未验证 提交 63605387 编写于 作者: X xiemoyuan 提交者: GitHub

Optimize the encoder of Transformer. (#30439) (#30813)

* Add cache for Transformer encoder.

* Bug fixed.

* add unittests for transformer encoder.
上级 a8dfff99
...@@ -318,6 +318,61 @@ class TestTransformer(unittest.TestCase): ...@@ -318,6 +318,61 @@ class TestTransformer(unittest.TestCase):
np.testing.assert_allclose( np.testing.assert_allclose(
encoder_output.numpy(), src, rtol=1e-5, atol=1e-6) encoder_output.numpy(), src, rtol=1e-5, atol=1e-6)
def test_transformer_encoder_layer_attr_1(self):
with fluid.dygraph.guard(fluid.CPUPlace()):
paddle.framework.seed(2020)
paddle.framework.random._manual_program_seed(2020)
ffn_fc1_act = "relu"
# 1.generate basic params
batch_size, d_model, n_head, dim_feedforward, dropout, attn_dropout, act_dropout, sequence_length = generate_basic_params(
mode="encoder_layer")
# 2.generate input for encoder
src = np.random.rand(batch_size, sequence_length,
d_model).astype("float32")
src_mask = np.zeros((batch_size, n_head, sequence_length,
sequence_length)).astype("float32")
src_mask[0][0][0][0] = -np.inf
for cache in [True, False]:
# paddle
encoder_layer = TransformerEncoderLayer(
d_model, n_head, dim_feedforward, dropout, ffn_fc1_act,
attn_dropout, act_dropout)
cache_objs = None
if cache:
cache_objs = encoder_layer.gen_cache(paddle.to_tensor(src))
encoder_output = encoder_layer(
paddle.to_tensor(src),
paddle.to_tensor(src_mask), cache_objs)
encoder_output = encoder_output[0].numpy(
) if cache else encoder_output.numpy()
# 4.numpy:
residual = src
# paddle self attention
self_attn = MultiHeadAttention(
d_model, n_head, dropout=attn_dropout)
attn_output = self_attn(
paddle.to_tensor(src),
paddle.to_tensor(src),
paddle.to_tensor(src),
paddle.to_tensor(src_mask), cache_objs)
attn_output = attn_output[0].numpy(
) if cache else attn_output.numpy()
src = attn_output + residual
src_norm = layer_norm(src, d_model, encoder_layer.norm1)
residual = src_norm
ffn_output = ffn(src_norm, encoder_layer, ffn_fc1_act)
src = residual + ffn_output
src = layer_norm(src, d_model, encoder_layer.norm2)
np.testing.assert_allclose(
encoder_output, src, rtol=1e-5, atol=1e-6)
def test_transformer_decoder_layer(self): def test_transformer_decoder_layer(self):
with fluid.dygraph.guard(fluid.CPUPlace()): with fluid.dygraph.guard(fluid.CPUPlace()):
paddle.framework.seed(2020) paddle.framework.seed(2020)
...@@ -418,6 +473,32 @@ class TestTransformer(unittest.TestCase): ...@@ -418,6 +473,32 @@ class TestTransformer(unittest.TestCase):
enc_output = encoder( enc_output = encoder(
paddle.to_tensor(src), paddle.to_tensor(src_mask)) paddle.to_tensor(src), paddle.to_tensor(src_mask))
def test_encoder_attr_1(self):
batch_size, d_model, n_head, dim_feedforward, dropout, attn_dropout, act_dropout, sequence_length = generate_basic_params(
mode="encoder_layer")
src = np.random.rand(batch_size, sequence_length,
d_model).astype("float32")
src_mask = np.zeros((batch_size, n_head, sequence_length,
sequence_length)).astype("float32")
src_mask[0][0][0][0] = -np.inf
with fluid.dygraph.guard(fluid.CPUPlace()):
for cache in [True, False]:
# paddle
encoder_layer = TransformerEncoderLayer(
d_model, n_head, dim_feedforward, dropout)
num_layers = 6
encoder = TransformerEncoder(encoder_layer, num_layers)
cache_objs = None
if cache:
cache_objs = encoder.gen_cache(paddle.to_tensor(src))
# src, src_mask
enc_output = encoder(
paddle.to_tensor(src),
paddle.to_tensor(src_mask), cache_objs)
def test_decoder(self): def test_decoder(self):
batch_size, d_model, n_head, dim_feedforward, dropout, _, _, source_length, target_length = generate_basic_params( batch_size, d_model, n_head, dim_feedforward, dropout, _, _, source_length, target_length = generate_basic_params(
mode="decoder_layer") mode="decoder_layer")
......
...@@ -311,7 +311,7 @@ class MultiHeadAttention(Layer): ...@@ -311,7 +311,7 @@ class MultiHeadAttention(Layer):
# incremental_state with initial value, mainly for usage like UniLM # incremental_state with initial value, mainly for usage like UniLM
return self.Cache(key, value) return self.Cache(key, value)
def forward(self, query, key, value, attn_mask=None, cache=None): def forward(self, query, key=None, value=None, attn_mask=None, cache=None):
r""" r"""
Applies multi-head attention to map queries and a set of key-value pairs Applies multi-head attention to map queries and a set of key-value pairs
to outputs. to outputs.
...@@ -498,7 +498,7 @@ class TransformerEncoderLayer(Layer): ...@@ -498,7 +498,7 @@ class TransformerEncoderLayer(Layer):
self.dropout2 = Dropout(dropout, mode="upscale_in_train") self.dropout2 = Dropout(dropout, mode="upscale_in_train")
self.activation = getattr(F, activation) self.activation = getattr(F, activation)
def forward(self, src, src_mask=None): def forward(self, src, src_mask=None, cache=None):
r""" r"""
Applies a Transformer encoder layer on the input. Applies a Transformer encoder layer on the input.
...@@ -514,16 +514,30 @@ class TransformerEncoderLayer(Layer): ...@@ -514,16 +514,30 @@ class TransformerEncoderLayer(Layer):
have 0 values. The data type should be float32 or float64. It can have 0 values. The data type should be float32 or float64. It can
be None when nothing wanted or needed to be prevented attention to. be None when nothing wanted or needed to be prevented attention to.
Default None Default None
cache (Tensor, optional): It is an instance of `MultiHeadAttention.Cache`.
See `TransformerEncoderLayer.gen_cache` for more details. It is
only used for inference and should be None for training. Default
None.
Returns: Returns:
Tensor: The output of Transformer encoder layer. It is a tensor that \ Tensor|tuple: It is a tensor that has the same shape and data type \
has the same shape and data type as `enc_input`. as `enc_input`, representing the output of Transformer encoder \
layer. Or a tuple if `cache` is not None, except for encoder \
layer output, the tuple includes the new cache which is same \
as input `cache` argument but `incremental_cache` has an \
incremental length. See `MultiHeadAttention.gen_cache` and \
`MultiHeadAttention.forward` for more details.
""" """
residual = src residual = src
if self.normalize_before: if self.normalize_before:
src = self.norm1(src) src = self.norm1(src)
# TODO(guosheng): Add cache for encoder for the usage like UniLM # TODO(guosheng): Add cache for encoder for the usage like UniLM
if cache is None:
src = self.self_attn(src, src, src, src_mask) src = self.self_attn(src, src, src, src_mask)
else:
src, incremental_cache = self.self_attn(src, src, src, src_mask,
cache)
src = residual + self.dropout1(src) src = residual + self.dropout1(src)
if not self.normalize_before: if not self.normalize_before:
src = self.norm1(src) src = self.norm1(src)
...@@ -535,7 +549,28 @@ class TransformerEncoderLayer(Layer): ...@@ -535,7 +549,28 @@ class TransformerEncoderLayer(Layer):
src = residual + self.dropout2(src) src = residual + self.dropout2(src)
if not self.normalize_before: if not self.normalize_before:
src = self.norm2(src) src = self.norm2(src)
return src return src if cache is None else (src, incremental_cache)
def gen_cache(self, src):
r"""
Generates cache for `forward` usage. The generated cache is an
instance of `MultiHeadAttention.Cache`.
Parameters:
src (Tensor): The input of Transformer encoder. It is a tensor
with shape `[batch_size, source_length, d_model]`. The data
type should be float32 or float64.
Returns:
incremental_cache: It is an instance of `MultiHeadAttention.Cache` \
produced by `self_attn.gen_cache`, it reserves two tensors
shaped `[batch_size, nhead, 0, d_model // nhead]`. See \
`MultiHeadAttention.gen_cache` and `MultiHeadAttention.forward` \
for more details.
"""
incremental_cache = self.self_attn.gen_cache(
src, type=self.self_attn.Cache)
return incremental_cache
class TransformerEncoder(Layer): class TransformerEncoder(Layer):
...@@ -574,7 +609,7 @@ class TransformerEncoder(Layer): ...@@ -574,7 +609,7 @@ class TransformerEncoder(Layer):
self.num_layers = num_layers self.num_layers = num_layers
self.norm = norm self.norm = norm
def forward(self, src, src_mask=None): def forward(self, src, src_mask=None, cache=None):
r""" r"""
Applies a stack of N Transformer encoder layers on inputs. If `norm` is Applies a stack of N Transformer encoder layers on inputs. If `norm` is
provided, also applies layer normalization on the output of last encoder provided, also applies layer normalization on the output of last encoder
...@@ -592,20 +627,55 @@ class TransformerEncoder(Layer): ...@@ -592,20 +627,55 @@ class TransformerEncoder(Layer):
have 0 values. The data type should be float32 or float64. It can have 0 values. The data type should be float32 or float64. It can
be None when nothing wanted or needed to be prevented attention to. be None when nothing wanted or needed to be prevented attention to.
Default None Default None
cache (list, optional): It is a list, and each element in the list
is `incremental_cache` produced by `TransformerEncoderLayer.gen_cache`.
See `TransformerEncoder.gen_cache` for more details. It is only
used for inference and should be None for training. Default None.
Returns: Returns:
Tensor: The output of Transformer encoder. It is a tensor that \ Tensor|tuple: It is a tensor that has the same shape and data type \
has the same shape and data type as `src`. as `src`, representing the output of Transformer encoder. \
Or a tuple if `cache` is not None, except for encoder output, \
the tuple includes the new cache which is same as input `cache` \
argument but `incremental_cache` in it has an incremental length. \
See `MultiHeadAttention.gen_cache` and `MultiHeadAttention.forward` \
for more details.
""" """
output = src output = src
new_caches = []
for mod in self.layers: for i, mod in enumerate(self.layers):
if cache is None:
output = mod(output, src_mask=src_mask) output = mod(output, src_mask=src_mask)
else:
output, new_cache = mod(output,
src_mask=src_mask,
cache=cache[i])
new_caches.append(new_cache)
if self.norm is not None: if self.norm is not None:
output = self.norm(output) output = self.norm(output)
return output return output if cache is None else (output, new_caches)
def gen_cache(self, src):
r"""
Generates cache for `forward` usage. The generated cache is a list, and
each element in it is `incremental_cache` produced by
`TransformerEncoderLayer.gen_cache`. See `TransformerEncoderLayer.gen_cache`
for more details.
Parameters:
src (Tensor): The input of Transformer encoder. It is a tensor
with shape `[batch_size, source_length, d_model]`. The data type
should be float32 or float64.
Returns:
list: It is a list, and each element in the list is `incremental_cache`
produced by `TransformerEncoderLayer.gen_cache`. See
`TransformerEncoderLayer.gen_cache` for more details.
"""
cache = [layer.gen_cache(src) for layer in self.layers]
return cache
class TransformerDecoderLayer(Layer): class TransformerDecoderLayer(Layer):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册