From 61cc3ae4d13a798f341ceb5b2240b92526b3f43f Mon Sep 17 00:00:00 2001 From: Yu Yang Date: Thu, 28 Sep 2017 11:52:03 -0700 Subject: [PATCH] Stablize elementwise_mul by using double precision --- paddle/pybind/pybind.cc | 16 +++-- paddle/pybind/tensor_py.h | 15 ++++- python/paddle/v2/framework/tests/op_test.py | 60 +++++++++++++------ .../tests/test_elementwise_mul_op.py | 32 +++++----- 4 files changed, 78 insertions(+), 45 deletions(-) diff --git a/paddle/pybind/pybind.cc b/paddle/pybind/pybind.cc index d85bf6c7faa..f4121e9d718 100644 --- a/paddle/pybind/pybind.cc +++ b/paddle/pybind/pybind.cc @@ -77,20 +77,18 @@ PYBIND11_PLUGIN(core) { }) .def("set", PyCPUTensorSetFromArray) .def("set", PyCPUTensorSetFromArray) + .def("set", PyCPUTensorSetFromArray) #ifndef PADDLE_ONLY_CPU .def("set", PyCUDATensorSetFromArray) .def("set", PyCUDATensorSetFromArray) + .def("set", PyCUDATensorSetFromArray) #endif .def("shape", [](Tensor &self) { return vectorize(self.dims()); }) - .def("set_float_element", - [](Tensor &self, size_t offset, float f) { - // TODO(yuyang18): Only support GPU now. - self.data()[offset] = f; - }) - .def("get_float_element", [](Tensor &self, size_t offset) -> float { - // TODO(yuyang18): Only support GPU now. - return self.data()[offset]; - }); + .def("set_float_element", TensorSetElement) + .def("get_float_element", TensorGetElement) + .def("set_double_element", TensorSetElement) + .def("get_double_element", TensorGetElement) + .def("dtype", [](Tensor &self) { return ToDataType(self.type()); }); py::class_(m, "LoDTensor") .def_buffer( diff --git a/paddle/pybind/tensor_py.h b/paddle/pybind/tensor_py.h index 10621e90eeb..3e3e6bc0312 100644 --- a/paddle/pybind/tensor_py.h +++ b/paddle/pybind/tensor_py.h @@ -73,10 +73,23 @@ struct CastToPyBufferImpl { }; } // namespace details inline py::buffer_info CastToPyBuffer(framework::Tensor &tensor) { - auto buffer_info = details::CastToPyBufferImpl()(tensor); + auto buffer_info = + details::CastToPyBufferImpl()(tensor); return buffer_info; } +template +T TensorGetElement(framework::Tensor &self, size_t offset) { + PADDLE_ENFORCE(platform::is_cpu_place(self.place())); + return self.data()[offset]; +} + +template +void TensorSetElement(framework::Tensor &self, size_t offset, T elem) { + PADDLE_ENFORCE(platform::is_cpu_place(self.place())); + self.data()[offset] = elem; +} + template void PyCPUTensorSetFromArray( framework::Tensor &self, diff --git a/python/paddle/v2/framework/tests/op_test.py b/python/paddle/v2/framework/tests/op_test.py index 89979044f29..70ae50d401c 100644 --- a/python/paddle/v2/framework/tests/op_test.py +++ b/python/paddle/v2/framework/tests/op_test.py @@ -69,24 +69,27 @@ def set_input(scope, op, inputs, place): def set_output_grad(scope, op, outputs, place): + def __set_tensor__(name): + out_tensor = scope.find_var(name).get_tensor() + grad_tensor = scope.new_var(grad_var_name(name)).get_tensor() + out_dtype = out_tensor.dtype() + if out_dtype == core.DataType.FP64: + data = np.ones(out_tensor.shape(), dtype=np.float64) + elif out_dtype == core.DataType.FP32: + data = np.ones(out_tensor.shape(), dtype=np.float32) + else: + raise ValueError("Not supported data type " + str(out_dtype)) + + grad_tensor.set(data, place) + for out_name, out_dup in Operator.get_op_outputs(op.type()): if out_name in outputs: if out_dup: sub_out = outputs[out_name] for sub_out_name, _ in sub_out: - out_tensor = scope.find_var(sub_out_name).get_tensor() - grad_tensor = scope.new_var(grad_var_name( - sub_out_name)).get_tensor() - grad_tensor.set_dims(out_tensor.shape()) - data = np.ones(out_tensor.shape(), dtype=np.float32) - grad_tensor.set(data, place) + __set_tensor__(sub_out_name) else: - out_tensor = scope.find_var(out_name).get_tensor() - grad_tensor = scope.new_var(grad_var_name(out_name)).get_tensor( - ) - grad_tensor.set_dims(out_tensor.shape()) - data = np.ones(out_tensor.shape(), dtype=np.float32) - grad_tensor.set(data, place) + __set_tensor__(out_name) def get_numeric_gradient(scope, @@ -96,7 +99,6 @@ def get_numeric_gradient(scope, output_names, delta=0.005, in_place=False): - set_input(scope, op, inputs, core.CPUPlace()) tensor_to_check = scope.find_var(input_to_check).get_tensor() @@ -115,7 +117,29 @@ def get_numeric_gradient(scope, tensor_to_check = scope.find_var(input_to_check).get_tensor() tensor_size = product(tensor_to_check.get_dims()) - gradient_flat = np.zeros(shape=(tensor_size, ), dtype='float32') + tensor_to_check_dtype = tensor_to_check.dtype() + if tensor_to_check_dtype == core.DataType.FP32: + tensor_to_check_dtype = np.float32 + elif tensor_to_check_dtype == core.DataType.FP64: + tensor_to_check_dtype = np.float64 + else: + raise ValueError("Not supported data type " + str( + tensor_to_check_dtype)) + + gradient_flat = np.zeros(shape=(tensor_size, ), dtype=tensor_to_check_dtype) + + def __get_elem__(tensor, i): + if tensor_to_check_dtype == np.float32: + return tensor.get_float_element(i) + else: + return tensor.get_double_element(i) + + def __set_elem__(tensor, i, e): + if tensor_to_check_dtype == np.float32: + tensor.set_float_element(i, e) + else: + tensor.set_double_element(i, e) + # we only compute gradient of one element each time. # we use a for loop to compute the gradient of every element. for i in xrange(tensor_size): @@ -123,20 +147,20 @@ def get_numeric_gradient(scope, set_input(scope, op, inputs, core.CPUPlace()) # get one input element throw it's index i. - origin = tensor_to_check.get_float_element(i) + origin = __get_elem__(tensor_to_check, i) # add delta to it, run op and then get the sum of the result tensor. x_pos = origin + delta - tensor_to_check.set_float_element(i, x_pos) + __set_elem__(tensor_to_check, i, x_pos) y_pos = get_output() if in_place: set_input(scope, op, inputs, core.CPUPlace()) x_neg = origin - delta - tensor_to_check.set_float_element(i, x_neg) + __set_elem__(tensor_to_check, i, x_neg) y_neg = get_output() - tensor_to_check.set_float_element(i, origin) + __set_elem__(tensor_to_check, i, origin) gradient_flat[i] = (y_pos - y_neg) / delta / 2 return gradient_flat.reshape(tensor_to_check.get_dims()) diff --git a/python/paddle/v2/framework/tests/test_elementwise_mul_op.py b/python/paddle/v2/framework/tests/test_elementwise_mul_op.py index cee4385a817..261ca9cb3da 100644 --- a/python/paddle/v2/framework/tests/test_elementwise_mul_op.py +++ b/python/paddle/v2/framework/tests/test_elementwise_mul_op.py @@ -7,8 +7,8 @@ class ElementwiseMulOp(OpTest): def setUp(self): self.op_type = "elementwise_mul" self.inputs = { - 'X': np.random.uniform(0.1, 1, [13, 17]).astype("float32"), - 'Y': np.random.uniform(0.1, 1, [13, 17]).astype("float32") + 'X': np.random.uniform(0.1, 1, [13, 17]).astype("float64"), + 'Y': np.random.uniform(0.1, 1, [13, 17]).astype("float64") } self.outputs = {'Out': np.multiply(self.inputs['X'], self.inputs['Y'])} @@ -16,23 +16,21 @@ class ElementwiseMulOp(OpTest): self.check_output() def test_check_grad_normal(self): - self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.1) + self.check_grad(['X', 'Y'], 'Out') def test_check_grad_ingore_x(self): - self.check_grad( - ['Y'], 'Out', max_relative_error=0.1, no_grad_set=set("X")) + self.check_grad(['Y'], 'Out', no_grad_set=set("X")) def test_check_grad_ingore_y(self): - self.check_grad( - ['X'], 'Out', max_relative_error=0.1, no_grad_set=set('Y')) + self.check_grad(['X'], 'Out', no_grad_set=set('Y')) class TestElementwiseMulOp_Vector(ElementwiseMulOp): def setUp(self): self.op_type = "elementwise_mul" self.inputs = { - 'X': np.random.random((32, )).astype("float32"), - 'Y': np.random.random((32, )).astype("float32") + 'X': np.random.random((32, )).astype("float64"), + 'Y': np.random.random((32, )).astype("float64") } self.outputs = {'Out': np.multiply(self.inputs['X'], self.inputs['Y'])} @@ -41,8 +39,8 @@ class TestElementwiseMulOp_broadcast_0(ElementwiseMulOp): def setUp(self): self.op_type = "elementwise_mul" self.inputs = { - 'X': np.random.rand(2, 3, 4).astype(np.float32), - 'Y': np.random.rand(2).astype(np.float32) + 'X': np.random.rand(2, 3, 4).astype(np.float64), + 'Y': np.random.rand(2).astype(np.float64) } self.attrs = {'axis': 0} @@ -55,8 +53,8 @@ class TestElementwiseMulOp_broadcast_1(ElementwiseMulOp): def setUp(self): self.op_type = "elementwise_mul" self.inputs = { - 'X': np.random.rand(2, 3, 4).astype(np.float32), - 'Y': np.random.rand(3).astype(np.float32) + 'X': np.random.rand(2, 3, 4).astype(np.float64), + 'Y': np.random.rand(3).astype(np.float64) } self.attrs = {'axis': 1} @@ -69,8 +67,8 @@ class TestElementwiseMulOp_broadcast_2(ElementwiseMulOp): def setUp(self): self.op_type = "elementwise_mul" self.inputs = { - 'X': np.random.rand(2, 3, 4).astype(np.float32), - 'Y': np.random.rand(4).astype(np.float32) + 'X': np.random.rand(2, 3, 4).astype(np.float64), + 'Y': np.random.rand(4).astype(np.float64) } self.outputs = { @@ -82,8 +80,8 @@ class TestElementwiseMulOp_broadcast_3(ElementwiseMulOp): def setUp(self): self.op_type = "elementwise_mul" self.inputs = { - 'X': np.random.rand(2, 3, 4, 5).astype(np.float32), - 'Y': np.random.rand(3, 4).astype(np.float32) + 'X': np.random.rand(2, 3, 4, 5).astype(np.float64), + 'Y': np.random.rand(3, 4).astype(np.float64) } self.attrs = {'axis': 1} -- GitLab