diff --git a/paddle/gserver/evaluators/CTCErrorEvaluator.cpp b/paddle/gserver/evaluators/CTCErrorEvaluator.cpp index 05aa6c012ae2bc0afcbaf23f8ff78b3c782d050c..132119015f967c6e8d055792de8afe8450df5ec6 100644 --- a/paddle/gserver/evaluators/CTCErrorEvaluator.cpp +++ b/paddle/gserver/evaluators/CTCErrorEvaluator.cpp @@ -20,7 +20,7 @@ namespace paddle { /** * calculate sequence-to-sequence edit distance */ -class CTCErrorEvaluator : public Evaluator { +class CTCErrorEvaluator : public NotGetableEvaluator { private: MatrixPtr outActivations_; int numTimes_, numClasses_, numSequences_, blank_; diff --git a/paddle/gserver/evaluators/Evaluator.cpp b/paddle/gserver/evaluators/Evaluator.cpp index cd8d1e9ecbfd83a6995c916076340843117ed5e5..9db6d252d97bfeee3fe376bcda431fe94c65a678 100644 --- a/paddle/gserver/evaluators/Evaluator.cpp +++ b/paddle/gserver/evaluators/Evaluator.cpp @@ -13,9 +13,9 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/gserver/evaluators/Evaluator.h" -#include "paddle/utils/Stat.h" - #include "paddle/gserver/gradientmachines/NeuralNetwork.h" +#include "paddle/utils/Stat.h" +#include "paddle/utils/StringUtil.h" DECLARE_int32(trainer_id); @@ -122,6 +122,10 @@ public: virtual void distributeEval(ParameterClient2* client) { mergeResultsOfAllClients(client); } + + // Evaluator interface +protected: + std::string getTypeImpl() const { return "classification_error"; } }; /** @@ -160,6 +164,10 @@ public: virtual void distributeEval(ParameterClient2* client) { mergeResultsOfAllClients(client); } + + // Evaluator interface +protected: + std::string getTypeImpl() const { return "seq_classification_error"; } }; REGISTER_EVALUATOR(seq_classification_error, SequenceClassificationErrorEvaluator); @@ -250,6 +258,10 @@ public: private: IVectorPtr cpuLabel_; MatrixPtr cpuWeight_; + + // Evaluator interface +protected: + std::string getTypeImpl() const { return "sum"; } }; /** * @brief column sum Evaluator @@ -357,10 +369,18 @@ public: } private: - ColumnSumEvaluator() {} int32_t colIdx_; size_t colNum_; MatrixPtr sum_; /* cpu matrix */ + + // Evaluator interface +protected: + std::string getTypeImpl() const { + if (colIdx_ == -1) + return "last-column-sum"; + else + return "column-sum"; + } }; void AucEvaluator::start() { @@ -469,6 +489,16 @@ double AucEvaluator::calcAuc() const { } } +real AucEvaluator::getValueImpl() const { return calcAuc(); } + +std::string AucEvaluator::getTypeImpl() const { + if (colIdx_ == -1) { + return "last-column-auc"; + } else { + return "auc"; + } +} + // class RankAucEvaluator REGISTER_EVALUATOR(rankauc, RankAucEvaluator); @@ -548,12 +578,15 @@ double RankAucEvaluator::calcRankAuc(real* outputData, : aucTmp / (clickSum * noClickSum); } +std::string RankAucEvaluator::getTypeImpl() const { return "rankauc"; } + // class PrecisionRecallEvaluator REGISTER_EVALUATOR(precision_recall, PrecisionRecallEvaluator); void PrecisionRecallEvaluator::start() { Evaluator::start(); statsInfo_.clear(); + values_.clear(); } real PrecisionRecallEvaluator::evalImp(std::vector& arguments) { @@ -614,52 +647,23 @@ real PrecisionRecallEvaluator::evalImp(std::vector& arguments) { } void PrecisionRecallEvaluator::printStats(std::ostream& os) const { - int label = config_.positive_label(); - if (label != -1) { - CHECK(label >= 0 && label < (int)statsInfo_.size()) - << "positive_label [" << label << "] should be in range [0, " - << statsInfo_.size() << ")"; - double precision = - calcPrecision(statsInfo_[label].TP, statsInfo_[label].FP); - double recall = calcRecall(statsInfo_[label].TP, statsInfo_[label].FN); - os << "positive_label=" << label << " precision=" << precision - << " recall=" << recall - << " F1-score=" << calcF1Score(precision, recall); - return; - } - - // micro average method: precision = (TP1+TP2)/(TP1+FP1+TP2+FP2) - // macro average method: precision = (precision1+precision2)/2 - double microTotalTP = 0; - double microTotalFP = 0; - double microTotalFN = 0; - double macroAvgPrecision = 0; - double macroAvgRecall = 0; - size_t numLabels = statsInfo_.size(); - for (size_t i = 0; i < numLabels; ++i) { - microTotalTP += statsInfo_[i].TP; - microTotalFP += statsInfo_[i].FP; - microTotalFN += statsInfo_[i].FN; - macroAvgPrecision += calcPrecision(statsInfo_[i].TP, statsInfo_[i].FP); - macroAvgRecall += calcRecall(statsInfo_[i].TP, statsInfo_[i].FN); - } - macroAvgPrecision /= numLabels; - macroAvgRecall /= numLabels; - double macroAvgF1Score = calcF1Score(macroAvgPrecision, macroAvgRecall); - os << "macro-average-precision=" << macroAvgPrecision - << " macro-average-recall=" << macroAvgRecall - << " macro-average-F1-score=" << macroAvgF1Score; - - double microAvgPrecision = calcPrecision(microTotalTP, microTotalFP); - double microAvgRecall = calcPrecision(microTotalTP, microTotalFN); - double microAvgF1Score = calcF1Score(microAvgPrecision, microAvgRecall); - if (!isMultiBinaryLabel_) { - // precision and recall are equal in this case - os << " micro-average-precision=" << microAvgPrecision; - } else { - os << " micro-average-precision=" << microAvgPrecision - << " micro-average-recall=" << microAvgRecall - << " micro-average-F1-score=" << microAvgF1Score; + PrintStatsInfo info; + bool containMacroMicroInfo = getStatsInfo(&info); + os << "positive_label=" << config_.positive_label() + << " precision=" << info.precision << " recall=" << info.recall + << " F1-score=" << info.f1; + if (containMacroMicroInfo) { + os << "macro-average-precision=" << info.macroAvgPrecision + << " macro-average-recall=" << info.macroAvgRecall + << " macro-average-F1-score=" << info.macroAvgF1Score; + if (!isMultiBinaryLabel_) { + // precision and recall are equal in this case + os << " micro-average-precision=" << info.microAvgPrecision; + } else { + os << " micro-average-precision=" << info.microAvgPrecision + << " micro-average-recall=" << info.microAvgRecall + << " micro-average-F1-score=" << info.microAvgF1Score; + } } } @@ -741,6 +745,60 @@ void PrecisionRecallEvaluator::calcStatsInfoMulti(const MatrixPtr& output, } } +void PrecisionRecallEvaluator::storeLocalValues() const { + if (this->values_.size() == 0) { + PrintStatsInfo info; + bool containMacroMicroInfo = getStatsInfo(&info); + values_["precision"] = info.precision; + values_["recal"] = info.recall; + values_["F1-score"] = info.f1; + if (containMacroMicroInfo) { + values_["macro-average-precision"] = info.macroAvgPrecision; + values_["macro-average-recall"] = info.macroAvgRecall; + values_["macro-average-F1-score"] = info.macroAvgF1Score; + if (!isMultiBinaryLabel_) { + // precision and recall are equal in this case + values_["micro-average-precision"] = info.microAvgPrecision; + } else { + values_["micro-average-precision"] = info.microAvgPrecision; + values_["micro-average-recall"] = info.microAvgRecall; + values_["micro-average-F1-score"] = info.microAvgF1Score; + } + } + } +} + +void PrecisionRecallEvaluator::getNames(std::vector* names) { + this->storeLocalValues(); + names->reserve(this->values_.size()); + for (auto it = this->values_.begin(); it != this->values_.end(); ++it) { + names->push_back(this->config_.name() + "." + it->first); + } +} + +real PrecisionRecallEvaluator::getValue(const std::string& name, + Error* err) const { + this->storeLocalValues(); + std::vector buffers; + paddle::str::split(name, '.', &buffers); + auto it = this->values_.find(buffers[buffers.size() - 1]); + if (it == this->values_.end()) { // not found + *err = Error("No such key %s", name.c_str()); + return .0f; + } + + return it->second; +} + +std::string PrecisionRecallEvaluator::getType(const std::string& name, + Error* err) const { + this->getValue(name, err); + if (!err->isOK()) { + return ""; + } + return "precision_recall"; +} + void PrecisionRecallEvaluator::distributeEval(ParameterClient2* client) { size_t size = 4 * statsInfo_.size(); double* buf = new double[size]; @@ -760,6 +818,47 @@ void PrecisionRecallEvaluator::distributeEval(ParameterClient2* client) { delete[] buf; } +bool PrecisionRecallEvaluator::getStatsInfo( + PrecisionRecallEvaluator::PrintStatsInfo* info) const { + int label = config_.positive_label(); + if (label != -1) { + CHECK(label >= 0 && label < (int)statsInfo_.size()) + << "positive_label [" << label << "] should be in range [0, " + << statsInfo_.size() << ")"; + info->precision = calcPrecision(statsInfo_[label].TP, statsInfo_[label].FP); + info->recall = calcRecall(statsInfo_[label].TP, statsInfo_[label].FN); + info->f1 = calcF1Score(info->precision, info->recall); + return false; + } + + // micro average method: precision = (TP1+TP2)/(TP1+FP1+TP2+FP2) + // macro average method: precision = (precision1+precision2)/2 + double microTotalTP = 0; + double microTotalFP = 0; + double microTotalFN = 0; + info->macroAvgPrecision = 0; + info->macroAvgRecall = 0; + size_t numLabels = statsInfo_.size(); + for (size_t i = 0; i < numLabels; ++i) { + microTotalTP += statsInfo_[i].TP; + microTotalFP += statsInfo_[i].FP; + microTotalFN += statsInfo_[i].FN; + info->macroAvgPrecision += + calcPrecision(statsInfo_[i].TP, statsInfo_[i].FP); + info->macroAvgRecall += calcRecall(statsInfo_[i].TP, statsInfo_[i].FN); + } + info->macroAvgPrecision /= numLabels; + info->macroAvgRecall /= numLabels; + info->macroAvgF1Score = + calcF1Score(info->macroAvgPrecision, info->macroAvgRecall); + + info->microAvgPrecision = calcPrecision(microTotalTP, microTotalFP); + info->microAvgRecall = calcPrecision(microTotalTP, microTotalFN); + info->microAvgF1Score = + calcF1Score(info->microAvgPrecision, info->microAvgRecall); + return true; +} + REGISTER_EVALUATOR(pnpair, PnpairEvaluator); void PnpairEvaluator::start() { Evaluator::start(); @@ -884,6 +983,8 @@ void PnpairEvaluator::calc(std::vector& predictArray) { << " calc total special pair: " << special; } +std::string PnpairEvaluator::getTypeImpl() const { return "pnpair"; } + ClassRegistrar Evaluator::registrar_; Evaluator* Evaluator::create(const EvaluatorConfig& config) { Evaluator* evaluator = registrar_.createByType(config.type()); @@ -905,7 +1006,7 @@ static InitFunction __reg_type_auc_sum__([]() { * * The config file api is value_printer_evaluator. */ -class ValuePrinter : public Evaluator { +class ValuePrinter : public NotGetableEvaluator { public: virtual void eval(const NeuralNetwork& nn) { for (const std::string& name : config_.input_layers()) { @@ -919,12 +1020,13 @@ public: virtual real evalImp(std::vector& arguments) { return 0; } }; REGISTER_EVALUATOR(value_printer, ValuePrinter); + /** * @brief print gradient of each layer. * * The config file api is gradient_printer_evaluator. */ -class GradientPrinter : public Evaluator { +class GradientPrinter : public NotGetableEvaluator { public: virtual void eval(const NeuralNetwork& nn) { for (const std::string& name : config_.input_layers()) { @@ -947,7 +1049,7 @@ REGISTER_EVALUATOR(gradient_printer, GradientPrinter); * * The config file api is maxid_printer_evaluator. */ -class MaxIdPrinter : public Evaluator { +class MaxIdPrinter : public NotGetableEvaluator { private: IVectorPtr maxIds_; MatrixPtr maxValues_; @@ -989,7 +1091,7 @@ REGISTER_EVALUATOR(max_id_printer, MaxIdPrinter); * * The config file api is maxframe_printer_evaluator. */ -class MaxFramePrinter : public Evaluator { +class MaxFramePrinter : public NotGetableEvaluator { private: IVectorPtr maxIds_; MatrixPtr maxValues_; @@ -1076,7 +1178,7 @@ REGISTER_EVALUATOR(max_frame_printer, MaxFramePrinter); * The config file api is seqtext_printer_evaluator. * */ -class SequenceTextPrinter : public Evaluator { +class SequenceTextPrinter : public NotGetableEvaluator { private: /// dict_file, which contains a list of tokens std::vector dict_; @@ -1243,4 +1345,6 @@ public: }; REGISTER_EVALUATOR(classification_error_printer, ClassificationErrorPrinter); +std::string DummyEvaluator::getTypeImpl() const { return "dummy"; } + } // namespace paddle diff --git a/paddle/gserver/evaluators/Evaluator.h b/paddle/gserver/evaluators/Evaluator.h index 5770847309670ef1856cfb9255fa847c24513b56..b114500e2b7c1e460a02c78b99b5f1a8fb63b8c3 100644 --- a/paddle/gserver/evaluators/Evaluator.h +++ b/paddle/gserver/evaluators/Evaluator.h @@ -19,6 +19,7 @@ limitations under the License. */ #include "paddle/parameter/Argument.h" #include "paddle/pserver/ParameterClient2.h" #include "paddle/utils/ClassRegistrar.h" +#include "paddle/utils/Error.h" namespace paddle { @@ -117,12 +118,105 @@ public: static ClassRegistrar registrar_; + /** + * @brief getNames will return all field names of current evaluator. + * + * The format of name is `evaluator_name.evaluator_fields`. If the evaluator + * has multiple field, the name could be `evaluator_name.field1`. For example + * the PrecisionRecallEvaluator contains `precision`, `recall` fields. The get + * names will return `precision_recall_evaluator.precision`, + * `precision_recall_evaluator.recal`, etc. + * + * Also, if current Evaluator is a combined evaluator. getNames will return + * all names of all evaluators inside the combined evaluator. + * + * @param names [out]: the field names of current evaluator. + * @note Never clear the names parameter inside getNames. + */ + virtual void getNames(std::vector* names) { + names->push_back(config_.name()); + } + + /** + * @brief getValue will return the current evaluate value of one field. + * + * @param name: The field name of current evaluator. + * @param err [out]: The error state. + * + * @return The evaluate value(metric). + */ + virtual real getValue(const std::string& name, Error* err) const { + if (name != config_.name()) { + *err = Error("no such name of evaluator %s", name.c_str()); + return .0f; + } + return this->getValueImpl(); + } + + /** + * @brief getType will return the evaluator type by field name. + * + * Evaluate Type is the current type of evaluator in string. Such as 'auc', + * 'precision_recall'. In combined evaluator, different name may get different + * evaluate type because it could be evaluated by different evaluator inside. + * + * @param name: The field name of current Evaluator. + * @param err: The error state. nullptr means don't care. + * @return the evaluator type string. + */ + virtual std::string getType(const std::string& name, Error* err) const { + if (name != config_.name()) { + *err = Error("no such name of evaluator %s", name.c_str()); + return std::string(); + } + return this->getTypeImpl(); + } + +protected: + /** + * @brief getValueImpl The simplest way to define getValue result. If this + * evaluator doesn't contain multiple fields, and do not throw any error, just + * implemented this method to get the evaluate result(metric). + * @return Evaluate result(metric). + */ + virtual real getValueImpl() const { + return numSamples_ != .0 ? totalScore_ / numSamples_ : .0; + } + + /** + * @brief getTypeImpl The simplest way to define getType result. If this + * evaluator doesn't combine many evaluators, the get type should only return + * itself type. + * @return Evaluator type. + */ + virtual std::string getTypeImpl() const { return "base"; } + protected: EvaluatorConfig config_; double numSamples_; double totalScore_; }; +/** + * @brief The NotGetableEvaluator class is the base class of evaluator that + * cannot get value in runtime. The most NotGetableEvaluator is Printer + * Evaluator, which is only used to debug network configuration. + */ +class NotGetableEvaluator : public Evaluator { + // Evaluator interface +public: + void getNames(std::vector* names) {} + + real getValue(const std::string& name, Error* err) const { + *err = Error("Not implemented"); + return .0f; + } + std::string getType(const std::string& name, Error* err) const { + *err = Error("Not implemented"); + return ""; + } +}; + class DummyEvaluator : public Evaluator { public: DummyEvaluator() {} @@ -135,6 +229,10 @@ public: } virtual void finish() {} virtual void printStats(std::ostream&) const {} + + // Evaluator interface +protected: + std::string getTypeImpl() const; }; /** * @brief evaluate AUC using colIdx-th column as prediction. @@ -191,6 +289,11 @@ private: } double calcAuc() const; + + // Evaluator interface +protected: + real getValueImpl() const; + std::string getTypeImpl() const; }; /** @@ -223,6 +326,10 @@ private: real* clickData, real* pvData, size_t size); + + // Evaluator interface +protected: + std::string getTypeImpl() const; }; /** * @brief precision, recall and f1 score Evaluator @@ -272,6 +379,20 @@ private: IVectorPtr cpuLabel_; MatrixPtr cpuWeight_; + struct PrintStatsInfo { + double precision; + double recall; + double f1; + double macroAvgPrecision; + double macroAvgRecall; + double macroAvgF1Score; + double microAvgPrecision; + double microAvgRecall; + double microAvgF1Score; + }; + + bool getStatsInfo(PrintStatsInfo* info) const; + void calcStatsInfo(const MatrixPtr& output, const IVectorPtr& label, const MatrixPtr& weight); @@ -303,6 +424,15 @@ private: return 0; } } + + mutable std::unordered_map values_; + + void storeLocalValues() const; + // Evaluator interface +public: + void getNames(std::vector* names); + real getValue(const std::string& name, Error* err) const; + std::string getType(const std::string& name, Error* err) const; }; /* @@ -349,8 +479,7 @@ public: virtual void finish() { calc(predictArray_); } virtual void printStats(std::ostream& os) const { - os << " pos/neg" - << "=" << pairArray_[0] / ((pairArray_[1] <= 0) ? 1.0 : pairArray_[1]); + os << " pos/neg=" << this->getValueImpl(); } virtual void distributeEval(ParameterClient2* client) { @@ -366,6 +495,13 @@ private: IVectorPtr cpuLabel_; IVectorPtr cpuInfo_; MatrixPtr cpuWeight_; + + // Evaluator interface +protected: + real getValueImpl() const { + return pairArray_[0] / ((pairArray_[1] <= 0) ? 1.0 : pairArray_[1]); + } + std::string getTypeImpl() const; }; } // namespace paddle diff --git a/paddle/gserver/gradientmachines/NeuralNetwork.cpp b/paddle/gserver/gradientmachines/NeuralNetwork.cpp index 22051e07ee0026bc3c44a8767e265a56b415b8e4..273a9111c35a21c01f0cd8d283ecc6eaa4ef0c61 100644 --- a/paddle/gserver/gradientmachines/NeuralNetwork.cpp +++ b/paddle/gserver/gradientmachines/NeuralNetwork.cpp @@ -306,7 +306,6 @@ void NeuralNetwork::onPassEnd() { class CombinedEvaluator : public Evaluator { public: - CombinedEvaluator() {} void addEvaluator(std::unique_ptr&& evaluator) { evaluators_.emplace_back(std::move(evaluator)); } @@ -346,6 +345,55 @@ public: protected: std::vector> evaluators_; + + // Evaluator interface +public: + /** + * @brief getNames will return all inside evaluators' names. + * @param names [out]: return names. + */ + void getNames(std::vector* names) { + for (auto& eval : evaluators_) { + eval->getNames(names); + } + } + + /** + * @brief getValue could get all inside evaluators' value. + */ + real getValue(const std::string& name, Error* err) const { + return this->getMethodHelper( + name, err, [&name, err](const std::unique_ptr& eval) { + return eval->getValue(name, err); + }); + } + + /** + * @brief getType could get all inside evaluators' type. + */ + std::string getType(const std::string& name, Error* err) const { + return this->getMethodHelper( + name, err, [&name, err](const std::unique_ptr& eval) { + return eval->getType(name, err); + }); + } + +private: + template + T getMethodHelper(const std::string& name, + Error* err, + const std::function&)>& + callback) const { + for (auto& eval : evaluators_) { + std::vector names; + eval->getNames(&names); + if (std::find(names.begin(), names.end(), name) != names.end()) { + return callback(eval); + } + } + *err = Error("No such key %s", name.c_str()); + return T(); + } }; Evaluator* NeuralNetwork::makeEvaluator() const { diff --git a/paddle/gserver/tests/test_Evaluator.cpp b/paddle/gserver/tests/test_Evaluator.cpp index d39c0422715675cad058d7c39b23a84c82058427..4f5fdbb37ce024e18b8d39c5dda74c69bf82166a 100644 --- a/paddle/gserver/tests/test_Evaluator.cpp +++ b/paddle/gserver/tests/test_Evaluator.cpp @@ -110,6 +110,18 @@ void testEvaluator(TestConfig testConf, testEvaluator->finish(); LOG(INFO) << *testEvaluator; + std::vector names; + testEvaluator->getNames(&names); + paddle::Error err; + for (auto& name : names) { + auto value = testEvaluator->getValue(name, &err); + ASSERT_TRUE(err.isOK()); + LOG(INFO) << name << " " << value; + auto tp = testEvaluator->getType(name, &err); + ASSERT_TRUE(err.isOK()); + ASSERT_EQ(testConf.evaluatorConfig.type(), tp); + } + double totalScore2 = 0.0; if (testConf.testAccumulate) { testEvaluator->start(); diff --git a/paddle/utils/Error.h b/paddle/utils/Error.h index 2b4fbef4e015e7c6895745f220bd444f3883c121..cda1b5c37dada8d0c6c77fc2fb03bb614d5301b5 100644 --- a/paddle/utils/Error.h +++ b/paddle/utils/Error.h @@ -37,10 +37,10 @@ namespace paddle { * * Error __must_check bar() { * // do something. - * Status s = foo(); // invoke other method return status. - * if (!s) return s; + * Error err = foo(); // invoke other method return status. + * if (err) return err; * // do something else. - * return Status(); + * return Error(); * } * @endcode{cpp} * @@ -53,8 +53,8 @@ namespace paddle { * * int foo(Error* error) { * // Do something. - * Error s = bar(); - * if (!s) { + * Error err = bar(); + * if (err) { * *error = s; * return 0; * } @@ -68,10 +68,10 @@ namespace paddle { * } * * Error foobar() { - * Error s; + * Error err; * // do something. - * foo(&s); - * if (!s) return s; + * foo(&err); + * if (err) return err; * } * @endcode{cpp} * @@ -112,16 +112,22 @@ public: } /** - * @brief operator bool, return True if there is no error. + * @brief operator bool, return True if there is something error. */ - operator bool() const { return msg_ == nullptr; } + operator bool() const { return !this->isOK(); } + + /** + * @brief isOK return True if there is no error. + * @return True if no error. + */ + bool isOK() const { return msg_ == nullptr; } /** * @brief check this status by glog. * @note It is a temp method used during cleaning Paddle code. It will be * removed later. */ - void check() const { CHECK(*this) << msg(); } + void check() const { CHECK(this->isOK()) << msg(); } private: std::shared_ptr msg_; diff --git a/paddle/utils/tests/test_Error.cpp b/paddle/utils/tests/test_Error.cpp index 85156466e2cafd36d49941836c066a542dbbd60e..fdf326b17a1c8baa87e2a17fafae253565d1e699 100644 --- a/paddle/utils/tests/test_Error.cpp +++ b/paddle/utils/tests/test_Error.cpp @@ -18,17 +18,17 @@ limitations under the License. */ TEST(Error, testAll) { paddle::Error error; - ASSERT_TRUE(error); - error = paddle::Error("I'm the error"); ASSERT_FALSE(error); + error = paddle::Error("I'm the error"); + ASSERT_TRUE(error); ASSERT_STREQ("I'm the error", error.msg()); error = paddle::Error("error2"); - ASSERT_FALSE(error); + ASSERT_TRUE(error); ASSERT_STREQ("error2", error.msg()); int i = 3; auto error3 = paddle::Error("error%d", i); - ASSERT_FALSE(error3); + ASSERT_TRUE(error3); ASSERT_STREQ("error3", error3.msg()); } diff --git a/python/CMakeLists.txt b/python/CMakeLists.txt index 357637e20346f8e1179d3a28ff580722cdfcccff..71af50a9a4ed835635362c24d6c1ae5e92de050b 100644 --- a/python/CMakeLists.txt +++ b/python/CMakeLists.txt @@ -25,6 +25,7 @@ add_custom_target(paddle_python ALL DEPENDS add_subdirectory(paddle/trainer_config_helpers/tests) add_subdirectory(paddle/reader/tests) +add_subdirectory(paddle/v2/tests) install(DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/dist/ DESTINATION opt/paddle/share/wheels diff --git a/python/paddle/v2/tests/CMakeLists.txt b/python/paddle/v2/tests/CMakeLists.txt index dc5efdab6a99730dbb4fa6a17d4874b074b03aa6..ceb71c1454b2bad60e2bdd6da9280a66d33c5fad 100644 --- a/python/paddle/v2/tests/CMakeLists.txt +++ b/python/paddle/v2/tests/CMakeLists.txt @@ -1,4 +1,3 @@ -add_test(NAME layer_test +add_test(NAME test_v2_layer COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/ - ${PYTHON_EXECUTABLE} ${PROJ_ROOT}/python/paddle/v2/tests/layer_test.py - WORKING_DIRECTORY ${PROJ_ROOT}/python/paddle) + ${PYTHON_EXECUTABLE} ${PROJ_ROOT}/python/paddle/v2/tests/test_layer.py diff --git a/python/paddle/v2/tests/layer_test.py b/python/paddle/v2/tests/layer_test.py deleted file mode 100644 index 83c8c26d6b6546aecc2d99e73f1bf9624a5310f3..0000000000000000000000000000000000000000 --- a/python/paddle/v2/tests/layer_test.py +++ /dev/null @@ -1,108 +0,0 @@ -# Copyright PaddlePaddle contributors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -import difflib -import unittest - -import paddle.trainer_config_helpers as conf_helps -import paddle.v2.activation as activation -import paddle.v2.attr as attr -import paddle.v2.data_type as data_type -import paddle.v2.layer as layer -from paddle.trainer_config_helpers.config_parser_utils import \ - parse_network_config as parse_network - - -class CostLayerTest(unittest.TestCase): - def test_cost_layer(self): - pixel = layer.data(name='pixel', type=data_type.dense_vector(784)) - label = layer.data(name='label', type=data_type.integer_value(10)) - weight = layer.data(name='weight', type=data_type.dense_vector(10)) - score = layer.data(name='score', type=data_type.dense_vector(1)) - hidden = layer.fc(input=pixel, - size=100, - act=activation.Sigmoid(), - param_attr=attr.Param(name='hidden')) - inference = layer.fc(input=hidden, size=10, act=activation.Softmax()) - - cost1 = layer.classification_cost(input=inference, label=label) - cost2 = layer.classification_cost( - input=inference, label=label, weight=weight) - cost3 = layer.cross_entropy_cost(input=inference, label=label) - cost4 = layer.cross_entropy_with_selfnorm_cost( - input=inference, label=label) - cost5 = layer.regression_cost(input=inference, label=label) - cost6 = layer.regression_cost( - input=inference, label=label, weight=weight) - cost7 = layer.multi_binary_label_cross_entropy_cost( - input=inference, label=label) - cost8 = layer.rank_cost(left=score, right=score, label=score) - cost9 = layer.lambda_cost(input=inference, score=score) - cost10 = layer.sum_cost(input=inference) - cost11 = layer.huber_cost(input=score, label=label) - - print layer.parse_network(cost1, cost2) - print layer.parse_network(cost3, cost4) - print layer.parse_network(cost5, cost6) - print layer.parse_network(cost7, cost8, cost9, cost10, cost11) - - -class RNNTest(unittest.TestCase): - def test_simple_rnn(self): - dict_dim = 10 - word_dim = 8 - hidden_dim = 8 - - def test_old_rnn(): - def step(y): - mem = conf_helps.memory(name="rnn_state", size=hidden_dim) - out = conf_helps.fc_layer( - input=[y, mem], - size=hidden_dim, - act=activation.Tanh(), - bias_attr=True, - name="rnn_state") - return out - - def test(): - data1 = conf_helps.data_layer(name="word", size=dict_dim) - embd = conf_helps.embedding_layer(input=data1, size=word_dim) - conf_helps.recurrent_group(name="rnn", step=step, input=embd) - - return str(parse_network(test)) - - def test_new_rnn(): - def new_step(y): - mem = layer.memory(name="rnn_state", size=hidden_dim) - out = layer.fc(input=[mem], - step_input=y, - size=hidden_dim, - act=activation.Tanh(), - bias_attr=True, - name="rnn_state") - return out.to_proto(dict()) - - data1 = layer.data( - name="word", type=data_type.integer_value(dict_dim)) - embd = layer.embedding(input=data1, size=word_dim) - rnn_layer = layer.recurrent_group( - name="rnn", step=new_step, input=embd) - return str(layer.parse_network(rnn_layer)) - - diff = difflib.unified_diff(test_old_rnn().splitlines(1), - test_new_rnn().splitlines(1)) - print ''.join(diff) - - -if __name__ == '__main__': - unittest.main() diff --git a/python/paddle/v2/tests/test_layer.py b/python/paddle/v2/tests/test_layer.py new file mode 100644 index 0000000000000000000000000000000000000000..b600e8cf765122ab6cfe8530465391c92be0590f --- /dev/null +++ b/python/paddle/v2/tests/test_layer.py @@ -0,0 +1,63 @@ +# Copyright PaddlePaddle contributors. All Rights Reserved +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import difflib +import unittest + +import paddle.trainer_config_helpers as conf_helps +import paddle.v2.activation as activation +import paddle.v2.attr as attr +import paddle.v2.data_type as data_type +import paddle.v2.layer as layer +from paddle.trainer_config_helpers.config_parser_utils import \ + parse_network_config as parse_network + +pixel = layer.data(name='pixel', type=data_type.dense_vector(784)) +label = layer.data(name='label', type=data_type.integer_value(10)) +weight = layer.data(name='weight', type=data_type.dense_vector(10)) +score = layer.data(name='score', type=data_type.dense_vector(1)) +hidden = layer.fc(input=pixel, + size=100, + act=activation.Sigmoid(), + param_attr=attr.Param(name='hidden')) +inference = layer.fc(input=hidden, size=10, act=activation.Softmax()) + + +class CostLayerTest(unittest.TestCase): + def test_cost_layer(self): + cost1 = layer.classification_cost(input=inference, label=label) + cost2 = layer.classification_cost( + input=inference, label=label, weight=weight) + cost3 = layer.cross_entropy_cost(input=inference, label=label) + cost4 = layer.cross_entropy_with_selfnorm_cost( + input=inference, label=label) + cost5 = layer.regression_cost(input=inference, label=label) + cost6 = layer.regression_cost( + input=inference, label=label, weight=weight) + cost7 = layer.multi_binary_label_cross_entropy_cost( + input=inference, label=label) + cost8 = layer.rank_cost(left=score, right=score, label=score) + cost9 = layer.lambda_cost(input=inference, score=score) + cost10 = layer.sum_cost(input=inference) + cost11 = layer.huber_cost(input=score, label=label) + + print dir(layer) + layer.parse_network(cost1, cost2) + print dir(layer) + #print layer.parse_network(cost3, cost4) + #print layer.parse_network(cost5, cost6) + #print layer.parse_network(cost7, cost8, cost9, cost10, cost11) + + +if __name__ == '__main__': + unittest.main()