Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
6019054c
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
6019054c
编写于
2月 21, 2019
作者:
X
Xin Pan
提交者:
GitHub
2月 21, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #15716 from Yancey1989/refine_pg
Refine ParallelGraph Execution
上级
98ec579d
4b193db1
变更
12
显示空白变更内容
内联
并排
Showing
12 changed file
with
278 addition
and
77 deletion
+278
-77
paddle/fluid/framework/details/all_reduce_deps_pass.cc
paddle/fluid/framework/details/all_reduce_deps_pass.cc
+0
-2
paddle/fluid/framework/details/build_strategy.cc
paddle/fluid/framework/details/build_strategy.cc
+4
-2
paddle/fluid/framework/details/memory_optimize_helper.h
paddle/fluid/framework/details/memory_optimize_helper.h
+0
-2
paddle/fluid/framework/details/multi_devices_graph_pass.cc
paddle/fluid/framework/details/multi_devices_graph_pass.cc
+22
-10
paddle/fluid/framework/details/multi_devices_helper.h
paddle/fluid/framework/details/multi_devices_helper.h
+3
-2
paddle/fluid/framework/details/op_handle_base.h
paddle/fluid/framework/details/op_handle_base.h
+3
-0
paddle/fluid/framework/details/parallel_ssa_graph_executor.cc
...le/fluid/framework/details/parallel_ssa_graph_executor.cc
+73
-3
paddle/fluid/framework/details/parallel_ssa_graph_executor.h
paddle/fluid/framework/details/parallel_ssa_graph_executor.h
+9
-1
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
...le/fluid/framework/details/threaded_ssa_graph_executor.cc
+1
-1
paddle/fluid/framework/ir/graph.h
paddle/fluid/framework/ir/graph.h
+20
-9
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+36
-45
python/paddle/fluid/tests/unittests/test_parallel_executor_pg.py
...paddle/fluid/tests/unittests/test_parallel_executor_pg.py
+107
-0
未找到文件。
paddle/fluid/framework/details/all_reduce_deps_pass.cc
浏览文件 @
6019054c
...
...
@@ -30,8 +30,6 @@ namespace paddle {
namespace
framework
{
namespace
details
{
static
constexpr
char
kAllOpDescs
[]
=
"all_op_descs"
;
VarHandle
*
GetValidInput
(
const
OpHandleBase
*
a
)
{
for
(
auto
p
:
a
->
Inputs
())
{
VarHandle
*
b
=
dynamic_cast
<
VarHandle
*>
(
p
);
...
...
paddle/fluid/framework/details/build_strategy.cc
浏览文件 @
6019054c
...
...
@@ -34,9 +34,11 @@ namespace details {
static
inline
bool
SeqOnlyAllReduceOps
(
const
BuildStrategy
&
strategy
)
{
// Should fix the allreduce op order if scheduling
// them in multiple threads or processes to avoid hang.
// NOTE: ParallelGraph would execute this pass on each graph, so
// don't need to append it here.
return
(
!
strategy
.
enable_sequential_execution_
&&
strategy
.
num_trainers_
>
1
)
||
strategy
.
enable_parallel_graph_
;
strategy
.
num_trainers_
>
1
)
&&
!
strategy
.
enable_parallel_graph_
;
}
class
ParallelExecutorPassBuilder
:
public
ir
::
PassBuilder
{
...
...
paddle/fluid/framework/details/memory_optimize_helper.h
浏览文件 @
6019054c
...
...
@@ -29,8 +29,6 @@ namespace paddle {
namespace
framework
{
namespace
details
{
constexpr
char
kAllOpDescs
[]
=
"all_op_descs"
;
std
::
vector
<
ir
::
Node
*>
SortOpLikeDescOrder
(
const
ir
::
Graph
&
graph
);
// NOTE(dzh): A ordered set for node reuse in memory optimize.
...
...
paddle/fluid/framework/details/multi_devices_graph_pass.cc
浏览文件 @
6019054c
...
...
@@ -392,20 +392,32 @@ void MultiDevSSAGraphBuilderBase::CreateComputationalOp(ir::Graph *result,
void
MultiDevSSAGraphBuilderBase
::
CreateAllReduceOp
(
ir
::
Graph
*
result
,
const
std
::
string
&
og
)
const
{
OpHandleBase
*
op_handle
=
nullptr
;
auto
append_allreduce_op
=
[
&
](
const
std
::
vector
<
Scope
*>
&
scopes
,
const
std
::
vector
<
platform
::
Place
>
&
places
)
->
OpHandleBase
*
{
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
result
->
Get
<
GraphOps
>
(
kGraphOps
).
emplace_back
(
new
AllReduceOpHandle
(
result
->
CreateEmptyNode
(
"allreduce"
,
ir
::
Node
::
Type
::
kOperation
),
local_scopes_
,
places_
,
nccl_ctxs_
));
scopes
,
places
,
nccl_ctxs_
));
#else
result
->
Get
<
GraphOps
>
(
kGraphOps
).
emplace_back
(
new
AllReduceOpHandle
(
result
->
CreateEmptyNode
(
"allreduce"
,
ir
::
Node
::
Type
::
kOperation
),
local_scopes_
,
places_
));
scopes
,
places
));
#endif
auto
*
op_handle
=
result
->
Get
<
GraphOps
>
(
kGraphOps
).
back
();
return
result
->
Get
<
GraphOps
>
(
kGraphOps
).
back
();
};
if
(
!
strategy_
.
enable_parallel_graph_
)
op_handle
=
append_allreduce_op
(
local_scopes_
,
places_
);
for
(
size_t
i
=
0
;
i
<
places_
.
size
();
++
i
)
{
auto
&
p
=
places_
[
i
];
SetCommunicationContext
(
op_handle
,
p
);
if
(
strategy_
.
enable_parallel_graph_
)
{
op_handle
=
append_allreduce_op
({
local_scopes_
[
i
]},
{
places_
[
i
]});
}
SetCommunicationContext
(
op_handle
,
places_
[
i
]);
auto
&
vars
=
result
->
Get
<
GraphVars
>
(
kGraphVars
)[
i
][
og
];
PADDLE_ENFORCE
(
!
vars
.
empty
());
auto
&
prev_grad
=
vars
.
back
();
...
...
@@ -413,7 +425,7 @@ void MultiDevSSAGraphBuilderBase::CreateAllReduceOp(
auto
var
=
new
VarHandle
(
result
->
CreateEmptyNode
(
og
,
ir
::
Node
::
Type
::
kVariable
),
vars
.
size
(),
i
,
og
,
p
);
vars
.
size
(),
i
,
og
,
p
laces_
[
i
]
);
vars
.
emplace_back
(
var
);
op_handle
->
AddOutput
(
var
);
}
...
...
paddle/fluid/framework/details/multi_devices_helper.h
浏览文件 @
6019054c
...
...
@@ -36,13 +36,14 @@ namespace details {
// map from variable name to variables. The variables, who have the same name,
// will have a differsent version. The offset in the
// `std::vector<VarHandle*>` is the version of varaibles.
typedef
std
::
vector
<
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
VarHandle
*>>>
typedef
std
::
vector
<
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
VarHandle
*>>>
GraphVars
;
const
char
kGraphVars
[]
=
"vars"
;
// aux variables to represent dependency. Useful to resolve data hazard.
typedef
std
::
unordered_set
<
VarHandleBase
*>
GraphDepVars
;
typedef
std
::
unordered_set
<
VarHandleBase
*>
GraphDepVars
;
const
char
kGraphDepVars
[]
=
"dep_vars"
;
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/op_handle_base.h
浏览文件 @
6019054c
...
...
@@ -70,6 +70,9 @@ class OpHandleBase {
auto
it
=
dev_ctxes_
.
find
(
place
);
return
it
!=
dev_ctxes_
.
end
()
?
it
->
second
:
nullptr
;
}
const
std
::
map
<
platform
::
Place
,
platform
::
DeviceContext
*>
&
DeviceContext
()
{
return
dev_ctxes_
;
}
void
SetDeviceContext
(
platform
::
Place
place
,
platform
::
DeviceContext
*
ctx_
)
{
dev_ctxes_
[
place
]
=
ctx_
;
...
...
paddle/fluid/framework/details/parallel_ssa_graph_executor.cc
浏览文件 @
6019054c
...
...
@@ -13,22 +13,92 @@
// limitations under the License.
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
std
::
vector
<
std
::
unique_ptr
<
ir
::
Graph
>>
ParallelSSAGraphExecutor
::
SeparateMultiDevicesGraph
(
std
::
unique_ptr
<
ir
::
Graph
>
&&
graph
)
{
std
::
vector
<
std
::
unique_ptr
<
ir
::
Graph
>>
graphs
;
graphs
.
reserve
(
places_
.
size
());
for
(
size_t
i
=
0
;
i
<
places_
.
size
();
++
i
)
{
ProgramDesc
empty
;
graphs
.
emplace_back
(
std
::
unique_ptr
<
ir
::
Graph
>
(
new
ir
::
Graph
(
empty
)));
auto
&
g
=
graphs
.
back
();
g
->
Set
(
kGraphVars
,
new
GraphVars
(
1UL
));
g
->
Set
(
kGraphDepVars
,
new
GraphDepVars
);
}
auto
op_handles
=
ir
::
FilterByNodeWrapper
<
OpHandleBase
>
(
*
graph
);
for
(
auto
&
op
:
op_handles
)
{
auto
&
dev_ctx
=
op
->
DeviceContext
();
auto
&
p
=
dev_ctx
.
begin
()
->
first
;
int
dev_id
=
boost
::
get
<
platform
::
CUDAPlace
>
(
p
).
device
;
auto
&
dev_dummys
=
graphs
[
dev_id
]
->
Get
<
GraphDepVars
>
(
kGraphDepVars
);
graphs
[
dev_id
]
->
AddNode
(
graph
->
RemoveNode
(
op
->
Node
()).
release
());
for
(
auto
&
var
:
op
->
Inputs
())
{
auto
dummy_ptr
=
dynamic_cast
<
DummyVarHandle
*>
(
var
);
if
(
dummy_ptr
)
{
dev_dummys
.
insert
(
var
);
if
(
graph
->
Nodes
().
count
(
var
->
Node
()))
graphs
[
dev_id
]
->
AddNode
(
graph
->
RemoveNode
(
var
->
Node
()).
release
());
}
}
for
(
auto
&
var
:
op
->
Outputs
())
{
auto
dummy_ptr
=
dynamic_cast
<
DummyVarHandle
*>
(
var
);
if
(
dummy_ptr
)
{
dev_dummys
.
insert
(
var
);
if
(
graph
->
Nodes
().
count
(
var
->
Node
()))
graphs
[
dev_id
]
->
AddNode
(
graph
->
RemoveNode
(
var
->
Node
()).
release
());
}
}
}
for
(
size_t
dev_id
=
0
;
dev_id
<
places_
.
size
();
++
dev_id
)
{
auto
&
dev_vars
=
graphs
[
dev_id
]
->
Get
<
GraphVars
>
(
kGraphVars
)[
0
];
auto
&
origin_vars
=
graph
->
Get
<
GraphVars
>
(
kGraphVars
)[
dev_id
];
for
(
auto
&
name_pair
:
origin_vars
)
{
dev_vars
.
emplace
(
name_pair
.
first
,
name_pair
.
second
);
for
(
auto
&
version_pair
:
name_pair
.
second
)
{
if
(
graph
->
Nodes
().
count
(
version_pair
->
Node
()))
{
graphs
[
dev_id
]
->
AddNode
(
graph
->
RemoveNode
(
version_pair
->
Node
()).
release
());
}
}
}
}
return
graphs
;
}
ParallelSSAGraphExecutor
::
ParallelSSAGraphExecutor
(
const
ExecutionStrategy
&
strategy
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
std
::
vector
<
std
::
unique_ptr
<
ir
::
Graph
>>
&&
graphs
)
const
framework
::
ProgramDesc
&
main_prog
,
std
::
unique_ptr
<
ir
::
Graph
>
&&
graph
)
:
strategy_
(
std
::
move
(
strategy
)),
local_scopes_
(
std
::
move
(
local_scopes
)),
pool_
(
places
.
size
()
>=
2
?
new
::
ThreadPool
(
places
.
size
())
:
nullptr
),
places_
(
std
::
move
(
places
)),
graphs_
(
std
::
move
(
graphs
))
{
main_prog_
(
main_prog
),
// TODO(Yancey1989): Copying graphs is not safely since it deleted the
// attrs.
graphs_
(
SeparateMultiDevicesGraph
(
std
::
move
(
graph
)))
{
PADDLE_ENFORCE_EQ
(
places_
.
size
(),
local_scopes_
.
size
());
auto
seq_allreduce_pass
=
ir
::
PassRegistry
::
Instance
().
Get
(
"all_reduce_deps_pass"
);
seq_allreduce_pass
->
Erase
(
details
::
kAllOpDescs
);
seq_allreduce_pass
->
Set
<
const
std
::
vector
<
OpDesc
*>>
(
details
::
kAllOpDescs
,
new
std
::
vector
<
OpDesc
*>
(
main_prog_
.
Block
(
0
).
AllOps
()));
for
(
size_t
i
=
0
;
i
<
graphs_
.
size
();
++
i
)
{
graphs_
[
i
]
=
seq_allreduce_pass
->
Apply
(
std
::
move
(
graphs_
[
i
]));
}
// set the correct size of thread pool to each device.
strategy_
.
num_threads_
=
strategy_
.
num_threads_
<
places_
.
size
()
?
1UL
...
...
@@ -37,7 +107,7 @@ ParallelSSAGraphExecutor::ParallelSSAGraphExecutor(
<<
" to run the operators of the graph on each device."
;
for
(
size_t
i
=
0
;
i
<
places
.
size
();
++
i
)
{
executors_
.
emplace_back
(
new
details
::
ThreadedSSAGraphExecutor
(
strategy_
,
{
local_scopes_
[
i
]},
{
places_
[
i
]},
std
::
move
(
graphs_
[
i
]
)));
strategy_
,
local_scopes_
,
{
places_
[
i
]},
std
::
move
(
graphs_
.
at
(
i
)
)));
}
}
...
...
paddle/fluid/framework/details/parallel_ssa_graph_executor.h
浏览文件 @
6019054c
...
...
@@ -18,7 +18,9 @@
#include <vector>
#include "ThreadPool.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
#include "paddle/fluid/framework/ir/graph.h"
namespace
paddle
{
namespace
framework
{
...
...
@@ -29,17 +31,23 @@ class ParallelSSAGraphExecutor : public SSAGraphExecutor {
ParallelSSAGraphExecutor
(
const
ExecutionStrategy
&
strategy
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
std
::
vector
<
std
::
unique_ptr
<
ir
::
Graph
>>
&&
graphs
);
const
framework
::
ProgramDesc
&
main_prog
,
std
::
unique_ptr
<
ir
::
Graph
>
&&
graph
);
~
ParallelSSAGraphExecutor
()
final
=
default
;
const
ir
::
Graph
&
Graph
()
const
override
{
return
*
graphs_
[
0
];
}
FeedFetchList
Run
(
const
std
::
vector
<
std
::
string
>
&
fetch_tensors
)
override
;
private:
std
::
vector
<
std
::
unique_ptr
<
ir
::
Graph
>>
SeparateMultiDevicesGraph
(
std
::
unique_ptr
<
ir
::
Graph
>
&&
graph
);
ExecutionStrategy
strategy_
;
std
::
vector
<
Scope
*>
local_scopes_
;
std
::
unique_ptr
<::
ThreadPool
>
pool_
{
nullptr
};
std
::
vector
<
platform
::
Place
>
places_
;
framework
::
ProgramDesc
main_prog_
;
std
::
vector
<
std
::
unique_ptr
<
ir
::
Graph
>>
graphs_
;
std
::
vector
<
std
::
unique_ptr
<
details
::
ThreadedSSAGraphExecutor
>>
executors_
;
...
...
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
浏览文件 @
6019054c
...
...
@@ -219,7 +219,7 @@ void ThreadedSSAGraphExecutor::RunOp(
VLOG
(
10
)
<<
op
<<
" "
<<
op
->
Name
()
<<
" Done "
;
running_ops_
--
;
ready_var_q
->
Extend
(
op
->
Outputs
());
VLOG
(
10
)
<<
op
<<
" "
<<
op
->
Name
()
<<
"Signal posted"
;
VLOG
(
10
)
<<
op
<<
" "
<<
op
->
Name
()
<<
"
Signal posted"
;
}
catch
(...)
{
exception_holder_
.
Catch
(
std
::
current_exception
());
}
...
...
paddle/fluid/framework/ir/graph.h
浏览文件 @
6019054c
...
...
@@ -26,6 +26,14 @@ limitations under the License. */
namespace
paddle
{
namespace
framework
{
namespace
details
{
// This attr is not recommended, because the graph should not dependence
// the program once it is built.
constexpr
char
kAllOpDescs
[]
=
"all_op_descs"
;
}
// namespace details
namespace
ir
{
/*
...
...
@@ -168,10 +176,13 @@ class Graph {
return
ret
;
}
void
RemoveNode
(
ir
::
Node
*
node
)
{
std
::
unique_ptr
<
ir
::
Node
>
RemoveNode
(
ir
::
Node
*
node
)
{
PADDLE_ENFORCE
(
node_set_
.
find
(
node
)
!=
node_set_
.
end
());
node_set_
.
erase
(
node
);
std
::
unique_ptr
<
ir
::
Node
>
ret
;
ret
.
reset
(
nodes_
.
at
(
node
).
release
());
nodes_
.
erase
(
node
);
node_set_
.
erase
(
node
);
return
ret
;
}
// NOTE low performance, but simple and secure.
...
...
@@ -184,13 +195,6 @@ class Graph {
return
nullptr
;
}
void
ResolveHazard
(
const
std
::
map
<
std
::
string
,
std
::
vector
<
ir
::
Node
*>>
&
var_nodes
);
private:
std
::
map
<
std
::
string
,
std
::
vector
<
ir
::
Node
*>>
InitFromProgram
(
const
ProgramDesc
&
program
);
// This method takes ownership of `node`.
ir
::
Node
*
AddNode
(
ir
::
Node
*
node
)
{
PADDLE_ENFORCE
(
node_set_
.
find
(
node
)
==
node_set_
.
end
());
...
...
@@ -199,6 +203,13 @@ class Graph {
return
node
;
}
void
ResolveHazard
(
const
std
::
map
<
std
::
string
,
std
::
vector
<
ir
::
Node
*>>
&
var_nodes
);
private:
std
::
map
<
std
::
string
,
std
::
vector
<
ir
::
Node
*>>
InitFromProgram
(
const
ProgramDesc
&
program
);
// NOTE: program_ shouldn't be exposed to user.
const
ProgramDesc
program_
;
std
::
map
<
std
::
string
,
boost
::
any
>
attrs_
;
...
...
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
6019054c
...
...
@@ -21,6 +21,7 @@ limitations under the License. */
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/details/all_reduce_deps_pass.h"
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
...
...
@@ -193,7 +194,6 @@ ParallelExecutor::ParallelExecutor(
member_
->
use_all_reduce_
=
build_strategy
.
reduce_
==
BuildStrategy
::
ReduceStrategy
::
kAllReduce
;
member_
->
nranks_
=
build_strategy
.
num_trainers_
*
places
.
size
();
if
(
!
member_
->
use_all_reduce_
)
{
PADDLE_ENFORCE
(
places
.
size
()
>
1
,
"If you set build_strategy.reduce with 'Reduce',"
...
...
@@ -221,9 +221,10 @@ ParallelExecutor::ParallelExecutor(
// choice the execution strategy.
build_strategy
.
enable_parallel_graph_
=
EnableParallelGraphExecution
(
main_program
,
exec_strategy
,
build_strategy
);
VLOG
(
1
)
<<
"Enable ParallelGraph Execution: "
<<
build_strategy
.
enable_parallel_graph_
;
if
(
build_strategy
.
enable_parallel_graph_
)
VLOG
(
0
)
<<
"The Executor would execute the graph by ParallelGraph "
"Execution which can get better performance,"
<<
"you can force it off by env FLAGS_enable_parallel_graph=0"
;
if
(
member_
->
use_cuda_
)
{
// Bcast Parameters to all GPUs
...
...
@@ -257,42 +258,27 @@ ParallelExecutor::ParallelExecutor(
// Step 2. Convert main_program to SSA form and dependency graph. Also, insert
// ncclOp
std
::
vector
<
std
::
unique_ptr
<
ir
::
Graph
>>
graphs
;
std
::
unique_ptr
<
ir
::
Graph
>
graph
;
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
if
(
build_strategy
.
enable_parallel_graph_
)
{
for
(
size_t
i
=
0
;
i
<
member_
->
places_
.
size
();
++
i
)
{
std
::
unique_ptr
<
ir
::
Graph
>
graph
=
build_strategy
.
Apply
(
main_program
,
{
member_
->
places_
[
i
]},
loss_var_name
,
{
member_
->
local_scopes_
[
i
]},
member_
->
nranks_
,
member_
->
use_cuda_
,
member_
->
nccl_ctxs_
.
get
());
graphs
.
push_back
(
std
::
move
(
graph
));
}
}
else
{
std
::
unique_ptr
<
ir
::
Graph
>
graph
=
build_strategy
.
Apply
(
main_program
,
member_
->
places_
,
loss_var_name
,
member_
->
local_scopes_
,
member_
->
nranks_
,
member_
->
use_cuda_
,
member_
->
nccl_ctxs_
.
get
());
graphs
.
push_back
(
std
::
move
(
graph
));
}
graph
=
build_strategy
.
Apply
(
main_program
,
member_
->
places_
,
loss_var_name
,
member_
->
local_scopes_
,
member_
->
nranks_
,
member_
->
use_cuda_
,
member_
->
nccl_ctxs_
.
get
());
#else
std
::
unique_ptr
<
ir
::
Graph
>
graph
=
build_strategy
.
Apply
(
main_program
,
member_
->
places_
,
loss_var_name
,
member_
->
local_scopes_
,
member_
->
nranks_
,
member_
->
use_cuda_
);
graphs
.
push_back
(
std
::
move
(
graph
));
graph
=
build_strategy
.
Apply
(
main_program
,
member_
->
places_
,
loss_var_name
,
member_
->
local_scopes_
,
member_
->
nranks_
,
member_
->
use_cuda_
);
#endif
auto
max_memory_size
=
GetEagerDeletionThreshold
();
VLOG
(
10
)
<<
"Eager Deletion Threshold "
<<
static_cast
<
float
>
(
max_memory_size
)
/
(
1
<<
30
);
if
(
max_memory_size
>=
0
)
{
for
(
size_t
i
=
0
;
i
<
graphs
.
size
();
++
i
)
{
graphs
[
i
]
=
member_
->
PrepareGCAndRefCnts
(
std
::
move
(
graphs
[
i
]),
static_cast
<
size_t
>
(
max_memory_size
));
}
graph
=
member_
->
PrepareGCAndRefCnts
(
std
::
move
(
graph
),
static_cast
<
size_t
>
(
max_memory_size
));
}
// Step 3. Create vars in each scope. Passes may also create new vars.
// skip control vars and empty vars
std
::
vector
<
details
::
VariableInfo
>
var_infos
;
for
(
auto
&
graph
:
graphs
)
{
for
(
auto
&
node
:
graph
->
Nodes
())
{
if
(
node
->
IsVar
()
&&
!
node
->
IsCtrlVar
()
&&
node
->
Var
())
{
var_infos
.
emplace_back
();
...
...
@@ -301,16 +287,15 @@ ParallelExecutor::ParallelExecutor(
var_infos
.
back
().
persistable_
=
node
->
Var
()
->
Persistable
();
}
}
}
// If the loss_var_name is given, the number of graph should be only one.
if
(
loss_var_name
.
size
())
{
size_t
graph_num
=
ir
::
GraphNum
(
*
graph
s
[
0
]
);
size_t
graph_num
=
ir
::
GraphNum
(
*
graph
);
if
(
graph_num
>
1
)
{
LOG
(
WARNING
)
<<
"The number of graph should be only one, "
"but the current graph has "
<<
ir
::
GraphNum
(
*
graph
s
[
0
]
)
<<
ir
::
GraphNum
(
*
graph
)
<<
" sub_graphs. If you want to see the nodes of the "
"sub_graphs, you should use 'FLAGS_print_sub_graph_dir' "
"to specify the output dir. NOTES: if you not do training, "
...
...
@@ -319,18 +304,25 @@ ParallelExecutor::ParallelExecutor(
}
if
(
build_strategy
.
enable_parallel_graph_
)
{
#ifdef PADDLE_WITH_CUDA
// TODO(Yancey1989): Remove passing in the main_program when
// allreduce_seq_pass doesn't need it as the attr.
member_
->
executor_
.
reset
(
new
details
::
ParallelSSAGraphExecutor
(
exec_strategy
,
member_
->
local_scopes_
,
member_
->
places_
,
std
::
move
(
graphs
)));
exec_strategy
,
member_
->
local_scopes_
,
member_
->
places_
,
main_program
,
std
::
move
(
graph
)));
#else
PADDLE_THROW
(
"Paddle should be compiled with CUDA for ParallelGraph Execution."
);
#endif
}
else
{
if
(
exec_strategy
.
type_
==
ExecutionStrategy
::
kDefault
)
{
member_
->
executor_
.
reset
(
new
details
::
ThreadedSSAGraphExecutor
(
exec_strategy
,
member_
->
local_scopes_
,
member_
->
places_
,
std
::
move
(
graph
s
[
0
]
)));
std
::
move
(
graph
)));
}
else
{
member_
->
executor_
.
reset
(
new
details
::
FastThreadedSSAGraphExecutor
(
exec_strategy
,
member_
->
local_scopes_
,
member_
->
places_
,
std
::
move
(
graph
s
[
0
]
)));
std
::
move
(
graph
)));
}
}
...
...
@@ -482,7 +474,6 @@ bool ParallelExecutor::EnableParallelGraphExecution(
}
if
(
!
member_
->
use_all_reduce_
||
!
member_
->
use_cuda_
)
enable_parallel_graph
=
false
;
if
(
build_strategy
.
enable_sequential_execution_
||
exec_strategy
.
type_
==
ExecutionStrategy
::
ExecutorType
::
kExperimental
)
...
...
python/paddle/fluid/tests/unittests/test_parallel_executor_pg.py
0 → 100644
浏览文件 @
6019054c
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
os
os
.
environ
[
'FLAGS_enable_parallel_graph'
]
=
str
(
1
)
import
paddle.fluid.core
as
core
import
os
import
paddle.fluid
as
fluid
from
parallel_executor_test_base
import
TestParallelExecutorBase
def
simple_fc_net
(
use_feed
):
img
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
784
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
hidden
=
img
for
_
in
range
(
4
):
hidden
=
fluid
.
layers
.
fc
(
hidden
,
size
=
200
,
act
=
'tanh'
,
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
1.0
)))
prediction
=
fluid
.
layers
.
fc
(
hidden
,
size
=
10
,
act
=
'softmax'
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
loss
=
fluid
.
layers
.
mean
(
loss
)
return
loss
class
TestMNIST
(
TestParallelExecutorBase
):
@
classmethod
def
setUpClass
(
cls
):
os
.
environ
[
'CPU_NUM'
]
=
str
(
4
)
def
_init_data
(
self
):
np
.
random
.
seed
(
5
)
img
=
np
.
random
.
random
(
size
=
[
32
,
784
]).
astype
(
np
.
float32
)
label
=
np
.
ones
(
shape
=
[
32
,
1
],
dtype
=
'int64'
)
return
img
,
label
# simple_fc
def
check_simple_fc_convergence
(
self
,
use_cuda
,
use_reduce
=
False
):
if
use_cuda
and
not
core
.
is_compiled_with_cuda
():
return
img
,
label
=
self
.
_init_data
()
self
.
check_network_convergence
(
simple_fc_net
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
use_cuda
=
use_cuda
,
use_reduce
=
use_reduce
)
def
test_simple_fc
(
self
):
# use_cuda
self
.
check_simple_fc_convergence
(
True
)
def
check_simple_fc_parallel_accuracy
(
self
,
use_cuda
):
if
use_cuda
and
not
core
.
is_compiled_with_cuda
():
return
img
,
label
=
self
.
_init_data
()
single_first_loss
,
single_last_loss
=
self
.
check_network_convergence
(
method
=
simple_fc_net
,
seed
=
1
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
use_cuda
=
use_cuda
,
use_parallel_executor
=
False
)
parallel_first_loss
,
parallel_last_loss
=
self
.
check_network_convergence
(
method
=
simple_fc_net
,
seed
=
1
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
use_cuda
=
use_cuda
,
use_parallel_executor
=
True
)
self
.
assertAlmostEquals
(
np
.
mean
(
parallel_first_loss
),
single_first_loss
,
delta
=
1e-6
,
)
self
.
assertAlmostEquals
(
np
.
mean
(
parallel_last_loss
),
single_last_loss
,
delta
=
1e-6
)
def
test_simple_fc_parallel_accuracy
(
self
):
self
.
check_simple_fc_parallel_accuracy
(
True
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录