未验证 提交 5c4c55f9 编写于 作者: N Nyakku Shigure 提交者: GitHub

add shufflenetv2 (#36067)

add shufflenetv2
Co-authored-by: Ainavo's avatarAinavo <ainavo@163.com>
Co-authored-by: Npithygit <pyg20200403@163.com>
Co-authored-by: Ainavo's avatarAinavo <ainavo@163.com>
Co-authored-by: Npithygit <pyg20200403@163.com>
上级 b6edaff8
......@@ -54,7 +54,8 @@ class TestPretrainedModel(unittest.TestCase):
def test_models(self):
arches = [
'mobilenet_v1', 'mobilenet_v2', 'resnet18', 'vgg16', 'alexnet',
'resnext50_32x4d', 'inception_v3', 'densenet121', 'googlenet'
'resnext50_32x4d', 'inception_v3', 'densenet121', 'googlenet',
'shufflenet_v2_x0_25', 'shufflenet_v2_swish'
]
for arch in arches:
self.infer(arch)
......
......@@ -88,6 +88,9 @@ class TestVisonModels(unittest.TestCase):
def test_alexnet(self):
self.models_infer('alexnet')
def test_shufflenetv2_swish(self):
self.models_infer('shufflenet_v2_swish')
def test_resnext50_32x4d(self):
self.models_infer('resnext50_32x4d')
......@@ -112,6 +115,24 @@ class TestVisonModels(unittest.TestCase):
def test_googlenet(self):
self.models_infer('googlenet')
def test_shufflenetv2_x0_25(self):
self.models_infer('shufflenet_v2_x0_25')
def test_shufflenetv2_x0_33(self):
self.models_infer('shufflenet_v2_x0_33')
def test_shufflenetv2_x0_5(self):
self.models_infer('shufflenet_v2_x0_5')
def test_shufflenetv2_x1_0(self):
self.models_infer('shufflenet_v2_x1_0')
def test_shufflenetv2_x1_5(self):
self.models_infer('shufflenet_v2_x1_5')
def test_shufflenetv2_x2_0(self):
self.models_infer('shufflenet_v2_x2_0')
def test_vgg16_num_classes(self):
vgg16 = models.__dict__['vgg16'](pretrained=False, num_classes=10)
......
......@@ -63,6 +63,14 @@ from .models import InceptionV3 # noqa: F401
from .models import inception_v3 # noqa: F401
from .models import GoogLeNet # noqa: F401
from .models import googlenet # noqa: F401
from .models import ShuffleNetV2 # noqa: F401
from .models import shufflenet_v2_x0_25 # noqa: F401
from .models import shufflenet_v2_x0_33 # noqa: F401
from .models import shufflenet_v2_x0_5 # noqa: F401
from .models import shufflenet_v2_x1_0 # noqa: F401
from .models import shufflenet_v2_x1_5 # noqa: F401
from .models import shufflenet_v2_x2_0 # noqa: F401
from .models import shufflenet_v2_swish # noqa: F401
from .transforms import BaseTransform # noqa: F401
from .transforms import Compose # noqa: F401
from .transforms import Resize # noqa: F401
......
......@@ -47,6 +47,14 @@ from .inceptionv3 import InceptionV3 # noqa: F401
from .inceptionv3 import inception_v3 # noqa: F401
from .googlenet import GoogLeNet # noqa: F401
from .googlenet import googlenet # noqa: F401
from .shufflenetv2 import ShuffleNetV2 # noqa: F401
from .shufflenetv2 import shufflenet_v2_x0_25 # noqa: F401
from .shufflenetv2 import shufflenet_v2_x0_33 # noqa: F401
from .shufflenetv2 import shufflenet_v2_x0_5 # noqa: F401
from .shufflenetv2 import shufflenet_v2_x1_0 # noqa: F401
from .shufflenetv2 import shufflenet_v2_x1_5 # noqa: F401
from .shufflenetv2 import shufflenet_v2_x2_0 # noqa: F401
from .shufflenetv2 import shufflenet_v2_swish # noqa: F401
__all__ = [ #noqa
'ResNet',
......@@ -84,4 +92,12 @@ __all__ = [ #noqa
'inception_v3',
'GoogLeNet',
'googlenet',
'ShuffleNetV2',
'shufflenet_v2_x0_25',
'shufflenet_v2_x0_33',
'shufflenet_v2_x0_5',
'shufflenet_v2_x1_0',
'shufflenet_v2_x1_5',
'shufflenet_v2_x2_0',
'shufflenet_v2_swish'
]
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.nn as nn
from paddle.fluid.param_attr import ParamAttr
from paddle.nn import AdaptiveAvgPool2D, BatchNorm, Conv2D, Linear, MaxPool2D
from paddle.utils.download import get_weights_path_from_url
__all__ = []
model_urls = {
"shufflenet_v2_x0_25": (
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_25_pretrained.pdparams",
"e753404cbd95027759c5f56ecd6c9c4b", ),
"shufflenet_v2_x0_33": (
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_33_pretrained.pdparams",
"776e3cf9a4923abdfce789c45b8fe1f2", ),
"shufflenet_v2_x0_5": (
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_5_pretrained.pdparams",
"e3649cf531566917e2969487d2bc6b60", ),
"shufflenet_v2_x1_0": (
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x1_0_pretrained.pdparams",
"7821c348ea34e58847c43a08a4ac0bdf", ),
"shufflenet_v2_x1_5": (
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x1_5_pretrained.pdparams",
"93a07fa557ab2d8803550f39e5b6c391", ),
"shufflenet_v2_x2_0": (
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x2_0_pretrained.pdparams",
"4ab1f622fd0d341e0f84b4e057797563", ),
"shufflenet_v2_swish": (
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_swish_pretrained.pdparams",
"daff38b3df1b3748fccbb13cfdf02519", ),
}
def channel_shuffle(x, groups):
batch_size, num_channels, height, width = x.shape[0:4]
channels_per_group = num_channels // groups
# reshape
x = paddle.reshape(
x, shape=[batch_size, groups, channels_per_group, height, width])
# transpose
x = paddle.transpose(x, perm=[0, 2, 1, 3, 4])
# flatten
x = paddle.reshape(x, shape=[batch_size, num_channels, height, width])
return x
class ConvBNLayer(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride,
padding,
groups=1,
act=None):
super(ConvBNLayer, self).__init__()
self._conv = Conv2D(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=groups,
weight_attr=ParamAttr(initializer=nn.initializer.KaimingNormal()),
bias_attr=False, )
self._batch_norm = BatchNorm(out_channels, act=act)
def forward(self, inputs):
x = self._conv(inputs)
x = self._batch_norm(x)
return x
class InvertedResidual(nn.Layer):
def __init__(self, in_channels, out_channels, stride, act="relu"):
super(InvertedResidual, self).__init__()
self._conv_pw = ConvBNLayer(
in_channels=in_channels // 2,
out_channels=out_channels // 2,
kernel_size=1,
stride=1,
padding=0,
groups=1,
act=act)
self._conv_dw = ConvBNLayer(
in_channels=out_channels // 2,
out_channels=out_channels // 2,
kernel_size=3,
stride=stride,
padding=1,
groups=out_channels // 2,
act=None)
self._conv_linear = ConvBNLayer(
in_channels=out_channels // 2,
out_channels=out_channels // 2,
kernel_size=1,
stride=1,
padding=0,
groups=1,
act=act)
def forward(self, inputs):
x1, x2 = paddle.split(
inputs,
num_or_sections=[inputs.shape[1] // 2, inputs.shape[1] // 2],
axis=1)
x2 = self._conv_pw(x2)
x2 = self._conv_dw(x2)
x2 = self._conv_linear(x2)
out = paddle.concat([x1, x2], axis=1)
return channel_shuffle(out, 2)
class InvertedResidualDS(nn.Layer):
def __init__(self, in_channels, out_channels, stride, act="relu"):
super(InvertedResidualDS, self).__init__()
# branch1
self._conv_dw_1 = ConvBNLayer(
in_channels=in_channels,
out_channels=in_channels,
kernel_size=3,
stride=stride,
padding=1,
groups=in_channels,
act=None)
self._conv_linear_1 = ConvBNLayer(
in_channels=in_channels,
out_channels=out_channels // 2,
kernel_size=1,
stride=1,
padding=0,
groups=1,
act=act)
# branch2
self._conv_pw_2 = ConvBNLayer(
in_channels=in_channels,
out_channels=out_channels // 2,
kernel_size=1,
stride=1,
padding=0,
groups=1,
act=act)
self._conv_dw_2 = ConvBNLayer(
in_channels=out_channels // 2,
out_channels=out_channels // 2,
kernel_size=3,
stride=stride,
padding=1,
groups=out_channels // 2,
act=None)
self._conv_linear_2 = ConvBNLayer(
in_channels=out_channels // 2,
out_channels=out_channels // 2,
kernel_size=1,
stride=1,
padding=0,
groups=1,
act=act)
def forward(self, inputs):
x1 = self._conv_dw_1(inputs)
x1 = self._conv_linear_1(x1)
x2 = self._conv_pw_2(inputs)
x2 = self._conv_dw_2(x2)
x2 = self._conv_linear_2(x2)
out = paddle.concat([x1, x2], axis=1)
return channel_shuffle(out, 2)
class ShuffleNetV2(nn.Layer):
"""ShuffleNetV2 model from
`"ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design" <https://arxiv.org/pdf/1807.11164.pdf>`_
Args:
scale (float, optional) - scale of output channels. Default: True.
act (str, optional) - activation function of neural network. Default: "relu".
num_classes (int, optional): output dim of last fc layer. If num_classes <=0, last fc layer
will not be defined. Default: 1000.
with_pool (bool, optional): use pool before the last fc layer or not. Default: True.
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import ShuffleNetV2
shufflenet_v2_swish = ShuffleNetV2(scale=1.0, act="swish")
x = paddle.rand([1, 3, 224, 224])
out = shufflenet_v2_swish(x)
print(out.shape)
"""
def __init__(self, scale=1.0, act="relu", num_classes=1000, with_pool=True):
super(ShuffleNetV2, self).__init__()
self.scale = scale
self.num_classes = num_classes
self.with_pool = with_pool
stage_repeats = [4, 8, 4]
if scale == 0.25:
stage_out_channels = [-1, 24, 24, 48, 96, 512]
elif scale == 0.33:
stage_out_channels = [-1, 24, 32, 64, 128, 512]
elif scale == 0.5:
stage_out_channels = [-1, 24, 48, 96, 192, 1024]
elif scale == 1.0:
stage_out_channels = [-1, 24, 116, 232, 464, 1024]
elif scale == 1.5:
stage_out_channels = [-1, 24, 176, 352, 704, 1024]
elif scale == 2.0:
stage_out_channels = [-1, 24, 224, 488, 976, 2048]
else:
raise NotImplementedError("This scale size:[" + str(scale) +
"] is not implemented!")
# 1. conv1
self._conv1 = ConvBNLayer(
in_channels=3,
out_channels=stage_out_channels[1],
kernel_size=3,
stride=2,
padding=1,
act=act)
self._max_pool = MaxPool2D(kernel_size=3, stride=2, padding=1)
# 2. bottleneck sequences
self._block_list = []
for stage_id, num_repeat in enumerate(stage_repeats):
for i in range(num_repeat):
if i == 0:
block = self.add_sublayer(
sublayer=InvertedResidualDS(
in_channels=stage_out_channels[stage_id + 1],
out_channels=stage_out_channels[stage_id + 2],
stride=2,
act=act),
name=str(stage_id + 2) + "_" + str(i + 1))
else:
block = self.add_sublayer(
sublayer=InvertedResidual(
in_channels=stage_out_channels[stage_id + 2],
out_channels=stage_out_channels[stage_id + 2],
stride=1,
act=act),
name=str(stage_id + 2) + "_" + str(i + 1))
self._block_list.append(block)
# 3. last_conv
self._last_conv = ConvBNLayer(
in_channels=stage_out_channels[-2],
out_channels=stage_out_channels[-1],
kernel_size=1,
stride=1,
padding=0,
act=act)
# 4. pool
if with_pool:
self._pool2d_avg = AdaptiveAvgPool2D(1)
# 5. fc
if num_classes > 0:
self._out_c = stage_out_channels[-1]
self._fc = Linear(stage_out_channels[-1], num_classes)
def forward(self, inputs):
x = self._conv1(inputs)
x = self._max_pool(x)
for inv in self._block_list:
x = inv(x)
x = self._last_conv(x)
if self.with_pool:
x = self._pool2d_avg(x)
if self.num_classes > 0:
x = paddle.flatten(x, start_axis=1, stop_axis=-1)
x = self._fc(x)
return x
def _shufflenet_v2(arch, pretrained=False, **kwargs):
model = ShuffleNetV2(**kwargs)
if pretrained:
assert (
arch in model_urls
), "{} model do not have a pretrained model now, you should set pretrained=False".format(
arch)
weight_path = get_weights_path_from_url(model_urls[arch][0],
model_urls[arch][1])
param = paddle.load(weight_path)
model.set_dict(param)
return model
def shufflenet_v2_x0_25(pretrained=False, **kwargs):
"""ShuffleNetV2 with 0.25x output channels, as described in
`"ShuffleNet V2: Practical Guidelines for Ecient CNN Architecture Design" <https://arxiv.org/pdf/1807.11164.pdf>`_ 。
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import shufflenet_v2_x0_25
# build model
model = shufflenet_v2_x0_25()
# build model and load imagenet pretrained weight
# model = shufflenet_v2_x0_25(pretrained=True)
x = paddle.rand([1, 3, 224, 224])
out = model(x)
print(out.shape)
"""
return _shufflenet_v2(
"shufflenet_v2_x0_25", scale=0.25, pretrained=pretrained, **kwargs)
def shufflenet_v2_x0_33(pretrained=False, **kwargs):
"""ShuffleNetV2 with 0.33x output channels, as described in
`"ShuffleNet V2: Practical Guidelines for Ecient CNN Architecture Design" <https://arxiv.org/pdf/1807.11164.pdf>`_ 。
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import shufflenet_v2_x0_33
# build model
model = shufflenet_v2_x0_33()
# build model and load imagenet pretrained weight
# model = shufflenet_v2_x0_33(pretrained=True)
x = paddle.rand([1, 3, 224, 224])
out = model(x)
print(out.shape)
"""
return _shufflenet_v2(
"shufflenet_v2_x0_33", scale=0.33, pretrained=pretrained, **kwargs)
def shufflenet_v2_x0_5(pretrained=False, **kwargs):
"""ShuffleNetV2 with 0.5x output channels, as described in
`"ShuffleNet V2: Practical Guidelines for Ecient CNN Architecture Design" <https://arxiv.org/pdf/1807.11164.pdf>`_ 。
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import shufflenet_v2_x0_5
# build model
model = shufflenet_v2_x0_5()
# build model and load imagenet pretrained weight
# model = shufflenet_v2_x0_5(pretrained=True)
x = paddle.rand([1, 3, 224, 224])
out = model(x)
print(out.shape)
"""
return _shufflenet_v2(
"shufflenet_v2_x0_5", scale=0.5, pretrained=pretrained, **kwargs)
def shufflenet_v2_x1_0(pretrained=False, **kwargs):
"""ShuffleNetV2 with 1.0x output channels, as described in
`"ShuffleNet V2: Practical Guidelines for Ecient CNN Architecture Design" <https://arxiv.org/pdf/1807.11164.pdf>`_ 。
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import shufflenet_v2_x1_0
# build model
model = shufflenet_v2_x1_0()
# build model and load imagenet pretrained weight
# model = shufflenet_v2_x1_0(pretrained=True)
x = paddle.rand([1, 3, 224, 224])
out = model(x)
print(out.shape)
"""
return _shufflenet_v2(
"shufflenet_v2_x1_0", scale=1.0, pretrained=pretrained, **kwargs)
def shufflenet_v2_x1_5(pretrained=False, **kwargs):
"""ShuffleNetV2 with 1.5x output channels, as described in
`"ShuffleNet V2: Practical Guidelines for Ecient CNN Architecture Design" <https://arxiv.org/pdf/1807.11164.pdf>`_ 。
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import shufflenet_v2_x1_5
# build model
model = shufflenet_v2_x1_5()
# build model and load imagenet pretrained weight
# model = shufflenet_v2_x1_5(pretrained=True)
x = paddle.rand([1, 3, 224, 224])
out = model(x)
print(out.shape)
"""
return _shufflenet_v2(
"shufflenet_v2_x1_5", scale=1.5, pretrained=pretrained, **kwargs)
def shufflenet_v2_x2_0(pretrained=False, **kwargs):
"""ShuffleNetV2 with 2.0x output channels, as described in
`"ShuffleNet V2: Practical Guidelines for Ecient CNN Architecture Design" <https://arxiv.org/pdf/1807.11164.pdf>`_ 。
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import shufflenet_v2_x2_0
# build model
model = shufflenet_v2_x2_0()
# build model and load imagenet pretrained weight
# model = shufflenet_v2_x2_0(pretrained=True)
x = paddle.rand([1, 3, 224, 224])
out = model(x)
print(out.shape)
"""
return _shufflenet_v2(
"shufflenet_v2_x2_0", scale=2.0, pretrained=pretrained, **kwargs)
def shufflenet_v2_swish(pretrained=False, **kwargs):
"""ShuffleNetV2 with 1.0x output channels and swish activation function, as described in
`"ShuffleNet V2: Practical Guidelines for Ecient CNN Architecture Design" <https://arxiv.org/pdf/1807.11164.pdf>`_ 。
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import shufflenet_v2_swish
# build model
model = shufflenet_v2_swish()
# build model and load imagenet pretrained weight
# model = shufflenet_v2_swish(pretrained=True)
x = paddle.rand([1, 3, 224, 224])
out = model(x)
print(out.shape)
"""
return _shufflenet_v2(
"shufflenet_v2_swish",
scale=1.0,
act="swish",
pretrained=pretrained,
**kwargs)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册