Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
5e7bb6a9
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
5e7bb6a9
编写于
11月 05, 2018
作者:
B
barrierye
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update docs test=develop
上级
316e020a
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
27 addition
and
17 deletion
+27
-17
paddle/fluid/operators/similarity_focus_op.cc
paddle/fluid/operators/similarity_focus_op.cc
+11
-8
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+16
-9
未找到文件。
paddle/fluid/operators/similarity_focus_op.cc
浏览文件 @
5e7bb6a9
...
...
@@ -35,14 +35,17 @@ class SimilarityFocusOpMaker : public framework::OpProtoAndCheckerMaker {
SimilarityFocus Operator.
Generate a similarity focus mask with the same shape of input using the following method:
1. Extract the
4-D matrix(here the first dimension is BatchSize) corresponding
1. Extract the
3-D tensor(here the first dimension is BatchSize) corresponding
to the axis according to the indexes. For example, if axis=1 and indexes=[a],
it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
is (BatchSize, A, B, C), the shape of matrix T is (BatchSize, B, C).
2. For each index, find the largest numbers in the matrix T, so that the same
row and same column has at most one number(obviously there will be min(B, C)
numbers), and mark the corresponding position of the 3-D similarity focus mask
as 1, otherwise as 0. Do elementwise-or for each index.
is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
2. For each index, find the largest numbers in the tensor T, so that the same
row and same column has at most one number(what it means is that if the
largest number has been found in the i-th row and the j-th column, then
the numbers in the i-th or j-th column will be skipped. Obviously there
will be min(B, C) numbers), and mark the corresponding position of the
3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
each index.
3. Broadcast the 3-D similarity focus mask to the same shape of input X.
Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
5e7bb6a9
...
...
@@ -7560,14 +7560,17 @@ def similarity_focus(input, axis, indexes, name=None):
SimilarityFocus Operator
Generate a similarity focus mask with the same shape of input using the following method:
1. Extract the
4-D matrix
(here the first dimension is BatchSize) corresponding
1. Extract the
3-D tensor
(here the first dimension is BatchSize) corresponding
to the axis according to the indexes. For example, if axis=1 and indexes=[a],
it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
is (BatchSize, A, B, C), the shape of matrix T is (BatchSize, B, C).
2. For each index, find the largest numbers in the matrix T, so that the same
row and same column has at most one number(obviously there will be min(B, C)
numbers), and mark the corresponding position of the 3-D similarity focus mask
as 1, otherwise as 0. Do elementwise-or for each index.
is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
2. For each index, find the largest numbers in the tensor T, so that the same
row and same column has at most one number(what it means is that if the
largest number has been found in the i-th row and the j-th column, then
the numbers in the i-th or j-th column will be skipped. Obviously there
will be min(B, C) numbers), and mark the corresponding position of the
3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
each index.
3. Broadcast the 3-D similarity focus mask to the same shape of input X.
Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_
...
...
@@ -7624,9 +7627,9 @@ def similarity_focus(input, axis, indexes, name=None):
Args:
input(Variable): The input tensor variable(default float). It should
be a 4-D tensor with shape [BatchSize, A, B, C].
axis(int): Indicating the dimension to be select. It can only be
axis(int): Indicating the dimension to be select
ed
. It can only be
1, 2 or 3.
indexes(list):
i
ndicating the indexes of the selected dimension.
indexes(list):
I
ndicating the indexes of the selected dimension.
Returns:
Variable: A tensor variable with the same shape and same type
...
...
@@ -7649,7 +7652,11 @@ def similarity_focus(input, axis, indexes, name=None):
if
len
(
indexes
)
==
0
:
raise
ValueError
(
"indexes can not be empty."
)
out
=
helper
.
create_tmp_variable
(
dtype
=
helper
.
input_dtype
())
if
name
is
None
:
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
input
.
dtype
)
else
:
out
=
helper
.
create_variable
(
name
=
name
,
dtype
=
input
.
dtype
,
persistable
=
False
)
helper
.
append_op
(
type
=
'similarity_focus'
,
inputs
=
{
'X'
:
input
},
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录