Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
5cef7a2f
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
5cef7a2f
编写于
9月 27, 2019
作者:
D
danleifeng
提交者:
gongweibao
9月 27, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Polish English docs of elementwise_add/sub/mul/div (#20027)
Polish English docs of elementwise_add/sub/mul/div
上级
b9163350
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
390 addition
and
29 deletion
+390
-29
paddle/fluid/API.spec
paddle/fluid/API.spec
+4
-4
paddle/fluid/operators/elementwise/elementwise_add_op.cc
paddle/fluid/operators/elementwise/elementwise_add_op.cc
+24
-2
paddle/fluid/operators/elementwise/elementwise_div_op.cc
paddle/fluid/operators/elementwise/elementwise_div_op.cc
+16
-0
paddle/fluid/operators/elementwise/elementwise_mul_op.cc
paddle/fluid/operators/elementwise/elementwise_mul_op.cc
+22
-6
paddle/fluid/operators/elementwise/elementwise_op.h
paddle/fluid/operators/elementwise/elementwise_op.h
+5
-11
paddle/fluid/operators/elementwise/elementwise_sub_op.cc
paddle/fluid/operators/elementwise/elementwise_sub_op.cc
+23
-2
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+296
-4
未找到文件。
paddle/fluid/API.spec
浏览文件 @
5cef7a2f
...
...
@@ -236,10 +236,10 @@ paddle.fluid.layers.unique_with_counts (ArgSpec(args=['x', 'dtype'], varargs=Non
paddle.fluid.layers.expand (ArgSpec(args=['x', 'expand_times', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '7b97042c3ba55fb5fec6a06308523b73'))
paddle.fluid.layers.sequence_concat (ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'b992616c1afbd6b0c2a897ac23036381'))
paddle.fluid.layers.scale (ArgSpec(args=['x', 'scale', 'bias', 'bias_after_scale', 'act', 'name'], varargs=None, keywords=None, defaults=(1.0, 0.0, True, None, None)), ('document', '463e4713806e5adaa4d20a41e2218453'))
paddle.fluid.layers.elementwise_add (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '7
fa4f12d3dad010f3862df271b31e4de
'))
paddle.fluid.layers.elementwise_div (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '
39ee2e90c1ede44e47f279fc466f3151
'))
paddle.fluid.layers.elementwise_sub (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '
890017540bd2f982f80da81a98832609
'))
paddle.fluid.layers.elementwise_mul (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '
7994818219805a2ec34a37cd9baceeb7
'))
paddle.fluid.layers.elementwise_add (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '7
7ab8a79746ce9b96625c6195c27dfbd
'))
paddle.fluid.layers.elementwise_div (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '
128d140ac78c610c35fc38663baf9654
'))
paddle.fluid.layers.elementwise_sub (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '
061219cf5a710c090eb5b31d0a0d841d
'))
paddle.fluid.layers.elementwise_mul (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '
57d99bd329b8ea842802a7ea52724163
'))
paddle.fluid.layers.elementwise_max (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '3b3c2e528712552f6f44aef88796321d'))
paddle.fluid.layers.elementwise_min (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '817e8ce2b39de9b4a94b1b6d592144e0'))
paddle.fluid.layers.elementwise_pow (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', 'b5e3964c8711058634cf5b57b4884258'))
...
...
paddle/fluid/operators/elementwise/elementwise_add_op.cc
浏览文件 @
5cef7a2f
...
...
@@ -20,6 +20,28 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
class
ElementwiseAddOpMaker
:
public
ElementwiseOpMaker
{
protected:
std
::
string
GetName
()
const
override
{
return
"Add"
;
}
std
::
string
GetEquation
()
const
override
{
return
"Out = X + Y"
;
}
void
AddInputX
()
override
{
AddInput
(
"X"
,
"(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
"should be int32, int64, float32, float64."
);
}
void
AddInputY
()
override
{
AddInput
(
"Y"
,
"(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
"should be int32, int64, float32, float64."
);
}
std
::
string
GetOpFuntionality
()
const
override
{
return
"Add two tensors element-wise"
;
}
};
class
ElementwiseAddDoubleGradDescMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
...
...
@@ -45,10 +67,10 @@ class ElementwiseAddDoubleGradDescMaker
}
// namespace paddle
REGISTER_ELEMWISE_GRAD_MAKER
(
elementwise_add
,
Add
);
REGISTER_ELEMWISE_EXPLICIT_OP_WITHOUT_GRAD
(
elementwise_add
,
"Add"
,
"Out = X + Y"
);
REGISTER_ELEMWISE_EXPLICIT_OP_WITHOUT_GRAD
(
elementwise_add
,
Add
);
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
elementwise_add_grad
,
ops
::
ElementwiseOpExplicitGrad
,
ops
::
ElementwiseGradOpInplace
,
ops
::
ElementwiseGradNoBufVarsInference
,
...
...
paddle/fluid/operators/elementwise/elementwise_div_op.cc
浏览文件 @
5cef7a2f
...
...
@@ -24,6 +24,22 @@ class ElementwiseDivOpMaker : public ElementwiseOpMaker {
protected:
std
::
string
GetName
()
const
override
{
return
"Div"
;
}
std
::
string
GetEquation
()
const
override
{
return
"Out = X / Y"
;
}
void
AddInputX
()
override
{
AddInput
(
"X"
,
"(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
"should be int32, int64, float32, float64."
);
}
void
AddInputY
()
override
{
AddInput
(
"Y"
,
"(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
"should be int32, int64, float32, float64."
);
}
std
::
string
GetOpFuntionality
()
const
override
{
return
"Divide two tensors element-wise"
;
}
};
class
ElementwiseDivGradOpDescMaker
:
public
framework
::
SingleGradOpDescMaker
{
...
...
paddle/fluid/operators/elementwise/elementwise_mul_op.cc
浏览文件 @
5cef7a2f
...
...
@@ -20,6 +20,28 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
class
ElementwiseMulOpMaker
:
public
ElementwiseOpMaker
{
protected:
std
::
string
GetName
()
const
override
{
return
"Mul"
;
}
std
::
string
GetEquation
()
const
override
{
return
"Out = X
\\\\
odot Y"
;
}
void
AddInputX
()
override
{
AddInput
(
"X"
,
"(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
"should be int32, int64, float32, float64."
);
}
void
AddInputY
()
override
{
AddInput
(
"Y"
,
"(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
"should be int32, int64, float32, float64."
);
}
std
::
string
GetOpFuntionality
()
const
override
{
return
"Multiply two tensors element-wise"
;
}
};
class
ElementwiseMulOpGradDescMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
...
...
@@ -38,12 +60,6 @@ class ElementwiseMulOpGradDescMaker : public framework::SingleGradOpDescMaker {
}
};
class
ElementwiseMulOpMaker
:
public
ElementwiseOpMaker
{
protected:
virtual
std
::
string
GetName
()
const
{
return
"Mul"
;
}
virtual
std
::
string
GetEquation
()
const
{
return
"Out = X
\\\\
odot Y"
;
}
};
class
ElementwiseMulDoubleGradDescMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
...
...
paddle/fluid/operators/elementwise/elementwise_op.h
浏览文件 @
5cef7a2f
...
...
@@ -413,15 +413,9 @@ DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(ElementwiseDoubleGradNoBufVarsInference,
::paddle::operators::ElementwiseGradOpInplace, \
::paddle::operators::ElementwiseGradNoBufVarsInference)
#define REGISTER_ELEMWISE_EXPLICIT_OP_WITHOUT_GRAD(op_type, op_name, equation) \
class __ElemwiseOp##op_type##Maker__ \
: public ::paddle::operators::ElementwiseOpMaker { \
protected: \
virtual std::string GetName() const { return op_name; } \
virtual std::string GetEquation() const { return equation; } \
}; \
#define REGISTER_ELEMWISE_EXPLICIT_OP_WITHOUT_GRAD(op_type, op_name) \
REGISTER_OPERATOR(op_type, ::paddle::operators::ElementwiseOp, \
__ElemwiseOp##op_type##Maker__,
\
::paddle::operators::Elementwise##op_name##OpMaker,
\
::paddle::operators::ElementwiseOpInferVarType, \
op_type##GradMaker, \
::paddle::operators::ElementwiseOpInplace);
paddle/fluid/operators/elementwise/elementwise_sub_op.cc
浏览文件 @
5cef7a2f
...
...
@@ -20,6 +20,28 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
class
ElementwiseSubOpMaker
:
public
ElementwiseOpMaker
{
protected:
std
::
string
GetName
()
const
override
{
return
"Sub"
;
}
std
::
string
GetEquation
()
const
override
{
return
"Out = X - Y"
;
}
void
AddInputX
()
override
{
AddInput
(
"X"
,
"(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
"should be int32, int64, float32, float64."
);
}
void
AddInputY
()
override
{
AddInput
(
"Y"
,
"(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
"should be int32, int64, float32, float64."
);
}
std
::
string
GetOpFuntionality
()
const
override
{
return
"Substract two tensors element-wise"
;
}
};
class
ElementwiseSubDoubleGradDescMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
...
...
@@ -46,8 +68,7 @@ class ElementwiseSubDoubleGradDescMaker
namespace
ops
=
paddle
::
operators
;
REGISTER_ELEMWISE_GRAD_MAKER
(
elementwise_sub
,
Sub
);
REGISTER_ELEMWISE_EXPLICIT_OP_WITHOUT_GRAD
(
elementwise_sub
,
"Sub"
,
"Out = X - Y"
);
REGISTER_ELEMWISE_EXPLICIT_OP_WITHOUT_GRAD
(
elementwise_sub
,
Sub
);
REGISTER_OPERATOR
(
elementwise_sub_grad
,
ops
::
ElementwiseOpExplicitGrad
,
ops
::
ElementwiseGradOpInplace
,
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
5cef7a2f
...
...
@@ -11702,18 +11702,310 @@ def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
def elementwise_add(x, y, axis=-1, act=None, name=None):
"""
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
def gen_data():
return {
"x": np.array([2, 3, 4]),
"y": np.array([1, 5, 2])
}
x = fluid.layers.data(name="x", shape=[3], dtype='float32')
y = fluid.layers.data(name="y", shape=[3], dtype='float32')
z = fluid.layers.elementwise_add(x, y)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
z_value = exe.run(feed=gen_data(),
fetch_list=[z.name])
print(z_value) #[3., 8., 6.]
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
def gen_data():
return {
"x": np.ones((2, 3, 4, 5)).astype('float32'),
"y": np.zeros((3, 4)).astype('float32')
}
x = fluid.layers.data(name="x", shape=[2,3,4,5], dtype='float32')
y = fluid.layers.data(name="y", shape=[3,4], dtype='float32')
z = fluid.layers.elementwise_add(x, y, axis=1)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
z_value = exe.run(feed=gen_data(),
fetch_list=[z.name])
print(z_value) # z.shape=[2,3,4,5]
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
def gen_data():
return {
"x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
"y": np.random.randint(1, 5, size=[5]).astype('float32')
}
x = fluid.layers.data(name="x", shape=[2,3,4,5], dtype='float32')
y = fluid.layers.data(name="y", shape=[3,4], dtype='float32')
z = fluid.layers.elementwise_add(x, y, axis=3)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
z_value = exe.run(feed=gen_data(),
fetch_list=[z.name])
print(z_value) # z.shape=[2,3,4,5]
"""
return _elementwise_op(LayerHelper('elementwise_add', **locals()))
def elementwise_div(x, y, axis=-1, act=None, name=None):
"""
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
def gen_data():
return {
"x": np.array([2, 3, 4]),
"y": np.array([1, 5, 2])
}
x = fluid.layers.data(name="x", shape=[3], dtype='float32')
y = fluid.layers.data(name="y", shape=[3], dtype='float32')
z = fluid.layers.elementwise_div(x, y)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
z_value = exe.run(feed=gen_data(),
fetch_list=[z.name])
print(z_value) #[2., 0.6, 2.]
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
def gen_data():
return {
"x": np.ones((2, 3, 4, 5)).astype('float32'),
"y": np.zeros((3, 4)).astype('float32')
}
x = fluid.layers.data(name="x", shape=[2,3,4,5], dtype='float32')
y = fluid.layers.data(name="y", shape=[3,4], dtype='float32')
z = fluid.layers.elementwise_div(x, y, axis=1)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
z_value = exe.run(feed=gen_data(),
fetch_list=[z.name])
print(z_value) # z.shape=[2,3,4,5]
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
def gen_data():
return {
"x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
"y": np.random.randint(1, 5, size=[5]).astype('float32')
}
x = fluid.layers.data(name="x", shape=[2,3,4,5], dtype='float32')
y = fluid.layers.data(name="y", shape=[3,4], dtype='float32')
z = fluid.layers.elementwise_div(x, y, axis=3)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
z_value = exe.run(feed=gen_data(),
fetch_list=[z.name])
print(z_value) # z.shape=[2,3,4,5]
"""
return _elementwise_op(LayerHelper('elementwise_div', **locals()))
def elementwise_sub(x, y, axis=-1, act=None, name=None):
"""
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
def gen_data():
return {
"x": np.array([2, 3, 4]),
"y": np.array([1, 5, 2])
}
x = fluid.layers.data(name="x", shape=[3], dtype='float32')
y = fluid.layers.data(name="y", shape=[3], dtype='float32')
z = fluid.layers.elementwise_sub(x, y)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
z_value = exe.run(feed=gen_data(),
fetch_list=[z.name])
print(z_value) #[1., -2., 2.]
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
def gen_data():
return {
"x": np.ones((2, 3, 4, 5)).astype('float32'),
"y": np.zeros((3, 4)).astype('float32')
}
x = fluid.layers.data(name="x", shape=[2,3,4,5], dtype='float32')
y = fluid.layers.data(name="y", shape=[3,4], dtype='float32')
z = fluid.layers.elementwise_sub(x, y, axis=1)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
z_value = exe.run(feed=gen_data(),
fetch_list=[z.name])
print(z_value) # z.shape=[2,3,4,5]
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
def gen_data():
return {
"x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
"y": np.random.randint(1, 5, size=[5]).astype('float32')
}
x = fluid.layers.data(name="x", shape=[2,3,4,5], dtype='float32')
y = fluid.layers.data(name="y", shape=[3,4], dtype='float32')
z = fluid.layers.elementwise_sub(x, y, axis=3)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
z_value = exe.run(feed=gen_data(),
fetch_list=[z.name])
print(z_value) # z.shape=[2,3,4,5]
"""
return _elementwise_op(LayerHelper('elementwise_sub', **locals()))
def elementwise_mul(x, y, axis=-1, act=None, name=None):
"""
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
def gen_data():
return {
"x": np.array([2, 3, 4]),
"y": np.array([1, 5, 2])
}
x = fluid.layers.data(name="x", shape=[3], dtype='float32')
y = fluid.layers.data(name="y", shape=[3], dtype='float32')
z = fluid.layers.elementwise_mul(x, y)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
z_value = exe.run(feed=gen_data(),
fetch_list=[z.name])
print(z_value) #[2., 15., 8.]
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
def gen_data():
return {
"x": np.ones((2, 3, 4, 5)).astype('float32'),
"y": np.zeros((3, 4)).astype('float32')
}
x = fluid.layers.data(name="x", shape=[2,3,4,5], dtype='float32')
y = fluid.layers.data(name="y", shape=[3,4], dtype='float32')
z = fluid.layers.elementwise_mul(x, y, axis=1)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
z_value = exe.run(feed=gen_data(),
fetch_list=[z.name])
print(z_value) # z.shape=[2,3,4,5]
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
def gen_data():
return {
"x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
"y": np.random.randint(1, 5, size=[5]).astype('float32')
}
x = fluid.layers.data(name="x", shape=[2,3,4,5], dtype='float32')
y = fluid.layers.data(name="y", shape=[3,4], dtype='float32')
z = fluid.layers.elementwise_mul(x, y, axis=3)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
z_value = exe.run(feed=gen_data(),
fetch_list=[z.name])
print(z_value) # z.shape=[2,3,4,5]
"""
return _elementwise_op(LayerHelper('elementwise_mul', **locals()))
...
...
@@ -11863,6 +12155,10 @@ def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
for func in [
elementwise_add,
elementwise_div,
elementwise_sub,
elementwise_mul,
elementwise_max,
elementwise_pow,
elementwise_min,
...
...
@@ -11886,10 +12182,6 @@ for func in [
for func in [
elementwise_mod,
elementwise_floordiv,
elementwise_add,
elementwise_div,
elementwise_sub,
elementwise_mul,
]:
op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
func.__doc__ = _generate_doc_string_(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录