diff --git a/doc/demo/semantic_role_labeling/semantic_role_labeling.md b/doc/demo/semantic_role_labeling/semantic_role_labeling.md index c6b9813f6a60c3391fbee34d83caa2b4e073ffff..69378d0d4e16f3d3edffcd5797f101376967f95e 100644 --- a/doc/demo/semantic_role_labeling/semantic_role_labeling.md +++ b/doc/demo/semantic_role_labeling/semantic_role_labeling.md @@ -124,15 +124,11 @@ paddle train \ --log_period=5000 \ --trainer_count=1 \ --show_parameter_stats_period=5000 \ - --saving_period=1 \ --save_dir=./output \ - --local=1 \ --num_passes=10000 \ - --test_period=0 \ --average_test_period=10000000 \ --init_model_path=./data \ --load_missing_parameter_strategy=rand \ - --dot_period=100 \ 2>&1 | tee 'train.log' ``` @@ -141,15 +137,11 @@ paddle train \ - \--log_period=500: print log every 20 batches. - \--trainer_count=1: set thread number (or GPU count). - \--show_parameter_stats_period=5000: show parameter statistic every 100 batches. -- \--saving_period=1: save model per pass - \--save_dir=./output: output path to save models. -- \--local=1: traing in local mode - \--num_passes=10000: set pass number, one pass in PaddlePaddle means training all samples in dataset one time. -- \--test_period=0: run testing each pass - \--average_test_period=10000000: do test on average parameter every average_test_period batches - \--init_model_path=./data: parameter initialization path - \--load_missing_parameter_strategy=rand: random initialization unexisted parameters -- \--dot_period=100: print a dot per 100 batches After training, the models will be saved in directory `output`.