未验证 提交 65207b45 编写于 作者: Y Yiqun Liu 提交者: GitHub

Polish the error message of fc, fused_fc_elementwise_layernorm and...

Polish the error message of fc, fused_fc_elementwise_layernorm and fused_embedding_seq_pool. (#27692)

* Polish the error message of fc_op.

* Polish the error message of fused_fc_elementwise_layer_norm op.

* Polish an error message in fused_embedding_seq_pool_op.
上级 9f3fb95b
...@@ -23,64 +23,80 @@ class FCOp : public framework::OperatorWithKernel { ...@@ -23,64 +23,80 @@ class FCOp : public framework::OperatorWithKernel {
using framework::OperatorWithKernel::OperatorWithKernel; using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override { void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE_EQ(ctx->HasInput("Input"), true, OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "FC");
"X(Input) of Fully Connected should not be null."); OP_INOUT_CHECK(ctx->HasInput("W"), "Input", "W", "FC");
PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true, OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "FC");
"Out(Output) of Fully Connected should not be null.");
PADDLE_ENFORCE_EQ(ctx->HasInput("W"), true,
"W(Input) of Fully Connected should not be null.");
auto in_dims = ctx->GetInputDim("Input");
auto w_dims = ctx->GetInputDim("W"); auto w_dims = ctx->GetInputDim("W");
bool padding_weights = ctx->Attrs().Get<bool>("padding_weights"); bool padding_weights = ctx->Attrs().Get<bool>("padding_weights");
PADDLE_ENFORCE_EQ(
w_dims.size(), 2,
platform::errors::InvalidArgument(
"The input Weight of fc is expected to be a 2-D tensor. "
"But received the number of Weight's dimensions is %d, "
"Weight's shape is %s.",
w_dims.size(), w_dims));
if (ctx->HasInput("Bias")) { if (ctx->HasInput("Bias")) {
auto bias_dims = ctx->GetInputDim("Bias"); auto bias_dims = ctx->GetInputDim("Bias");
auto w_dims1 = padding_weights ? w_dims[1] - 4 : w_dims[1]; auto w_dims1 = padding_weights ? w_dims[1] - 4 : w_dims[1];
if (bias_dims.size() == 2) {
PADDLE_ENFORCE_EQ(bias_dims[0], 1, PADDLE_ENFORCE_LE(
bias_dims.size(), 2,
platform::errors::InvalidArgument( platform::errors::InvalidArgument(
"The shape of Bias is invalid." "The input Bias of fc is expected to be a 1-D or 2-D tensor. But "
"The height of Bias should be 1." "received the number of Bias's dimensions is %d, "
"But received height of Bias is %d.", "Bias's shape is %s.",
bias_dims[0])); bias_dims.size(), bias_dims));
PADDLE_ENFORCE_EQ( PADDLE_ENFORCE_EQ(
bias_dims[1], w_dims1, bias_dims[bias_dims.size() - 1], w_dims1,
platform::errors::InvalidArgument( platform::errors::InvalidArgument(
"The shape of Bias is invalid." "The last dimension of input Bias is expected be equal "
"The width of Bias should be equal to width of Weight." "to the actual width of input Weight. But received the last "
"But received width of Bias is %d and width of Weight is %d.", "dimension of Bias is %d, Bias's shape is %s; "
bias_dims[1], w_dims1)); "the actual width of Weight is %d, Weight's shape is %s.",
} else if (bias_dims.size() == 1) { bias_dims[bias_dims.size() - 1], bias_dims, w_dims1, w_dims));
if (bias_dims.size() == 2) {
PADDLE_ENFORCE_EQ( PADDLE_ENFORCE_EQ(
bias_dims[0], w_dims1, bias_dims[0], 1,
platform::errors::InvalidArgument( platform::errors::InvalidArgument(
"The shape of Bias is invalid." "The first dimension of input Bias is expected to be 1, "
"The height of Bias should be equal to the width of weight." "but received %d, Bias's shape is %s.",
"But received height of Bias is %d and width of Weight is %d.", bias_dims[0], bias_dims));
bias_dims[0], w_dims1));
} }
} }
auto in_dims = ctx->GetInputDim("Input");
int in_num_col_dims = ctx->Attrs().Get<int>("in_num_col_dims");
PADDLE_ENFORCE_LT(
in_num_col_dims, in_dims.size(),
platform::errors::InvalidArgument(
"The attribute in_num_col_dims used to flatten Input to "
"a 2-D tensor, is expected to be less than the number of "
"Input's dimensions. But recieved in_num_col_dims is %d, "
"the number of Input's dimensions is %d, Input's shape is %s.",
in_num_col_dims, in_dims.size(), in_dims));
auto& activation_type = ctx->Attrs().Get<std::string>("activation_type"); auto& activation_type = ctx->Attrs().Get<std::string>("activation_type");
if (!activation_type.empty()) { if (!activation_type.empty()) {
PADDLE_ENFORCE_EQ(activation_type, "relu", PADDLE_ENFORCE_EQ(activation_type, "relu",
"Activation %s is not supportetd in fc now.", platform::errors::InvalidArgument(
activation_type.c_str()); "The attribute activation_type of fc is expected "
"to be \"relu\", but received %s.",
activation_type.c_str()));
} }
if (ctx->Attrs().Get<bool>("use_mkldnn")) { if (ctx->Attrs().Get<bool>("use_mkldnn")) {
PADDLE_ENFORCE_EQ( PADDLE_ENFORCE_EQ(
in_dims.size() >= 2 && in_dims.size() <= 4, true, in_dims.size() >= 2 && in_dims.size() <= 4, true,
platform::errors::Unimplemented( platform::errors::Unimplemented(
"Fully Connected input should be 2D, 3D or 4D tensor.")); "The Input of fc is expected to be a 2-D, 3-D or 4-D tensor when "
"use_mkldnn is set. But recieved the number of Input's "
"dimensions is %d, Input's shape is %s.",
in_dims.size(), in_dims));
} }
PADDLE_ENFORCE_EQ(w_dims.size(), 2,
"Fully Connected weights should be 2-D tensor.");
int in_num_col_dims = ctx->Attrs().Get<int>("in_num_col_dims");
PADDLE_ENFORCE_GT(
in_dims.size(), in_num_col_dims,
"The input tensor Input's rank of FCOp should be larger than "
"in_num_col_dims.");
std::vector<int64_t> output_dims; std::vector<int64_t> output_dims;
FCOutputSize(in_dims, w_dims, output_dims, in_num_col_dims, FCOutputSize(in_dims, w_dims, output_dims, in_num_col_dims,
......
...@@ -32,11 +32,15 @@ inline void FCOutputSize(const framework::DDim& in_dims, ...@@ -32,11 +32,15 @@ inline void FCOutputSize(const framework::DDim& in_dims,
auto in_mat_dims = framework::flatten_to_2d(in_dims, in_num_col_dims); auto in_mat_dims = framework::flatten_to_2d(in_dims, in_num_col_dims);
auto w_dims0 = padding_weights ? w_dims[0] - 4 : w_dims[0]; auto w_dims0 = padding_weights ? w_dims[0] - 4 : w_dims[0];
auto w_dims1 = padding_weights ? w_dims[1] - 4 : w_dims[1]; auto w_dims1 = padding_weights ? w_dims[1] - 4 : w_dims[1];
PADDLE_ENFORCE_EQ(in_mat_dims[1], w_dims0, PADDLE_ENFORCE_EQ(
in_mat_dims[1], w_dims0,
platform::errors::InvalidArgument( platform::errors::InvalidArgument(
"Fully Connected input and weigth size do not match. " "The input's second dimension and weight's first dimension is "
"input width: %d,weight height: %d", "expected to be the same. But recieved input's second dimension is "
in_mat_dims[1], w_dims0)); "%d, input's shape is %s; weight's first dimension is %d, weight's "
"shape is %s.",
in_mat_dims[1], in_mat_dims, w_dims0,
framework::make_ddim({w_dims0, w_dims1})));
out_dims.reserve(static_cast<size_t>(in_num_col_dims + 1)); out_dims.reserve(static_cast<size_t>(in_num_col_dims + 1));
for (int i = 0; i < in_num_col_dims; ++i) { for (int i = 0; i < in_num_col_dims; ++i) {
......
...@@ -204,9 +204,9 @@ class FusedEmbeddingSeqPoolGradKernel : public framework::OpKernel<T> { ...@@ -204,9 +204,9 @@ class FusedEmbeddingSeqPoolGradKernel : public framework::OpKernel<T> {
auto *table_t = context.Input<SelectedRows>("W"); auto *table_t = context.Input<SelectedRows>("W");
table_dim = table_t->value().dims(); table_dim = table_t->value().dims();
} else { } else {
PADDLE_THROW( PADDLE_THROW(platform::errors::PermissionDenied(
"The parameter W of a LookupTable " "The parameter W of a LookupTable "
"must be either LoDTensor or SelectedRows"); "must be either LoDTensor or SelectedRows."));
} }
bool is_sparse = context.Attr<bool>("is_sparse"); bool is_sparse = context.Attr<bool>("is_sparse");
......
...@@ -22,47 +22,73 @@ class FusedFCElementwiseLayerNormOp : public framework::OperatorWithKernel { ...@@ -22,47 +22,73 @@ class FusedFCElementwiseLayerNormOp : public framework::OperatorWithKernel {
using framework::OperatorWithKernel::OperatorWithKernel; using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override { void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE_EQ( OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X",
ctx->HasInput("X"), true, "FusedFcElementwiseLayernorm");
"Input(X) of fused_fc_elementwise_layernorm should not be null."); OP_INOUT_CHECK(ctx->HasInput("W"), "Input", "W",
PADDLE_ENFORCE_EQ( "FusedFcElementwiseLayernorm");
ctx->HasInput("W"), true, OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y",
"Input(W) of fused_fc_elementwise_layernorm should not be null."); "FusedFcElementwiseLayernorm");
PADDLE_ENFORCE_EQ( OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out",
ctx->HasInput("Y"), true, "FusedFcElementwiseLayernorm");
"Input(Y) of fused_fc_elementwise_layernorm should not be null.");
PADDLE_ENFORCE_EQ(
ctx->HasOutput("Out"), true,
"Output(Out) of fused_fc_elementwise_layernorm should not be null.");
auto w_dims = ctx->GetInputDim("W"); auto w_dims = ctx->GetInputDim("W");
PADDLE_ENFORCE_EQ(w_dims.size(), 2, PADDLE_ENFORCE_EQ(
"Fully Connected input should be 2-D tensor."); w_dims.size(), 2,
platform::errors::InvalidArgument(
"The input Weight of fc is expected to be a 2-D tensor. "
"But received the number of Weight's dimensions is %d, ",
"Weight's shape is %s.", w_dims.size(), w_dims));
if (ctx->HasInput("Bias0")) { if (ctx->HasInput("Bias0")) {
auto bias0_dims = ctx->GetInputDim("Bias0"); auto bias0_dims = ctx->GetInputDim("Bias0");
PADDLE_ENFORCE_LE(bias0_dims.size(), 2,
platform::errors::InvalidArgument(
"The input Bias of fc is expected to be an 1-D or "
"2-D tensor. But received the number of Bias's "
"dimensions is %d, Bias's shape is %s.",
bias0_dims.size(), bias0_dims));
PADDLE_ENFORCE_EQ(
bias0_dims[bias0_dims.size() - 1], w_dims[1],
platform::errors::InvalidArgument(
"The last dimension of input Bias is expected be equal "
"to the actual width of input Weight. But received the last "
"dimension of Bias is %d, Bias's shape is %s; "
"the actual width of Weight is %d, Weight's shape is %s.",
bias0_dims[bias0_dims.size() - 1], bias0_dims, w_dims[1],
w_dims));
if (bias0_dims.size() == 2) { if (bias0_dims.size() == 2) {
PADDLE_ENFORCE_EQ(bias0_dims[0], 1, PADDLE_ENFORCE_EQ(
"The shape of Bias must be [1, dim]."); bias0_dims[0], 1,
PADDLE_ENFORCE_EQ(bias0_dims[1], w_dims[1], platform::errors::InvalidArgument(
"The shape of Bias must be [1, dim]."); "The first dimension of input Bias is expected to be 1, "
} else if (bias0_dims.size() == 1) { "but received %d, Bias's shape is %s.",
PADDLE_ENFORCE_EQ(bias0_dims[0], w_dims[1], bias0_dims[0], bias0_dims));
"The shape of Bias must be [1, dim].");
} }
} }
auto x_dims = ctx->GetInputDim("X"); auto x_dims = ctx->GetInputDim("X");
int x_num_col_dims = ctx->Attrs().Get<int>("x_num_col_dims"); int x_num_col_dims = ctx->Attrs().Get<int>("x_num_col_dims");
PADDLE_ENFORCE_GT( PADDLE_ENFORCE_LT(
x_dims.size(), x_num_col_dims, x_num_col_dims, x_dims.size(),
"The input tensor Input's rank of FCOp should be larger than " platform::errors::InvalidArgument(
"in_num_col_dims."); "The attribute x_num_col_dims used to flatten input X to "
"a 2-D tensor, is expected to be less than the number of "
"input X's dimensions. But recieved x_num_col_dims is %d, "
"the number of input X's dimensions is %d, input X's shape is %s.",
x_num_col_dims, x_dims.size(), x_dims));
auto x_mat_dims = framework::flatten_to_2d(x_dims, x_num_col_dims); auto x_mat_dims = framework::flatten_to_2d(x_dims, x_num_col_dims);
PADDLE_ENFORCE_EQ( PADDLE_ENFORCE_EQ(
x_mat_dims[1], w_dims[0], x_mat_dims[1], w_dims[0],
"Fully Connected input and weigth size do not match. %s, %s"); platform::errors::InvalidArgument(
"The input's second dimension and weight's first dimension is "
"expected to be the same. But recieved input's second dimension is "
"%d, input's shape is %s; weight's first dimension is %d, weight's "
"shape is %s.",
x_mat_dims[1], x_mat_dims, w_dims[0], w_dims));
std::vector<int64_t> fc_out_dims; std::vector<int64_t> fc_out_dims;
for (int i = 0; i < x_num_col_dims; ++i) { for (int i = 0; i < x_num_col_dims; ++i) {
...@@ -71,29 +97,67 @@ class FusedFCElementwiseLayerNormOp : public framework::OperatorWithKernel { ...@@ -71,29 +97,67 @@ class FusedFCElementwiseLayerNormOp : public framework::OperatorWithKernel {
fc_out_dims.push_back(w_dims[1]); fc_out_dims.push_back(w_dims[1]);
auto y_dims = ctx->GetInputDim("Y"); auto y_dims = ctx->GetInputDim("Y");
PADDLE_ENFORCE_EQ(framework::make_ddim(fc_out_dims), y_dims); PADDLE_ENFORCE_EQ(framework::make_ddim(fc_out_dims), y_dims,
platform::errors::InvalidArgument(
"The output's shape of fc is expected to be equal to "
"that of input Y. But recieved output's shape of fc "
"is %s, input Y's shape is %s.",
framework::make_ddim(fc_out_dims), y_dims));
auto begin_norm_axis = ctx->Attrs().Get<int>("begin_norm_axis"); auto begin_norm_axis = ctx->Attrs().Get<int>("begin_norm_axis");
PADDLE_ENFORCE_LT( PADDLE_ENFORCE_LT(
begin_norm_axis, y_dims.size(), begin_norm_axis, y_dims.size(),
"'begin_norm_axis' must be less than the rank of Input(Y)."); platform::errors::InvalidArgument(
"The attribute begin_norm_axis used to flatten input Y to a 2-D "
"tensor, is expected to be less than the number of input Y's "
"dimensions. But recieved begin_norm_axis is %d, the number of "
"input Y's dimensions is %d, input Y's shape is %s.",
begin_norm_axis, y_dims.size(), y_dims));
auto y_mat_dim = framework::flatten_to_2d(y_dims, begin_norm_axis); auto y_mat_dim = framework::flatten_to_2d(y_dims, begin_norm_axis);
int64_t dim_0 = y_mat_dim[0]; int64_t dim_0 = y_mat_dim[0];
int64_t dim_1 = y_mat_dim[1]; int64_t dim_1 = y_mat_dim[1];
if (ctx->HasInput("Scale")) { if (ctx->HasInput("Scale")) {
PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale").size(), 1); auto scale_dims = ctx->GetInputDim("Scale");
PADDLE_ENFORCE_EQ(scale_dims.size(), 1,
platform::errors::InvalidArgument(
"The input Scale is expected to be an 1-D tensor. "
"But recieved the number of input Scale's "
"dimensions is %d, input Scale's shape is %s.",
scale_dims.size(), scale_dims));
if (ctx->IsRuntime()) { if (ctx->IsRuntime()) {
PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale")[0], dim_1, PADDLE_ENFORCE_EQ(
"scale should with right"); scale_dims[0], dim_1,
platform::errors::InvalidArgument(
"The first dimension of input Scale is expected to be equal to "
"the second dimension of input Y after flattened. "
"But recieved the first dimension of input Scale is %d, input "
"Scale's shape is %s; the second dimension of flattened input "
"Y is %d, input Y's shape is %s, flattened axis is %d.",
scale_dims[0], scale_dims, dim_1, y_dims, begin_norm_axis));
} }
} }
if (ctx->HasInput("Bias1")) { if (ctx->HasInput("Bias1")) {
PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias1").size(), 1); auto bias1_dims = ctx->GetInputDim("Bias1");
PADDLE_ENFORCE_EQ(
bias1_dims.size(), 1,
platform::errors::InvalidArgument(
"The input Bias1 is expected to be an 1-D tensor. "
"But recieved the number of input Bias1's dimension is %d, "
"input Bias1's shape is %s.",
bias1_dims.size(), bias1_dims));
if (ctx->IsRuntime()) { if (ctx->IsRuntime()) {
PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias1")[0], dim_1, PADDLE_ENFORCE_EQ(
"bias should with right"); bias1_dims[0], dim_1,
platform::errors::InvalidArgument(
"The first dimension of input Bias1 is expected to be equal to "
"the second dimension of input Y after flattened. "
"But recieved the first dimension of input Bias1 is %d, input "
"Bias1's shape is %s; the second dimension of flatten input "
"Y is %d, input Y's shape is %s, flattened axis is %d.",
bias1_dims[0], bias1_dims, dim_1, y_dims, begin_norm_axis));
} }
} }
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册