未验证 提交 5d03c3eb 编写于 作者: X xiaoxiaohehe001 提交者: GitHub

[Paddle Inference]Add yolo_box op TRT converter unittest (#35533)

* [Paddle Inference]Add yolo_box op TRT converter unittest

* add_yolo_box_teller

* add_yolo_box_teller

* add_yolo_box_teller

* add_yolo_box_teller

* add_yolo_box_teller
上级 fdd069f8
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
class TrtConvertYoloBoxTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True
def sample_program_configs(self):
def generate_input1(attrs: List[Dict[str, Any]], batch, channel):
if attrs[0]['iou_aware'] == True:
return np.ones(
[batch, 3 * (channel + 6), 13, 13]).astype(np.float32)
else:
return np.ones(
[batch, 3 * (channel + 5), 13, 13]).astype(np.float32)
def generate_input2(attrs: List[Dict[str, Any]], batch):
return np.random.random([batch, 2]).astype(np.int32)
for batch in [1, 2, 4]:
for class_num in [80, 30]:
for anchors in [[10, 13, 16, 30, 33, 23]]:
for downsample_ratio in [32, 16]:
for conf_thresh in [0.01, 0.02]:
for clip_bbox in [True, False]:
for scale_x_y in [1.0, 0.9]:
for iou_aware in [False, True]:
for iou_aware_factor in [0.5]:
dics = [{
"class_num": class_num,
"anchors": anchors,
"downsample_ratio":
downsample_ratio,
"conf_thresh": conf_thresh,
"clip_bbox": clip_bbox,
"scale_x_y": scale_x_y,
"iou_aware": iou_aware,
"iou_aware_factor":
iou_aware_factor
}, {}]
ops_config = [{
"op_type": "yolo_box",
"op_inputs": {
"X": ["yolo_box_input"],
"ImgSize": ["imgsize"]
},
"op_outputs": {
"Boxes": ["boxes"],
"Scores": ["scores"]
},
"op_attrs": dics[0]
}]
ops = self.generate_op_config(
ops_config)
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"yolo_box_input":
TensorConfig(
data_gen=partial(
generate_input1,
dics, batch,
class_num)),
"imgsize": TensorConfig(
data_gen=partial(
generate_input2,
dics, batch))
},
outputs=["boxes", "scores"])
yield program_config
def sample_predictor_configs(
self, program_config) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
if attrs[0]['iou_aware'] == True:
channel = 3 * (attrs[0]['class_num'] + 6)
self.dynamic_shape.min_input_shape = {
"scale_input": [1, channel, 24, 24]
}
self.dynamic_shape.max_input_shape = {
"scale_input": [4, channel, 48, 48]
}
self.dynamic_shape.opt_input_shape = {
"scale_input": [1, channel, 24, 48]
}
else:
channel = 3 * (attrs[0]['class_num'] + 5)
self.dynamic_shape.min_input_shape = {
"scale_input": [1, channel, 24, 24]
}
self.dynamic_shape.max_input_shape = {
"scale_input": [4, channel, 48, 48]
}
self.dynamic_shape.opt_input_shape = {
"scale_input": [1, channel, 24, 48]
}
def clear_dynamic_shape():
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.opt_input_shape = {}
def generate_trt_nodes_num(attrs, dynamic_shape):
if dynamic_shape == True:
return 0, 5
else:
return 1, 4
attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]
# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-3
# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(attrs,
True), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(attrs,
True), 1e-3
def add_skip_trt_case(self):
pass
def test(self):
self.add_skip_trt_case()
self.run_test()
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册