Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
5ca0b762
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
5ca0b762
编写于
2月 08, 2018
作者:
W
wanghaox
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add OutPosCount for detection_map op
上级
a0b57ac7
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
271 addition
and
19 deletion
+271
-19
paddle/operators/detection_map_op.cc
paddle/operators/detection_map_op.cc
+41
-6
paddle/operators/detection_map_op.h
paddle/operators/detection_map_op.h
+130
-2
python/paddle/v2/fluid/tests/test_detection_map_op.py
python/paddle/v2/fluid/tests/test_detection_map_op.py
+100
-11
未找到文件。
paddle/operators/detection_map_op.cc
浏览文件 @
5ca0b762
/* Copyright (c) 201
6
PaddlePaddle Authors. All Rights Reserve.
/* Copyright (c) 201
8
PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
...
...
@@ -28,6 +28,12 @@ class DetectionMAPOp : public framework::OperatorWithKernel {
"Input(Detection) of DetectionMAPOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Label"
),
"Input(Label) of DetectionMAPOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"OutPosCount"
),
"Output(OutPosCount) of DetectionMAPOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"OutTruePos"
),
"Output(OutTruePos) of DetectionMAPOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"OutFalsePos"
),
"Output(OutFalsePos) of DetectionMAPOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"MAP"
),
"Output(MAP) of DetectionMAPOp should not be null."
);
...
...
@@ -44,9 +50,6 @@ class DetectionMAPOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
label_dims
[
1
],
6UL
,
"The shape is of Input(Label) [N, 6]."
);
auto
ap_type
=
GetAPType
(
ctx
->
Attrs
().
Get
<
std
::
string
>
(
"ap_type"
));
PADDLE_ENFORCE_NE
(
ap_type
,
APType
::
kNone
,
"The ap_type should be 'integral' or '11point."
);
auto
map_dim
=
framework
::
make_ddim
({
1
});
ctx
->
SetOutputDim
(
"MAP"
,
map_dim
);
}
...
...
@@ -55,7 +58,8 @@ class DetectionMAPOp : public framework::OperatorWithKernel {
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
Tensor
>
(
"Label"
)
->
type
()),
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
Tensor
>
(
"Detection"
)
->
type
()),
ctx
.
device_context
());
}
};
...
...
@@ -80,6 +84,33 @@ class DetectionMAPOpMaker : public framework::OpProtoAndCheckerMaker {
"the offsets in first dimension are called LoD, the number of "
"offset is N + 1, if LoD[i + 1] - LoD[i] == 0, means there is "
"no detected data."
);
AddInput
(
"PosCount"
,
"(Tensor) A tensor with shape [Ncls, 1], store the "
"input positive example count of each class."
)
.
AsDispensable
();
AddInput
(
"TruePos"
,
"(LodTensor) A 2-D LodTensor with shape [Ntp, 2], store the "
"input true positive example of each class."
)
.
AsDispensable
();
AddInput
(
"FalsePos"
,
"(LodTensor) A 2-D LodTensor with shape [Nfp, 2], store the "
"input false positive example of each class."
)
.
AsDispensable
();
AddOutput
(
"OutPosCount"
,
"(Tensor) A tensor with shape [Ncls, 1], store the "
"positive example count of each class. It combines the input "
"input(PosCount) and the positive example count computed from "
"input(Detection) and input(Label)."
);
AddOutput
(
"OutTruePos"
,
"(LodTensor) A LodTensor with shape [Ntp', 2], store the "
"true positive example of each class. It combines the "
"input(TruePos) and the true positive examples computed from "
"input(Detection) and input(Label)."
);
AddOutput
(
"OutFalsePos"
,
"(LodTensor) A LodTensor with shape [Nfp', 2], store the "
"false positive example of each class. It combines the "
"input(FalsePos) and the false positive examples computed from "
"input(Detection) and input(Label)."
);
AddOutput
(
"MAP"
,
"(Tensor) A tensor with shape [1], store the mAP evaluate "
"result of the detection."
);
...
...
@@ -97,7 +128,11 @@ class DetectionMAPOpMaker : public framework::OpProtoAndCheckerMaker {
"(string, default 'integral') "
"The AP algorithm type, 'integral' or '11point'."
)
.
SetDefault
(
"integral"
)
.
InEnum
({
"integral"
,
"11point"
});
.
InEnum
({
"integral"
,
"11point"
})
.
AddCustomChecker
([](
const
std
::
string
&
ap_type
)
{
PADDLE_ENFORCE_NE
(
GetAPType
(
ap_type
),
APType
::
kNone
,
"The ap_type should be 'integral' or '11point."
);
});
AddComment
(
R"DOC(
Detection mAP evaluate operator.
The general steps are as follows. First, calculate the true positive and
...
...
paddle/operators/detection_map_op.h
浏览文件 @
5ca0b762
/* Copyright (c) 201
6
PaddlePaddle Authors. All Rights Reserve.
/* Copyright (c) 201
8
PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
...
...
@@ -58,6 +58,14 @@ class DetectionMAPOpKernel : public framework::OpKernel<T> {
auto
*
in_label
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Label"
);
auto
*
out_map
=
ctx
.
Output
<
framework
::
Tensor
>
(
"MAP"
);
auto
*
in_pos_count
=
ctx
.
Input
<
framework
::
Tensor
>
(
"PosCount"
);
auto
*
in_true_pos
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"TruePos"
);
auto
*
in_false_pos
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"FalsePos"
);
auto
*
out_pos_count
=
ctx
.
Output
<
framework
::
Tensor
>
(
"OutPosCount"
);
auto
*
out_true_pos
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"OutTruePos"
);
auto
*
out_false_pos
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"OutFalsePos"
);
float
overlap_threshold
=
ctx
.
Attr
<
float
>
(
"overlap_threshold"
);
float
evaluate_difficult
=
ctx
.
Attr
<
bool
>
(
"evaluate_difficult"
);
auto
ap_type
=
GetAPType
(
ctx
.
Attr
<
std
::
string
>
(
"ap_type"
));
...
...
@@ -79,12 +87,20 @@ class DetectionMAPOpKernel : public framework::OpKernel<T> {
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
int
>>>
true_pos
;
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
int
>>>
false_pos
;
if
(
in_pos_count
!=
nullptr
)
{
GetInputPos
(
*
in_pos_count
,
*
in_true_pos
,
*
in_false_pos
,
label_pos_count
,
true_pos
,
false_pos
);
}
CalcTrueAndFalsePositive
(
gt_boxes
,
detect_boxes
,
evaluate_difficult
,
overlap_threshold
,
label_pos_count
,
true_pos
,
false_pos
);
T
map
=
CalcMAP
(
ap_type
,
label_pos_count
,
true_pos
,
false_pos
);
GetOutputPos
(
ctx
,
label_pos_count
,
true_pos
,
false_pos
,
*
out_pos_count
,
*
out_true_pos
,
*
out_false_pos
);
T
*
map_data
=
out_map
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
map_data
[
0
]
=
map
;
}
...
...
@@ -161,6 +177,119 @@ class DetectionMAPOpKernel : public framework::OpKernel<T> {
}
}
void
GetOutputPos
(
const
framework
::
ExecutionContext
&
ctx
,
const
std
::
map
<
int
,
int
>&
label_pos_count
,
const
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
int
>>>&
true_pos
,
const
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
int
>>>&
false_pos
,
framework
::
Tensor
&
output_pos_count
,
framework
::
LoDTensor
&
output_true_pos
,
framework
::
LoDTensor
&
output_false_pos
)
const
{
int
max_class_id
=
0
;
int
true_pos_count
=
0
;
int
false_pos_count
=
0
;
for
(
auto
it
=
label_pos_count
.
begin
();
it
!=
label_pos_count
.
end
();
++
it
)
{
int
label
=
it
->
first
;
if
(
label
>
max_class_id
)
max_class_id
=
label
;
int
label_num_pos
=
it
->
second
;
if
(
label_num_pos
==
0
||
true_pos
.
find
(
label
)
==
true_pos
.
end
())
continue
;
auto
label_true_pos
=
true_pos
.
find
(
label
)
->
second
;
auto
label_false_pos
=
false_pos
.
find
(
label
)
->
second
;
true_pos_count
+=
label_true_pos
.
size
();
false_pos_count
+=
label_false_pos
.
size
();
}
int
*
pos_count_data
=
output_pos_count
.
mutable_data
<
int
>
(
framework
::
make_ddim
({
max_class_id
+
1
,
1
}),
ctx
.
GetPlace
());
T
*
true_pos_data
=
output_true_pos
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
true_pos_count
,
2
}),
ctx
.
GetPlace
());
T
*
false_pos_data
=
output_false_pos
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
false_pos_count
,
2
}),
ctx
.
GetPlace
());
true_pos_count
=
0
;
false_pos_count
=
0
;
std
::
vector
<
size_t
>
true_pos_starts
=
{
0
};
std
::
vector
<
size_t
>
false_pos_starts
=
{
0
};
for
(
int
i
=
0
;
i
<=
max_class_id
;
++
i
)
{
auto
it_count
=
label_pos_count
.
find
(
i
);
pos_count_data
[
i
]
=
0
;
if
(
it_count
!=
label_pos_count
.
end
())
{
pos_count_data
[
i
]
=
it_count
->
second
;
}
auto
it_true_pos
=
true_pos
.
find
(
i
);
if
(
it_true_pos
!=
true_pos
.
end
())
{
const
std
::
vector
<
std
::
pair
<
T
,
int
>>&
true_pos_vec
=
it_true_pos
->
second
;
for
(
const
std
::
pair
<
T
,
int
>&
tp
:
true_pos_vec
)
{
true_pos_data
[
true_pos_count
*
2
]
=
tp
.
first
;
true_pos_data
[
true_pos_count
*
2
+
1
]
=
static_cast
<
T
>
(
tp
.
second
);
true_pos_count
++
;
}
}
true_pos_starts
.
push_back
(
true_pos_count
);
auto
it_false_pos
=
false_pos
.
find
(
i
);
if
(
it_false_pos
!=
false_pos
.
end
())
{
const
std
::
vector
<
std
::
pair
<
T
,
int
>>&
false_pos_vec
=
it_false_pos
->
second
;
for
(
const
std
::
pair
<
T
,
int
>&
fp
:
false_pos_vec
)
{
false_pos_data
[
false_pos_count
*
2
]
=
fp
.
first
;
false_pos_data
[
false_pos_count
*
2
+
1
]
=
static_cast
<
T
>
(
fp
.
second
);
false_pos_count
++
;
}
}
false_pos_starts
.
push_back
(
false_pos_count
);
}
framework
::
LoD
true_pos_lod
;
true_pos_lod
.
emplace_back
(
true_pos_starts
);
framework
::
LoD
false_pos_lod
;
false_pos_lod
.
emplace_back
(
false_pos_starts
);
output_true_pos
.
set_lod
(
true_pos_lod
);
output_false_pos
.
set_lod
(
false_pos_lod
);
return
;
}
void
GetInputPos
(
const
framework
::
Tensor
&
input_pos_count
,
const
framework
::
LoDTensor
&
input_true_pos
,
const
framework
::
LoDTensor
&
input_false_pos
,
std
::
map
<
int
,
int
>&
label_pos_count
,
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
int
>>>&
true_pos
,
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
int
>>>&
false_pos
)
const
{
constexpr
T
kEPS
=
static_cast
<
T
>
(
1e-6
);
int
class_number
=
input_pos_count
.
dims
()[
0
];
const
int
*
pos_count_data
=
input_pos_count
.
data
<
int
>
();
for
(
int
i
=
0
;
i
<
class_number
;
++
i
)
{
label_pos_count
[
i
]
=
pos_count_data
[
i
];
}
const
T
*
true_pos_data
=
input_true_pos
.
data
<
T
>
();
auto
true_pos_data_lod
=
input_true_pos
.
lod
();
for
(
int
i
=
0
;
i
<
true_pos_data_lod
.
size
();
++
i
)
{
for
(
int
j
=
true_pos_data_lod
[
0
][
i
];
j
<
true_pos_data_lod
[
0
][
i
+
1
];
++
j
)
{
T
score
=
true_pos_data
[
j
*
2
];
int
flag
=
1
;
if
(
true_pos_data
[
j
*
2
+
1
]
<
kEPS
)
flag
=
0
;
true_pos
[
i
].
push_back
(
std
::
make_pair
(
score
,
flag
));
}
}
const
T
*
false_pos_data
=
input_false_pos
.
data
<
T
>
();
auto
false_pos_data_lod
=
input_false_pos
.
lod
();
for
(
int
i
=
0
;
i
<
false_pos_data_lod
.
size
();
++
i
)
{
for
(
int
j
=
false_pos_data_lod
[
0
][
i
];
j
<
false_pos_data_lod
[
0
][
i
+
1
];
++
j
)
{
T
score
=
false_pos_data
[
j
*
2
];
int
flag
=
1
;
if
(
false_pos_data
[
j
*
2
+
1
]
<
kEPS
)
flag
=
0
;
false_pos
[
i
].
push_back
(
std
::
make_pair
(
score
,
flag
));
}
}
return
;
}
void
CalcTrueAndFalsePositive
(
const
std
::
vector
<
std
::
map
<
int
,
std
::
vector
<
Box
>>>&
gt_boxes
,
const
std
::
vector
<
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
Box
>>>>&
...
...
@@ -283,7 +412,6 @@ class DetectionMAPOpKernel : public framework::OpKernel<T> {
size_t
num
=
tp_sum
.
size
();
// Compute Precision.
for
(
size_t
i
=
0
;
i
<
num
;
++
i
)
{
// CHECK_LE(tpCumSum[i], labelNumPos);
precision
.
push_back
(
static_cast
<
T
>
(
tp_sum
[
i
])
/
static_cast
<
T
>
(
tp_sum
[
i
]
+
fp_sum
[
i
]));
recall
.
push_back
(
static_cast
<
T
>
(
tp_sum
[
i
])
/
label_num_pos
);
...
...
python/paddle/v2/fluid/tests/test_detection_map_op.py
浏览文件 @
5ca0b762
...
...
@@ -29,9 +29,23 @@ class TestDetectionMAPOp(OpTest):
self
.
detect
=
np
.
array
(
self
.
detect
).
astype
(
'float32'
)
self
.
mAP
=
np
.
array
(
self
.
mAP
).
astype
(
'float32'
)
if
(
len
(
self
.
class_pos_count
)
>
0
):
self
.
class_pos_count
=
np
.
array
(
self
.
class_pos_count
).
astype
(
'int32'
)
self
.
true_pos
=
np
.
array
(
self
.
true_pos
).
astype
(
'float32'
)
self
.
false_pos
=
np
.
array
(
self
.
false_pos
).
astype
(
'float32'
)
self
.
inputs
=
{
'Label'
:
(
self
.
label
,
self
.
label_lod
),
'Detection'
:
(
self
.
detect
,
self
.
detect_lod
)
'Detection'
:
(
self
.
detect
,
self
.
detect_lod
),
'PosCount'
:
self
.
class_pos_count
,
'TruePos'
:
(
self
.
true_pos
,
self
.
true_pos_lod
),
'FalsePos'
:
(
self
.
false_pos
,
self
.
false_pos_lod
)
}
else
:
self
.
inputs
=
{
'Label'
:
(
self
.
label
,
self
.
label_lod
),
'Detection'
:
(
self
.
detect
,
self
.
detect_lod
),
}
self
.
attrs
=
{
...
...
@@ -40,7 +54,17 @@ class TestDetectionMAPOp(OpTest):
'ap_type'
:
self
.
ap_type
}
self
.
outputs
=
{
'MAP'
:
self
.
mAP
}
self
.
out_class_pos_count
=
np
.
array
(
self
.
out_class_pos_count
).
astype
(
'int'
)
self
.
out_true_pos
=
np
.
array
(
self
.
out_true_pos
).
astype
(
'float32'
)
self
.
out_false_pos
=
np
.
array
(
self
.
out_false_pos
).
astype
(
'float32'
)
self
.
outputs
=
{
'MAP'
:
self
.
mAP
,
'OutPosCount'
:
self
.
out_class_pos_count
,
'OutTruePos'
:
(
self
.
out_true_pos
,
self
.
out_true_pos_lod
),
'OutFalsePos'
:
(
self
.
out_false_pos
,
self
.
out_false_pos_lod
)
}
def
init_test_case
(
self
):
self
.
overlap_threshold
=
0.3
...
...
@@ -67,13 +91,64 @@ class TestDetectionMAPOp(OpTest):
[
1
,
0.2
,
1
,
0
],
[
2
,
0.8
,
0
,
1
],
[
2
,
0.1
,
1
,
0
],
[
3
,
0.2
,
0
,
1
]]
self
.
class_pos_count
=
[]
self
.
true_pos_lod
=
[[]]
self
.
true_pos
=
[[]]
self
.
false_pos_lod
=
[[]]
self
.
false_pos
=
[[]]
def
calc_map
(
self
,
tf_pos
,
tf_pos_lod
):
mAP
=
0.0
count
=
0
class_pos_count
=
{}
true_pos
=
{}
false_pos
=
{}
def
get_input_pos
(
class_pos_count
,
true_pos
,
true_pos_lod
,
false_pos
,
false_pos_lod
):
class_pos_count_dict
=
collections
.
Counter
()
true_pos_dict
=
collections
.
defaultdict
(
list
)
false_pos_dict
=
collections
.
defaultdict
(
list
)
for
i
,
count
in
enumerate
(
class_pos_count
):
class_pos_count_dict
[
i
]
=
count
for
i
in
range
(
len
(
true_pos_lod
[
0
])
-
1
):
start
=
true_pos_lod
[
0
][
i
]
end
=
true_pos_lod
[
0
][
i
+
1
]
for
j
in
range
(
start
,
end
):
true_pos_dict
[
i
].
append
(
true_pos
[
j
])
for
i
in
range
(
len
(
false_pos_lod
[
0
])
-
1
):
start
=
false_pos_lod
[
0
][
i
]
end
=
false_pos_lod
[
0
][
i
+
1
]
for
j
in
range
(
start
,
end
):
false_pos_dict
[
i
].
append
(
false_pos
[
j
])
return
class_pos_count_dict
,
true_pos_dict
,
false_pos_dict
def
get_output_pos
(
label_count
,
true_pos
,
false_pos
):
max_label
=
0
for
(
label
,
label_pos_num
)
in
label_count
.
items
():
if
max_label
<
label
:
max_label
=
label
label_number
=
max_label
+
1
out_class_pos_count
=
[]
out_true_pos_lod
=
[
0
]
out_true_pos
=
[]
out_false_pos_lod
=
[
0
]
out_false_pos
=
[]
for
i
in
range
(
label_number
):
out_class_pos_count
.
append
([
label_count
[
i
]])
true_pos_list
=
true_pos
[
i
]
out_true_pos
+=
true_pos_list
out_true_pos_lod
.
append
(
len
(
out_true_pos
))
false_pos_list
=
false_pos
[
i
]
out_false_pos
+=
false_pos_list
out_false_pos_lod
.
append
(
len
(
out_false_pos
))
return
out_class_pos_count
,
out_true_pos
,
[
out_true_pos_lod
],
out_false_pos
,
[
out_false_pos_lod
]
def
get_accumulation
(
pos_list
):
sorted_list
=
sorted
(
pos_list
,
key
=
lambda
pos
:
pos
[
0
],
reverse
=
True
)
...
...
@@ -84,7 +159,9 @@ class TestDetectionMAPOp(OpTest):
accu_list
.
append
(
sum
)
return
accu_list
label_count
=
collections
.
Counter
()
label_count
,
true_pos
,
false_pos
=
get_input_pos
(
self
.
class_pos_count
,
self
.
true_pos
,
self
.
true_pos_lod
,
self
.
false_pos
,
self
.
false_pos_lod
)
for
(
label
,
difficult
,
xmin
,
ymin
,
xmax
,
ymax
)
in
self
.
label
:
if
self
.
evaluate_difficult
:
label_count
[
label
]
+=
1
...
...
@@ -143,8 +220,10 @@ class TestDetectionMAPOp(OpTest):
mAP
+=
average_precisions
count
+=
1
if
count
!=
0
:
mAP
/=
count
self
.
out_class_pos_count
,
self
.
out_true_pos
,
self
.
out_true_pos_lod
,
self
.
out_false_pos
,
self
.
out_false_pos_lod
=
get_output_pos
(
label_count
,
true_pos
,
false_pos
)
if
count
!=
0
:
mAP
/=
count
return
mAP
*
100.0
def
setUp
(
self
):
...
...
@@ -174,5 +253,15 @@ class TestDetectionMAPOp11Point(TestDetectionMAPOp):
self
.
ap_type
=
"11point"
class
TestDetectionMAPOpMultiBatch
(
TestDetectionMAPOp
):
def
init_test_case
(
self
):
super
(
TestDetectionMAPOpMultiBatch
,
self
).
init_test_case
()
self
.
class_pos_count
=
[
0
,
2
,
1
]
self
.
true_pos_lod
=
[[
0
,
0
,
3
,
5
]]
self
.
true_pos
=
[[
0.7
,
1.
],
[
0.3
,
0.
],
[
0.2
,
1.
],
[
0.8
,
0.
],
[
0.1
,
1.
]]
self
.
false_pos_lod
=
[[
0
,
0
,
3
,
5
]]
self
.
false_pos
=
[[
0.7
,
0.
],
[
0.3
,
1.
],
[
0.2
,
0.
],
[
0.8
,
1.
],
[
0.1
,
0.
]]
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录