargeScaleFuseAdamOpInferVarType
);
REGISTER_OP_CPU_KERNEL
(
lookup_sparse_table_fuse_adam
,
ops
::
LargeScaleFuseAdamOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
LargeScaleFuseAdamOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
paddle/fluid/operators/distributed_ops/lookup_sparse_table_fuse_adam_op.h
0 → 100644
浏览文件 @
66321576
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <math.h> // for sqrt in CPU and CUDA
#include <algorithm>
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/operators/distributed/large_scale_kv.h"
#include "paddle/fluid/operators/math/blas.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
class
LargeScaleFuseAdamOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
};
template
<
typename
T
>
class
LargeScaleFuseAdamOpKernel
<
platform
::
CPUDeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
*
learning_rate
=
ctx
.
Input
<
framework
::
Tensor
>
(
"LearningRate"
);
const
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
PADDLE_ENFORCE
(
grad_var
->
IsType
<
framework
::
SelectedRows
>
(),
platform
::
errors
::
InvalidArgument
(
"in large scale optimize, gradient should only be SelectedRows"
));
const
auto
&
grad
=
grad_var
->
Get
<
framework
::
SelectedRows
>
();
// for distributed training, a sparse var may be empty,
// just skip updating.
if
(
grad
.
rows
().
size
()
==
0
)
{
return
;
}
framework
::
SelectedRows
tmp_grad_merge
;
const
framework
::
SelectedRows
*
grad_merge_ptr
;
math
::
scatter
::
MergeAdd
<
DeviceContext
,
T
>
merge_func
;
merge_func
(
context
.
template
device_context
<
DeviceContext
>(),
*
in_grad
,
&
tmp_grad_merge
,
true
);
grad_merge_ptr
=
&
tmp_grad_merge
;
std
::
vector
<
int64_t
>
in_rows
;
in_rows
.
reserve
(
grad_merge_ptr
->
rows
().
size
());
std
::
copy
(
grad_merge_ptr
->
rows
().
begin
(),
grad_merge_ptr
->
rows
().
end
(),
std
::
back_inserter
(
in_rows
));
const
auto
*
lr
=
learning_rate
->
data
<
T
>
();
auto
grad_v
=
grad_merge_ptr
->
value
();
auto
grad_width
=
grad_v
.
dims
()[
1
];
// auto is_entry = context.Attr<bool>("is_entry");
auto
tablename
=
context
.
Attr
<
std
::
string
>
(
"tablename"
);
auto
value_names
=
Attr
<
std
::
vector
<
std
::
string
>>
(
"value_names"
);
auto
*
beta1_pow
=
ctx
.
Input
<
LoDTensor
>
(
"Beta1Pow"
);
auto
*
beta2_pow
=
ctx
.
Input
<
LoDTensor
>
(
"Beta2Pow"
);
auto
*
beta1_pow_out
=
ctx
.
Output
<
LoDTensor
>
(
"Beta1PowOut"
);
auto
*
beta2_pow_out
=
ctx
.
Output
<
LoDTensor
>
(
"Beta2PowOut"
);
T
epsilon
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
T
beta1
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"beta1"
));
T
beta2
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"beta2"
));
PADDLE_ENFORCE_EQ
(
beta1_pow_out
->
numel
(),
1
,
platform
::
errors
::
InvalidArgument
(
"beta1 pow output size should be 1, but received "
"value is:%d."
,
beta1_pow_out
->
numel
()));
PADDLE_ENFORCE_EQ
(
beta2_pow_out
->
numel
(),
1
,
platform
::
errors
::
InvalidArgument
(
"beta2 pow output size should be 1, but received "
"value is:%d."
,
beta2_pow_out
->
numel
()));
// update beta1 and beta2
beta1_pow_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
())[
0
]
=
beta1
*
beta1_pow
->
data
<
T
>
()[
0
];
beta2_pow_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
())[
0
]
=
beta2
*
beta2_pow
->
data
<
T
>
()[
0
];
std
::
vector
<
std
::
vector
<
std
::
vector
<
float
>
*>>
values
;
std
::
vector
<
int64_t
>
dims
;
auto
*
ins
=
distributed
::
LargeScaleKV
::
GetInstance
();
auto
*
table
=
ins
->
Get
(
tablename
);
table
->
Get
(
in_rows
,
value_names
,
&
values
);
table
->
Dims
({
"Param"
},
&
dims
);
PADDLE_ENFORCE_EQ
(
dims
[
0
],
grad_width
,
platform
::
errors
::
InvalidArgument
(
"param_row should have the same size with grad_row"
));
auto
&
params
=
values
[
0
];
auto
&
moment_1
=
values
[
1
];
auto
&
moment_2
=
values
[
2
];
T
lr
=
*
lr_
;
T
beta1_
=
beta1_pow
->
data
<
T
>
()[
0
];
T
beta2_
=
beta2_pow
->
data
<
T
>
()[
0
];
lr
*=
sqrt
(
1
-
beta1_
)
/
(
1
-
beta2_
);
for
(
size_t
i
=
0
;
i
<
in_rows
.
size
();
i
++
)
{
auto
*
m1_data
=
moment_1
[
i
]
->
data
();
auto
*
m2_data
=
moment_2
[
i
]
->
data
();
auto
*
p_data
=
params
[
i
]
->
data
();
for
(
int
x
=
0
;
x
<
grad_width
;
++
x
)
{
auto
g
=
grad_v
.
data
<
T
>
()[
grad_width
*
i
+
x
];
m1_data
[
x
]
=
beta1_
*
m1_data
[
x
]
+
(
1
-
beta1_
)
*
g
;
m2_data
[
x
]
=
beta2_
*
m2_data
[
x
]
+
(
1
-
beta2_
)
*
g
*
g
;
p_data
[
x
]
-=
lr
*
(
m1_data
[
x
]
/
(
sqrt
(
m2_data
[
x
])
+
epsilon
));
}
}
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/distributed_ops/lookup_sparse_table_fuse_sgd_op.cc
0 → 100644
浏览文件 @
66321576
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/distributed_ops/lookup_sparse_table_fuse_sgd_op.h"
#include <string>
namespace
paddle
{
namespace
operators
{
class
LargeScaleFuseSGDOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Grad"
),
"Input(Grad) of LargeScaleFuseSGDOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"LearningRate"
),
"Input(LearningRate) of LargeScaleFuseSGDOp should not be null."
);
auto
lr_dims
=
ctx
->
GetInputDim
(
"LearningRate"
);
PADDLE_ENFORCE_NE
(
framework
::
product
(
lr_dims
),
0
,
"Maybe the Input variable LearningRate has not "
"been initialized. You may need to confirm "
"if you put exe.run(startup_program) "
"after optimizer.minimize function."
);
PADDLE_ENFORCE_EQ
(
framework
::
product
(
lr_dims
),
1
,
"Learning rate should have 1 element"
);
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
data_type
=
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"Grad"
);
return
framework
::
OpKernelType
(
data_type
,
ctx
.
device_context
());
}
framework
::
OpKernelType
GetKernelTypeForVar
(
const
std
::
string
&
var_name
,
const
framework
::
Tensor
&
tensor
,
const
framework
::
OpKernelType
&
expected_kernel_type
)
const
{
if
(
var_name
==
"LearningRate"
)
{
return
framework
::
OpKernelType
(
tensor
.
type
(),
tensor
.
place
(),
tensor
.
layout
());
}
return
framework
::
OpKernelType
(
expected_kernel_type
.
data_type_
,
tensor
.
place
(),
tensor
.
layout
());
}
};
class
LargeScaleFuseSGDOpInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
in_var_type
=
ctx
->
GetInputType
(
"Grad"
);
PADDLE_ENFORCE_EQ
(
in_var_type
==
framework
::
proto
::
VarType
::
SELECTED_ROWS
||
in_var_type
==
framework
::
proto
::
VarType
::
LOD_TENSOR
,
true
,
platform
::
errors
::
InvalidArgument
(
"The input Var's type should be LoDtensor or "
"SelectedRows, but the received type is %s"
,
in_var_type
));
}
};
class
LargeScaleFuseSGDOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"Grad"
,
"(SelectedRows) Ids's type should be SelectedRows"
"THe ids to be looked up in W."
);
AddAttr
<
bool
>
(
"is_entry"
,
"(bool)"
"sparse table need entry"
);
AddAttr
<
std
::
string
>
(
"tablename"
,
"(string)"
"sparse table name"
);
AddAttr
<
std
::
vector
<
std
::
string
>>
(
"value_names"
,
"(strings)"
"sparse table name"
);
AddComment
(
R"DOC(
LargeScaleFuseSGD operator
This operator implements one step of the stochastic gradient descent algorithm.
$$param\_out = param - learning\_rate * grad$$
)DOC"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
lookup_sparse_table_fuse_sgd
,
ops
::
LargeScaleFuseSGDOp
,
ops
::
LargeScaleFuseSGDOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
imperative
::
OpBase
>
,
ops
::
LargeScaleFuseSGDOpInferVarType
);
REGISTER_OP_CPU_KERNEL
(
lookup_sparse_table_fuse_sgd
,
ops
::
LargeScaleFuseSGDOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
LargeScaleFuseSGDOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
paddle/fluid/operators/distributed_ops/lookup_sparse_table_fuse_sgd_op.h
0 → 100644
浏览文件 @
66321576
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/operators/distributed/large_scale_kv.h"
#include "paddle/fluid/operators/math/blas.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
class
LargeScaleFuseSGDOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
};
template
<
typename
T
>
class
LargeScaleFuseSGDOpKernel
<
platform
::
CPUDeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
*
learning_rate
=
ctx
.
Input
<
framework
::
Tensor
>
(
"LearningRate"
);
const
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
PADDLE_ENFORCE
(
grad_var
->
IsType
<
framework
::
SelectedRows
>
(),
platform
::
errors
::
InvalidArgument
(
"in large scale optimize, gradient should only be SelectedRows"
));
const
auto
&
grad
=
grad_var
->
Get
<
framework
::
SelectedRows
>
();
// for distributed training, a sparse var may be empty,
// just skip updating.
if
(
grad
.
rows
().
size
()
==
0
)
{
return
;
}
framework
::
SelectedRows
tmp_grad_merge
;
const
framework
::
SelectedRows
*
grad_merge_ptr
;
math
::
scatter
::
MergeAdd
<
DeviceContext
,
T
>
merge_func
;
merge_func
(
context
.
template
device_context
<
DeviceContext
>(),
*
in_grad
,
&
tmp_grad_merge
,
true
);
grad_merge_ptr
=
&
tmp_grad_merge
;
std
::
vector
<
int64_t
>
in_rows
;
in_rows
.
reserve
(
grad_merge_ptr
->
rows
().
size
());
std
::
copy
(
grad_merge_ptr
->
rows
().
begin
(),
grad_merge_ptr
->
rows
().
end
(),
std
::
back_inserter
(
in_rows
));
const
auto
*
lr
=
learning_rate
->
data
<
T
>
();
auto
grad_v
=
grad_merge_ptr
->
value
();
auto
grad_width
=
grad_v
.
dims
()[
1
];
// auto is_entry = context.Attr<bool>("is_entry");
auto
tablename
=
context
.
Attr
<
std
::
string
>
(
"tablename"
);
auto
value_names
=
Attr
<
std
::
vector
<
std
::
string
>>
(
"value_names"
);
std
::
vector
<
std
::
vector
<
std
::
vector
<
float
>
*>>
values
;
std
::
vector
<
int64_t
>
dims
;
auto
*
ins
=
distributed
::
LargeScaleKV
::
GetInstance
();
auto
*
table
=
ins
->
Get
(
tablename
);
table
->
Get
(
in_rows
,
value_names
,
&
values
);
table
->
Dims
({
"Param"
},
&
dims
);
PADDLE_ENFORCE_EQ
(
dims
[
0
],
grad_width
,
platform
::
errors
::
InvalidArgument
(
"param_row should have the same size with grad_row"
));
auto
&
params
=
values
[
0
];
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
context
);
std
::
vector
<
T
>
grads
;
framework
::
TensorToVector
(
grad_v
,
context
.
device_context
(),
&
grads
);
blas
.
VMUL
(
grads
,
lr
[
0
],
grads
);
for
(
int
x
=
0
;
x
<
static_cast
<
int
>
(
in_rows
.
size
());
++
x
)
{
blas
.
VSUB
(
grad_width
,
params
[
x
],
grads
.
data
()
+
grad_width
*
x
,
params
);
}
}
};
}
// namespace operators
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录