Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
589cd878
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
589cd878
编写于
3月 24, 2020
作者:
C
cc
提交者:
GitHub
3月 24, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Post_training_quantizaion supports min_max methon (#23078)
* Post_training_quantizaion supports min_max methon
上级
194a22c5
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
268 addition
and
184 deletion
+268
-184
python/paddle/fluid/contrib/slim/quantization/post_training_quantization.py
...d/contrib/slim/quantization/post_training_quantization.py
+193
-110
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
...ddle/fluid/contrib/slim/quantization/quantization_pass.py
+47
-66
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_mobilenetv1.py
...slim/tests/test_post_training_quantization_mobilenetv1.py
+25
-6
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_resnet50.py
...ib/slim/tests/test_post_training_quantization_resnet50.py
+3
-2
未找到文件。
python/paddle/fluid/contrib/slim/quantization/post_training_quantization.py
浏览文件 @
589cd878
...
@@ -37,7 +37,10 @@ def _load_variable_data(scope, var_name):
...
@@ -37,7 +37,10 @@ def _load_variable_data(scope, var_name):
'''
'''
Load variable value from scope
Load variable value from scope
'''
'''
return
np
.
array
(
scope
.
find_var
(
var_name
).
get_tensor
())
var_node
=
scope
.
find_var
(
var_name
)
assert
var_node
is
not
None
,
\
"Cannot find "
+
var_name
+
" in scope."
return
np
.
array
(
var_node
.
get_tensor
())
def
_set_variable_data
(
scope
,
place
,
var_name
,
np_value
):
def
_set_variable_data
(
scope
,
place
,
var_name
,
np_value
):
...
@@ -53,6 +56,12 @@ def _set_variable_data(scope, place, var_name, np_value):
...
@@ -53,6 +56,12 @@ def _set_variable_data(scope, place, var_name, np_value):
class
PostTrainingQuantization
(
object
):
class
PostTrainingQuantization
(
object
):
"""
Utilizing post training quantization methon to quantize the FP32 model,
and it uses calibrate data to get the quantization information for all
quantized variables.
"""
def
__init__
(
self
,
def
__init__
(
self
,
executor
=
None
,
executor
=
None
,
scope
=
None
,
scope
=
None
,
...
@@ -70,13 +79,10 @@ class PostTrainingQuantization(object):
...
@@ -70,13 +79,10 @@ class PostTrainingQuantization(object):
is_use_cache_file
=
False
,
is_use_cache_file
=
False
,
cache_dir
=
"./temp_post_training"
):
cache_dir
=
"./temp_post_training"
):
'''
'''
The class utilizes post training quantization methon to quantize the
Constructor.
fp32 model. It uses calibrate data to calculate the scale factor of
quantized variables, and inserts fake quant/dequant op to obtain the
quantized model.
Args:
Args:
executor(fluid.Executor): The executor to load, run and save the
executor(fluid.Executor): The executor to load, run and save the
quantized model.
quantized model.
scope(fluid.Scope, optional): The scope of the program, use it to load
scope(fluid.Scope, optional): The scope of the program, use it to load
and save variables. If scope=None, get scope by global_scope().
and save variables. If scope=None, get scope by global_scope().
...
@@ -96,9 +102,11 @@ class PostTrainingQuantization(object):
...
@@ -96,9 +102,11 @@ class PostTrainingQuantization(object):
batch_nums(int, optional): If batch_nums is not None, the number of
batch_nums(int, optional): If batch_nums is not None, the number of
calibrate data is batch_size*batch_nums. If batch_nums is None, use
calibrate data is batch_size*batch_nums. If batch_nums is None, use
all data provided by sample_generator as calibrate data.
all data provided by sample_generator as calibrate data.
algo(str, optional): If algo=KL, use KL-divergenc method to
algo(str, optional): If algo='KL', use KL-divergenc method to
get the more precise scale factor. If algo='direct', use
get the KL threshold for quantized activations and get the abs_max
abs_max methon to get the scale factor. Default is KL.
value for quantized weights. If algo='abs_max', get the abs max
value for activations and weights. If algo= 'min_max', get the min
and max value for quantized activations and weights. Default is KL.
quantizable_op_type(list[str], optional): List the type of ops
quantizable_op_type(list[str], optional): List the type of ops
that will be quantized. Default is ["conv2d", "depthwise_conv2d",
that will be quantized. Default is ["conv2d", "depthwise_conv2d",
"mul"].
"mul"].
...
@@ -158,7 +166,9 @@ class PostTrainingQuantization(object):
...
@@ -158,7 +166,9 @@ class PostTrainingQuantization(object):
assert
executor
is
not
None
,
"The executor cannot be None."
assert
executor
is
not
None
,
"The executor cannot be None."
assert
model_dir
is
not
None
,
"The model_dir cannot be None."
assert
model_dir
is
not
None
,
"The model_dir cannot be None."
assert
sample_generator
is
not
None
,
\
assert
sample_generator
is
not
None
,
\
"The sample_generator cannot be None."
"The sample_generator cannot be None."
assert
algo
in
[
'KL'
,
'abs_max'
,
'min_max'
],
\
"The algo should be KL, abs_max or min_max."
self
.
_executor
=
executor
self
.
_executor
=
executor
self
.
_scope
=
global_scope
()
if
scope
==
None
else
scope
self
.
_scope
=
global_scope
()
if
scope
==
None
else
scope
...
@@ -182,8 +192,7 @@ class PostTrainingQuantization(object):
...
@@ -182,8 +192,7 @@ class PostTrainingQuantization(object):
else
:
else
:
self
.
_quantizable_op_type
=
quantizable_op_type
self
.
_quantizable_op_type
=
quantizable_op_type
for
op_type
in
self
.
_quantizable_op_type
:
for
op_type
in
self
.
_quantizable_op_type
:
assert
op_type
in
supported_quantizable_op_type
+
\
assert
op_type
in
supported_quantizable_op_type
,
\
AddQuantDequantPass
.
_activation_type
,
\
op_type
+
" is not supported for quantization."
op_type
+
" is not supported for quantization."
self
.
_place
=
self
.
_executor
.
place
self
.
_place
=
self
.
_executor
.
place
...
@@ -197,20 +206,25 @@ class PostTrainingQuantization(object):
...
@@ -197,20 +206,25 @@ class PostTrainingQuantization(object):
self
.
_quantized_weight_var_name
=
set
()
self
.
_quantized_weight_var_name
=
set
()
self
.
_quantized_act_var_name
=
set
()
self
.
_quantized_act_var_name
=
set
()
self
.
_sampling_data
=
{}
self
.
_sampling_data
=
{}
self
.
_quantized_var_scale_factor
=
{}
self
.
_quantized_var_kl_threshold
=
{}
self
.
_quantized_var_min
=
{}
self
.
_quantized_var_max
=
{}
self
.
_quantized_var_abs_max
=
{}
def
quantize
(
self
):
def
quantize
(
self
):
'''
'''
Quantize the fp32 model. Use calibrate data to calculate the scale factor of
Load the FP32 model, and use the calibrate data to calculate the forward-stage.
quantized variables, and inserts fake quant/dequant op to obtain the
Based on the sample data, we can get the quantization information, and obtain
quantized model.
the final
quantized model.
Args:
Args:
None
None
Returns:
Returns:
the program of quantized model.
the program of quantized model.
'''
'''
self
.
_preprocess
()
self
.
_load_model_data
()
self
.
_collect_quantized_varnames
()
self
.
_set_activation_persistable
()
batch_id
=
0
batch_id
=
0
for
data
in
self
.
_data_loader
():
for
data
in
self
.
_data_loader
():
...
@@ -218,22 +232,29 @@ class PostTrainingQuantization(object):
...
@@ -218,22 +232,29 @@ class PostTrainingQuantization(object):
feed
=
data
,
feed
=
data
,
fetch_list
=
self
.
_fetch_list
,
fetch_list
=
self
.
_fetch_list
,
return_numpy
=
False
)
return_numpy
=
False
)
self
.
_sample_data
(
batch_id
)
if
self
.
_algo
==
"KL"
:
self
.
_sample_data
(
batch_id
)
else
:
self
.
_sample_threshold
()
if
batch_id
%
5
==
0
:
if
batch_id
%
5
==
0
:
_logger
.
info
(
"
r
un batch: "
+
str
(
batch_id
))
_logger
.
info
(
"
R
un batch: "
+
str
(
batch_id
))
batch_id
+=
1
batch_id
+=
1
if
self
.
_batch_nums
and
batch_id
>=
self
.
_batch_nums
:
if
self
.
_batch_nums
and
batch_id
>=
self
.
_batch_nums
:
break
break
_logger
.
info
(
"
all run
batch: "
+
str
(
batch_id
))
_logger
.
info
(
"
Finish all
batch: "
+
str
(
batch_id
))
_logger
.
info
(
"calculate scale factor ..."
)
self
.
_reset_activation_persistable
()
self
.
_calculate_scale_factor
()
_logger
.
info
(
"update the program ..."
)
if
self
.
_algo
==
"KL"
:
self
.
_update_program
()
self
.
_calculate_kl_threshold
()
self
.
_save_output_scale
()
if
self
.
_algo
in
[
"KL"
,
"abs_max"
]:
self
.
_update_program
()
else
:
self
.
_save_input_threhold
()
self
.
_save_output_threshold
()
return
self
.
_program
return
self
.
_program
def
save_quantized_model
(
self
,
save_model_path
):
def
save_quantized_model
(
self
,
save_model_path
):
...
@@ -252,12 +273,11 @@ class PostTrainingQuantization(object):
...
@@ -252,12 +273,11 @@ class PostTrainingQuantization(object):
executor
=
self
.
_executor
,
executor
=
self
.
_executor
,
main_program
=
self
.
_program
)
main_program
=
self
.
_program
)
def
_
preprocess
(
self
):
def
_
load_model_data
(
self
):
'''
'''
Load model and set data loader, collect the variable names for sampling,
Load model and set data loader.
and set activation variables to be persistable.
'''
'''
# load model and set data loader
_logger
.
info
(
"Load model and set data loader ..."
)
[
self
.
_program
,
self
.
_feed_list
,
self
.
_fetch_list
]
=
\
[
self
.
_program
,
self
.
_feed_list
,
self
.
_fetch_list
]
=
\
io
.
load_inference_model
(
dirname
=
self
.
_model_dir
,
io
.
load_inference_model
(
dirname
=
self
.
_model_dir
,
executor
=
self
.
_executor
,
executor
=
self
.
_executor
,
...
@@ -273,7 +293,12 @@ class PostTrainingQuantization(object):
...
@@ -273,7 +293,12 @@ class PostTrainingQuantization(object):
drop_last
=
True
,
drop_last
=
True
,
places
=
self
.
_place
)
places
=
self
.
_place
)
# collect the variable names for sampling.
def
_collect_quantized_varnames
(
self
):
'''
Collect the variable names for sampling, and set activation
variables to be persistable.
'''
_logger
.
info
(
"Collect quantized variable names ..."
)
# TODO(juncaipeng), consider the name_scope of skip_quant and
# TODO(juncaipeng), consider the name_scope of skip_quant and
# reduce the variables for sampling
# reduce the variables for sampling
persistable_var_names
=
[]
persistable_var_names
=
[]
...
@@ -284,46 +309,109 @@ class PostTrainingQuantization(object):
...
@@ -284,46 +309,109 @@ class PostTrainingQuantization(object):
for
op
in
self
.
_program
.
global_block
().
ops
:
for
op
in
self
.
_program
.
global_block
().
ops
:
op_type
=
op
.
type
op_type
=
op
.
type
if
op_type
in
self
.
_quantizable_op_type
:
if
op_type
in
self
.
_quantizable_op_type
:
if
op_type
in
(
"conv2d"
,
"depthwise_conv2d"
):
name_list
=
self
.
_op_real_in_out_name
[
op_type
]
self
.
_quantized_act_var_name
.
add
(
op
.
input
(
"Input"
)[
0
])
for
input_name
in
name_list
[
0
]:
self
.
_quantized_weight_var_name
.
add
(
op
.
input
(
"Filter"
)[
0
])
for
var_name
in
op
.
input
(
input_name
):
self
.
_quantized_act_var_name
.
add
(
op
.
output
(
"Output"
)[
0
])
if
var_name
in
persistable_var_names
:
elif
op_type
in
[
"mul"
,
"matmul"
]:
self
.
_quantized_weight_var_name
.
add
(
var_name
)
x_var_name
=
op
.
input
(
"X"
)[
0
]
else
:
if
x_var_name
in
persistable_var_names
:
self
.
_quantized_act_var_name
.
add
(
var_name
)
self
.
_quantized_weight_var_name
.
add
(
x_var_name
)
for
output_name
in
name_list
[
1
]:
else
:
for
var_name
in
op
.
output
(
output_name
):
self
.
_quantized_act_var_name
.
add
(
x_var_name
)
if
var_name
in
persistable_var_names
:
y_var_name
=
op
.
input
(
"Y"
)[
0
]
self
.
_quantized_weight_var_name
.
add
(
var_name
)
if
y_var_name
in
persistable_var_names
:
else
:
self
.
_quantized_weight_var_name
.
add
(
y_var_name
)
self
.
_quantized_act_var_name
.
add
(
var_name
)
else
:
self
.
_quantized_act_var_name
.
add
(
y_var_name
)
def
_set_activation_persistable
(
self
):
self
.
_quantized_act_var_name
.
add
(
op
.
output
(
"Out"
)[
0
])
'''
else
:
Set activation variables to be persistable, so can obtain
# process other quantizable op type, the input must all not persistable
the tensor data in sample_data
if
self
.
_is_input_all_not_persistable
(
'''
op
,
persistable_var_names
):
persistable_var_names
=
[]
input_output_name_list
=
self
.
_op_real_in_out_name
[
for
var
in
self
.
_program
.
list_vars
():
op_type
]
if
var
.
persistable
:
for
input_name
in
input_output_name_list
[
0
]:
persistable_var_names
.
append
(
var
.
name
)
for
var_name
in
op
.
input
(
input_name
):
self
.
_quantized_act_var_name
.
add
(
var_name
)
for
output_name
in
input_output_name_list
[
1
]:
for
var_name
in
op
.
output
(
output_name
):
self
.
_quantized_act_var_name
.
add
(
var_name
)
# set activation variables to be persistable, so can obtain
# the tensor data in sample_data
for
var
in
self
.
_program
.
list_vars
():
for
var
in
self
.
_program
.
list_vars
():
if
var
.
name
in
self
.
_quantized_act_var_name
:
if
var
.
name
in
self
.
_quantized_act_var_name
:
var
.
persistable
=
True
var
.
persistable
=
True
def
_reset_activation_persistable
(
self
):
'''
Reset activations to be not persistable.
'''
for
var
in
self
.
_program
.
list_vars
():
if
var
.
name
in
self
.
_quantized_act_var_name
:
var
.
persistable
=
False
def
_sample_threshold
(
self
):
'''
Sample the input threshold(min, max, or abs_max) in every iterations.
'''
assert
self
.
_algo
in
[
"abs_max"
,
"min_max"
],
\
"The algo should be abs_max or min_max to sample min max value."
if
self
.
_algo
==
"abs_max"
:
# Only calculate abs_max value for weight for once
if
self
.
_quantized_var_abs_max
==
{}:
for
var_name
in
self
.
_quantized_weight_var_name
:
var_tensor
=
_load_variable_data
(
self
.
_scope
,
var_name
)
abs_max_per_channel
=
[]
for
i
in
range
(
var_tensor
.
shape
[
0
]):
abs_max_per_channel
.
append
(
float
(
np
.
max
(
np
.
abs
(
var_tensor
[
i
]))))
self
.
_quantized_var_abs_max
[
var_name
]
=
abs_max_per_channel
for
var_name
in
self
.
_quantized_act_var_name
:
var_tensor
=
_load_variable_data
(
self
.
_scope
,
var_name
)
abs_max_value
=
float
(
np
.
max
(
np
.
abs
(
var_tensor
)))
if
(
var_name
not
in
self
.
_quantized_var_abs_max
)
or
\
(
abs_max_value
>
self
.
_quantized_var_abs_max
[
var_name
]):
self
.
_quantized_var_abs_max
[
var_name
]
=
abs_max_value
elif
self
.
_algo
==
"min_max"
:
if
self
.
_quantized_var_min
==
{}
and
self
.
_quantized_var_max
==
{}:
for
var_name
in
self
.
_quantized_weight_var_name
:
var_tensor
=
_load_variable_data
(
self
.
_scope
,
var_name
)
min_per_channel
=
[]
max_per_channle
=
[]
for
i
in
range
(
var_tensor
.
shape
[
0
]):
min_per_channel
.
append
(
float
(
np
.
min
(
var_tensor
[
i
])))
max_per_channle
.
append
(
float
(
np
.
max
(
var_tensor
[
i
])))
self
.
_quantized_var_min
[
var_name
]
=
min_per_channel
self
.
_quantized_var_max
[
var_name
]
=
max_per_channle
for
var_name
in
self
.
_quantized_act_var_name
:
var_tensor
=
_load_variable_data
(
self
.
_scope
,
var_name
)
min_value
=
float
(
np
.
min
(
var_tensor
))
max_value
=
float
(
np
.
max
(
var_tensor
))
if
(
var_name
not
in
self
.
_quantized_var_min
)
or
\
(
min_value
<
self
.
_quantized_var_min
[
var_name
]):
self
.
_quantized_var_min
[
var_name
]
=
min_value
if
(
var_name
not
in
self
.
_quantized_var_max
)
or
\
(
max_value
>
self
.
_quantized_var_max
[
var_name
]):
self
.
_quantized_var_max
[
var_name
]
=
max_value
def
_save_input_threhold
(
self
):
'''
Save input threshold to the quantized op.
'''
assert
self
.
_algo
==
"min_max"
,
\
"The algo should be min_max to save input threshold."
for
op
in
self
.
_program
.
global_block
().
ops
:
if
op
.
type
in
self
.
_quantizable_op_type
:
input_name_list
=
self
.
_op_real_in_out_name
[
op
.
type
][
0
]
for
input_name
in
input_name_list
:
for
var_name
in
op
.
input
(
input_name
):
assert
var_name
in
self
.
_quantized_var_min
assert
var_name
in
self
.
_quantized_var_max
op
.
_set_attr
(
var_name
+
".min"
,
self
.
_quantized_var_min
[
var_name
])
op
.
_set_attr
(
var_name
+
".max"
,
self
.
_quantized_var_max
[
var_name
])
def
_sample_data
(
self
,
iter
):
def
_sample_data
(
self
,
iter
):
'''
'''
Sample the tensor data of quantized variables,
Sample the tensor data of quantized variables,
applied in every iteration.
applied in every iteration.
'''
'''
assert
self
.
_algo
==
"KL"
,
"The algo should be KL to sample data."
for
var_name
in
self
.
_quantized_weight_var_name
:
for
var_name
in
self
.
_quantized_weight_var_name
:
if
var_name
not
in
self
.
_sampling_data
:
if
var_name
not
in
self
.
_sampling_data
:
var_tensor
=
_load_variable_data
(
self
.
_scope
,
var_name
)
var_tensor
=
_load_variable_data
(
self
.
_scope
,
var_name
)
...
@@ -344,19 +432,20 @@ class PostTrainingQuantization(object):
...
@@ -344,19 +432,20 @@ class PostTrainingQuantization(object):
var_tensor
=
var_tensor
.
ravel
()
var_tensor
=
var_tensor
.
ravel
()
self
.
_sampling_data
[
var_name
].
append
(
var_tensor
)
self
.
_sampling_data
[
var_name
].
append
(
var_tensor
)
def
_calculate_
scale_factor
(
self
):
def
_calculate_
kl_threshold
(
self
):
'''
'''
Calculate the
scale factor
of quantized variables.
Calculate the
KL threshold
of quantized variables.
'''
'''
_logger
.
info
(
"Calculate KL threshold ..."
)
assert
self
.
_algo
==
"KL"
,
"The algo should be KL to calculate kl threshold."
# apply channel_wise_abs_max quantization for weights
# apply channel_wise_abs_max quantization for weights
for
var_name
in
self
.
_quantized_weight_var_name
:
for
var_name
in
self
.
_quantized_weight_var_name
:
data
=
self
.
_sampling_data
[
var_name
]
data
=
self
.
_sampling_data
[
var_name
]
scale_factor
_per_channel
=
[]
threshold
_per_channel
=
[]
for
i
in
range
(
data
.
shape
[
0
]):
for
i
in
range
(
data
.
shape
[
0
]):
abs_max_value
=
np
.
max
(
np
.
abs
(
data
[
i
]))
abs_max_value
=
np
.
max
(
np
.
abs
(
data
[
i
]))
scale_factor_per_channel
.
append
(
abs_max_value
)
threshold_per_channel
.
append
(
abs_max_value
)
self
.
_quantized_var_scale_factor
[
self
.
_quantized_var_kl_threshold
[
var_name
]
=
threshold_per_channel
var_name
]
=
scale_factor_per_channel
# apply kl quantization for activation
# apply kl quantization for activation
if
self
.
_is_use_cache_file
:
if
self
.
_is_use_cache_file
:
...
@@ -369,36 +458,25 @@ class PostTrainingQuantization(object):
...
@@ -369,36 +458,25 @@ class PostTrainingQuantization(object):
sampling_data
.
append
(
np
.
load
(
file_path
))
sampling_data
.
append
(
np
.
load
(
file_path
))
os
.
remove
(
file_path
)
os
.
remove
(
file_path
)
sampling_data
=
np
.
concatenate
(
sampling_data
)
sampling_data
=
np
.
concatenate
(
sampling_data
)
self
.
_quantized_var_kl_threshold
[
var_name
]
=
\
if
self
.
_algo
==
"KL"
:
self
.
_get_kl_scaling_factor
(
np
.
abs
(
sampling_data
))
self
.
_quantized_var_scale_factor
[
var_name
]
=
\
self
.
_get_kl_scaling_factor
(
np
.
abs
(
sampling_data
))
else
:
self
.
_quantized_var_scale_factor
[
var_name
]
=
\
np
.
max
(
np
.
abs
(
sampling_data
))
else
:
else
:
for
var_name
in
self
.
_quantized_act_var_name
:
for
var_name
in
self
.
_quantized_act_var_name
:
self
.
_sampling_data
[
var_name
]
=
np
.
concatenate
(
self
.
_sampling_data
[
var_name
]
=
np
.
concatenate
(
self
.
_sampling_data
[
var_name
])
self
.
_sampling_data
[
var_name
])
if
self
.
_algo
==
"KL"
:
self
.
_quantized_var_kl_threshold
[
var_name
]
=
\
self
.
_quantized_var_scale_factor
[
var_name
]
=
\
self
.
_get_kl_scaling_factor
(
np
.
abs
(
self
.
_sampling_data
[
var_name
]))
self
.
_get_kl_scaling_factor
(
np
.
abs
(
self
.
_sampling_data
[
var_name
]))
else
:
self
.
_quantized_var_scale_factor
[
var_name
]
=
\
np
.
max
(
np
.
abs
(
self
.
_sampling_data
[
var_name
]))
def
_update_program
(
self
):
def
_update_program
(
self
):
'''
'''
Insert fake_quantize/fake_dequantize op to the program.
Use QuantizationTransformPass and AddQuantDequantPass to insert
fake_quantize, fake_dequantize and fake_quant_dequant op.
Besides, save all kl threshold to the scale var node.
'''
'''
# reset quantized activation variable
_logger
.
info
(
"Update the program ..."
)
for
var
in
self
.
_program
.
list_vars
():
if
var
.
name
in
self
.
_quantized_act_var_name
:
var
.
persistable
=
False
# use QuantizationTransformPass to insert fake_quantize/fake_dequantize op
graph
=
IrGraph
(
core
.
Graph
(
self
.
_program
.
desc
),
for_test
=
True
)
graph
=
IrGraph
(
core
.
Graph
(
self
.
_program
.
desc
),
for_test
=
True
)
# use QuantizationTransformPass to insert fake_quant/fake_dequantize op
major_quantizable_op_types
=
[]
major_quantizable_op_types
=
[]
for
op_type
in
QuantizationTransformPass
.
_supported_quantizable_op_type
:
for
op_type
in
QuantizationTransformPass
.
_supported_quantizable_op_type
:
if
op_type
in
self
.
_quantizable_op_type
:
if
op_type
in
self
.
_quantizable_op_type
:
...
@@ -424,8 +502,12 @@ class PostTrainingQuantization(object):
...
@@ -424,8 +502,12 @@ class PostTrainingQuantization(object):
quantizable_op_type
=
minor_quantizable_op_types
)
quantizable_op_type
=
minor_quantizable_op_types
)
add_quant_dequant_pass
.
apply
(
graph
)
add_quant_dequant_pass
.
apply
(
graph
)
# save scale factor to scale var node
# save abs_max or KL threshold to scale var node
for
key
,
val
in
self
.
_quantized_var_scale_factor
.
items
():
if
self
.
_algo
==
"KL"
:
scale_dict
=
self
.
_quantized_var_kl_threshold
else
:
scale_dict
=
self
.
_quantized_var_abs_max
for
key
,
val
in
scale_dict
.
items
():
_set_variable_data
(
_set_variable_data
(
self
.
_scope
,
self
.
_scope
,
self
.
_place
,
self
.
_place
,
...
@@ -450,33 +532,34 @@ class PostTrainingQuantization(object):
...
@@ -450,33 +532,34 @@ class PostTrainingQuantization(object):
freeze_pass
.
apply
(
graph
)
freeze_pass
.
apply
(
graph
)
self
.
_program
=
graph
.
to_program
()
self
.
_program
=
graph
.
to_program
()
def
_save_output_
scale
(
self
):
def
_save_output_
threshold
(
self
):
'''
'''
Save output
scale
to the quantized op.
Save output
threshold
to the quantized op.
'''
'''
output_scale_name
=
"output_scale"
for
op
in
self
.
_program
.
global_block
().
ops
:
for
op
in
self
.
_program
.
global_block
().
ops
:
if
op
.
type
in
self
.
_quantizable_op_type
:
if
op
.
type
in
self
.
_quantizable_op_type
:
output_name_list
=
self
.
_op_real_in_out_name
[
op
.
type
][
1
]
output_name_list
=
self
.
_op_real_in_out_name
[
op
.
type
][
1
]
for
output_name
in
output_name_list
:
for
output_name
in
output_name_list
:
for
output_var_name
in
op
.
output
(
output_name
):
for
var_name
in
op
.
output
(
output_name
):
if
output_var_name
in
self
.
_quantized_var_scale_factor
:
if
self
.
_algo
==
"KL"
:
op
.
_set_attr
(
output_scale_name
,
assert
var_name
in
self
.
_quantized_var_kl_threshold
self
.
_quantized_var_scale_factor
[
op
.
_set_attr
(
output_var_name
])
var_name
+
".threshold"
,
self
.
_quantized_var_kl_threshold
[
var_name
])
def
_is_input_all_not_persistable
(
self
,
op
,
persistable_var_names
):
op
.
_set_attr
(
"quantization_type"
,
"post_kl"
)
'''
elif
self
.
_algo
==
"abs_max"
:
Analyze the real inputs of the op are all not persistable.
assert
var_name
in
self
.
_quantized_var_abs_max
'''
op
.
_set_attr
(
var_name
+
".threshold"
,
is_input_all_not_persistable
=
True
self
.
_quantized_var_abs_max
[
var_name
])
input_name_list
=
self
.
_op_real_in_out_name
[
op
.
type
][
0
]
op
.
_set_attr
(
"quantization_type"
,
"post_abs_max"
)
for
input_name
in
input_name_list
:
elif
self
.
_algo
==
"min_max"
:
for
var_name
in
op
.
input
(
input_name
):
assert
var_name
in
self
.
_quantized_var_min
if
var_name
in
persistable_var_names
:
assert
var_name
in
self
.
_quantized_var_max
is_input_all_not_persistable
=
False
op
.
_set_attr
(
var_name
+
".min"
,
break
self
.
_quantized_var_min
[
var_name
])
return
is_input_all_not_persistable
op
.
_set_attr
(
var_name
+
".max"
,
self
.
_quantized_var_max
[
var_name
])
op
.
_set_attr
(
"quantization_type"
,
"post_min_max"
)
def
_get_kl_scaling_factor
(
self
,
activation_blob
,
num_quantized_bins
=
255
):
def
_get_kl_scaling_factor
(
self
,
activation_blob
,
num_quantized_bins
=
255
):
'''
'''
...
...
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
浏览文件 @
589cd878
...
@@ -35,6 +35,10 @@ _fake_dequant_op_list = [
...
@@ -35,6 +35,10 @@ _fake_dequant_op_list = [
'fake_dequantize_max_abs'
,
'fake_channel_wise_dequantize_max_abs'
'fake_dequantize_max_abs'
,
'fake_channel_wise_dequantize_max_abs'
]
]
_fake_quant_dequant_op_list
=
[
'fake_quantize_dequantize_moving_average_abs_max'
]
_out_scale_op_list
=
[
_out_scale_op_list
=
[
"mul"
,
"conv2d"
,
"pool2d"
,
"relu"
,
"softmax"
,
"sigmoid"
,
"depthwise_conv2d"
,
"mul"
,
"conv2d"
,
"pool2d"
,
"relu"
,
"softmax"
,
"sigmoid"
,
"depthwise_conv2d"
,
"batch_norm"
,
"concat"
,
"tanh"
,
"pad"
,
"elementwise_add"
,
"elementwise_mul"
,
"batch_norm"
,
"concat"
,
"tanh"
,
"pad"
,
"elementwise_add"
,
"elementwise_mul"
,
...
@@ -44,7 +48,7 @@ _out_scale_op_list = [
...
@@ -44,7 +48,7 @@ _out_scale_op_list = [
# list op real input and output names, to avoid processing input such as AxisTensor.
# list op real input and output names, to avoid processing input such as AxisTensor.
_op_real_in_out_name
=
{
_op_real_in_out_name
=
{
"conv2d"
:
[[
"Input"
,
"Filter"
],
[
"Output"
]],
"conv2d"
:
[[
"Input"
,
"Filter"
],
[
"Output"
]],
"depthwise_conv2d"
:
[[
"Input"
],
[
"Output"
]],
"depthwise_conv2d"
:
[[
"Input"
,
"Filter"
],
[
"Output"
]],
"mul"
:
[[
"X"
,
"Y"
],
[
"Out"
]],
"mul"
:
[[
"X"
,
"Y"
],
[
"Out"
]],
"matmul"
:
[[
"X"
,
"Y"
],
[
"Out"
]],
"matmul"
:
[[
"X"
,
"Y"
],
[
"Out"
]],
"pool2d"
:
[[
"X"
],
[
"Out"
]],
"pool2d"
:
[[
"X"
],
[
"Out"
]],
...
@@ -236,6 +240,7 @@ class QuantizationTransformPass(object):
...
@@ -236,6 +240,7 @@ class QuantizationTransformPass(object):
op_node
.
op
().
_set_attr
(
"skip_quant"
,
True
)
op_node
.
op
().
_set_attr
(
"skip_quant"
,
True
)
def
_transform_forward
(
graph
,
op
):
def
_transform_forward
(
graph
,
op
):
op
.
op
().
_set_attr
(
"quantization_type"
,
"qat_with_weight"
)
for
var_node
in
op
.
inputs
:
for
var_node
in
op
.
inputs
:
if
var_node
.
name
()
not
in
op
.
input_arg_names
():
if
var_node
.
name
()
not
in
op
.
input_arg_names
():
continue
continue
...
@@ -290,7 +295,7 @@ class QuantizationTransformPass(object):
...
@@ -290,7 +295,7 @@ class QuantizationTransformPass(object):
# The loop for transforming the forward graph:
# The loop for transforming the forward graph:
for
op
in
ops
:
for
op
in
ops
:
if
op
.
name
()
in
self
.
_quantizable_ops
:
if
op
.
name
()
in
self
.
_quantizable_ops
:
if
not
QuantizationTransformPass
.
_is_skip_quant
(
graph
,
op
):
if
not
self
.
_is_skip_quant
(
graph
,
op
):
_transform_forward
(
graph
,
op
)
_transform_forward
(
graph
,
op
)
# The loop for renaming the inputs of backward op.
# The loop for renaming the inputs of backward op.
for
op
in
ops
:
for
op
in
ops
:
...
@@ -636,8 +641,7 @@ class QuantizationTransformPass(object):
...
@@ -636,8 +641,7 @@ class QuantizationTransformPass(object):
"""
"""
return
"%s.scale"
%
(
var_name
)
return
"%s.scale"
%
(
var_name
)
@
staticmethod
def
_is_skip_quant
(
self
,
graph
,
op_node
):
def
_is_skip_quant
(
graph
,
op_node
):
"""
"""
Analyse whether the op node skips quantization.
Analyse whether the op node skips quantization.
"""
"""
...
@@ -650,20 +654,20 @@ class QuantizationTransformPass(object):
...
@@ -650,20 +654,20 @@ class QuantizationTransformPass(object):
if
op_node
.
name
()
in
[
"mul"
,
"matmul"
]
and
\
if
op_node
.
name
()
in
[
"mul"
,
"matmul"
]
and
\
_is_input_all_not_persistable
(
graph
,
op_node
):
_is_input_all_not_persistable
(
graph
,
op_node
):
is_skip
=
True
is_skip
=
True
if
op_node
.
op
().
has_attr
(
"quantization_type"
)
and
\
op_node
.
op
().
attr
(
"quantization_type"
)
==
"qat_without_weight"
:
is_skip
=
True
return
is_skip
return
is_skip
class
QuantizationFreezePass
(
object
):
class
QuantizationFreezePass
(
object
):
_supported_quantizable_op_type
=
\
QuantizationTransformPass
.
_supported_quantizable_op_type
def
__init__
(
self
,
def
__init__
(
self
,
scope
,
scope
,
place
,
place
,
weight_bits
=
8
,
weight_bits
=
8
,
activation_bits
=
8
,
activation_bits
=
8
,
weight_quantize_type
=
'abs_max'
,
weight_quantize_type
=
'abs_max'
,
quantizable_op_type
=
[
'conv2d'
,
'depthwise_conv2d'
,
'mul'
]
):
quantizable_op_type
=
None
):
"""
"""
The freeze pass is used to adjust the quantize operator order, for example:
The freeze pass is used to adjust the quantize operator order, for example:
1) `activation -> quant -> dequant -> conv2d` will be frozen into
1) `activation -> quant -> dequant -> conv2d` will be frozen into
...
@@ -679,9 +683,8 @@ class QuantizationFreezePass(object):
...
@@ -679,9 +683,8 @@ class QuantizationFreezePass(object):
weight_quantize_type(str): quantization type for weights, support 'abs_max' and
weight_quantize_type(str): quantization type for weights, support 'abs_max' and
'channel_wise_abs_max'. The 'range_abs_max' usually is not used for weight,
'channel_wise_abs_max'. The 'range_abs_max' usually is not used for weight,
since weights are fixed once the model is well trained.
since weights are fixed once the model is well trained.
quantizable_op_type(list[str]): List the type of ops that will be quantized.
quantizable_op_type(list[str]): This input param will be removed latter. The pass
Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
will process all quantized op, so it is not necessary to set the input param.
QuantizationTransformPass and ConvertToInt8Pass must be the same as this.
"""
"""
assert
scope
is
not
None
,
\
assert
scope
is
not
None
,
\
'The scope cannot be set None.'
'The scope cannot be set None.'
...
@@ -692,16 +695,12 @@ class QuantizationFreezePass(object):
...
@@ -692,16 +695,12 @@ class QuantizationFreezePass(object):
self
.
_weight_bits
=
weight_bits
self
.
_weight_bits
=
weight_bits
self
.
_activation_bits
=
activation_bits
self
.
_activation_bits
=
activation_bits
self
.
_weight_quantize_type
=
weight_quantize_type
self
.
_weight_quantize_type
=
weight_quantize_type
self
.
_quantizable_ops
=
quantizable_op_type
for
op
in
self
.
_quantizable_ops
:
assert
op
in
QuantizationFreezePass
.
_supported_quantizable_op_type
,
\
op
+
" is not supported for quantization."
self
.
_conv_ops
=
[
'conv2d'
,
'depthwise_conv2d'
]
self
.
_conv_ops
=
[
'conv2d'
,
'depthwise_conv2d'
]
self
.
_fake_quant_op_names
=
_fake_quant_op_list
self
.
_fake_quant_op_names
=
_fake_quant_op_list
self
.
_fake_dequant_op_names
=
_fake_dequant_op_list
self
.
_fake_dequant_op_names
=
_fake_dequant_op_list
self
.
_op_input_rename_map
=
collections
.
OrderedDict
()
self
.
_op_input_rename_map
=
collections
.
OrderedDict
()
self
.
_op_output_rename_map
=
collections
.
OrderedDict
()
self
.
_op_output_rename_map
=
collections
.
OrderedDict
()
self
.
_var_scale_map
=
collections
.
OrderedDict
()
self
.
_
quant_
var_scale_map
=
collections
.
OrderedDict
()
def
apply
(
self
,
graph
):
def
apply
(
self
,
graph
):
"""
"""
...
@@ -712,6 +711,7 @@ class QuantizationFreezePass(object):
...
@@ -712,6 +711,7 @@ class QuantizationFreezePass(object):
Returns:
Returns:
None
None
"""
"""
# Get input scales in fake quant op and process weights
persistable_vars
=
[
p
.
name
()
for
p
in
graph
.
all_persistable_nodes
()]
persistable_vars
=
[
p
.
name
()
for
p
in
graph
.
all_persistable_nodes
()]
ops
=
graph
.
all_op_nodes
()
ops
=
graph
.
all_op_nodes
()
for
op_node
in
ops
:
for
op_node
in
ops
:
...
@@ -733,7 +733,7 @@ class QuantizationFreezePass(object):
...
@@ -733,7 +733,7 @@ class QuantizationFreezePass(object):
else
:
else
:
scale_v
=
self
.
_load_var
(
scale_v
=
self
.
_load_var
(
op_node
.
output
(
'OutScale'
)[
0
])[
0
]
op_node
.
output
(
'OutScale'
)[
0
])[
0
]
self
.
_var_scale_map
[
input_arg_name
]
=
scale_v
self
.
_
quant_
var_scale_map
[
input_arg_name
]
=
scale_v
self
.
_remove_fake_quant_and_dequant_op
(
graph
,
op_node
)
self
.
_remove_fake_quant_and_dequant_op
(
graph
,
op_node
)
# quantize weight and restore
# quantize weight and restore
param_v
=
self
.
_load_var
(
input_arg_name
)
param_v
=
self
.
_load_var
(
input_arg_name
)
...
@@ -743,32 +743,29 @@ class QuantizationFreezePass(object):
...
@@ -743,32 +743,29 @@ class QuantizationFreezePass(object):
else
:
else
:
scale_v
=
graph
.
_find_node_by_name
(
scale_v
=
graph
.
_find_node_by_name
(
op_node
.
outputs
,
op_node
.
output
(
'OutScale'
)[
0
])
op_node
.
outputs
,
op_node
.
output
(
'OutScale'
)[
0
])
self
.
_var_scale_map
[
input_arg_name
]
=
scale_v
self
.
_
quant_
var_scale_map
[
input_arg_name
]
=
scale_v
# Remove all fake dequant op
ops
=
graph
.
all_op_nodes
()
ops
=
graph
.
all_op_nodes
()
for
op_node
in
ops
:
for
op_node
in
ops
:
op_name
=
op_node
.
name
()
op_name
=
op_node
.
name
()
if
op_name
in
self
.
_fake_dequant_op_names
:
if
op_name
in
self
.
_fake_dequant_op_names
:
self
.
_remove_fake_quant_and_dequant_op
(
graph
,
op_node
)
self
.
_remove_fake_quant_and_dequant_op
(
graph
,
op_node
)
# Insert post dequant op
ops
=
graph
.
all_op_nodes
()
ops
=
graph
.
all_op_nodes
()
for
op_node
in
ops
:
for
op_node
in
ops
:
op_name
=
op_node
.
name
()
op_node_desc
=
op_node
.
op
()
if
op_name
in
self
.
_quantizable_ops
:
if
op_node_desc
.
has_attr
(
"quantization_type"
)
and
\
# only process the node that is quantized by QuantizationTransformPass
op_node_desc
.
attr
(
"quantization_type"
)
==
"qat_with_weight"
:
is_op_node_quantized
=
False
if
self
.
_weight_quantize_type
==
'channel_wise_abs_max'
\
for
var_node
in
op_node
.
inputs
:
and
op_node
.
name
()
in
self
.
_conv_ops
:
var_name
=
var_node
.
name
()
self
.
_insert_post_channel_dequant_op
(
graph
,
op_node
)
if
var_name
.
endswith
(
'.dequantized'
):
else
:
is_op_node_quantized
=
True
self
.
_insert_post_dequant_op
(
graph
,
op_node
)
if
is_op_node_quantized
:
if
self
.
_weight_quantize_type
==
'channel_wise_abs_max'
and
op_name
in
self
.
_conv_ops
:
self
.
_insert_post_channel_dequant_op
(
graph
,
op_node
)
else
:
self
.
_insert_post_dequant_op
(
graph
,
op_node
)
# Rename inputs of the followed ops after inserting dequant_op after fc/conv
for
op_node
in
ops
:
for
op_node
in
ops
:
# insert dequant_op after fc/conv, need to rename inputs of the followed ops
for
var_node
in
op_node
.
inputs
:
for
var_node
in
op_node
.
inputs
:
if
var_node
.
node
in
self
.
_op_output_rename_map
:
if
var_node
.
node
in
self
.
_op_output_rename_map
:
old_in
=
var_node
old_in
=
var_node
...
@@ -802,7 +799,7 @@ class QuantizationFreezePass(object):
...
@@ -802,7 +799,7 @@ class QuantizationFreezePass(object):
new_in
.
clear_outputs
()
new_in
.
clear_outputs
()
graph
.
update_input_link
(
old_in
,
new_in
,
op_node
)
graph
.
update_input_link
(
old_in
,
new_in
,
op_node
)
original_var_name
=
self
.
_original_var_name
(
name
)
original_var_name
=
self
.
_original_var_name
(
name
)
scale_v
=
self
.
_var_scale_map
[
original_var_name
]
scale_v
=
self
.
_
quant_
var_scale_map
[
original_var_name
]
if
original_var_name
in
persistable_vars
:
if
original_var_name
in
persistable_vars
:
assert
isinstance
(
assert
isinstance
(
scale_v
,
scale_v
,
...
@@ -811,7 +808,7 @@ class QuantizationFreezePass(object):
...
@@ -811,7 +808,7 @@ class QuantizationFreezePass(object):
channel_scale
=
np
.
array
(
scale_v
)
channel_scale
=
np
.
array
(
scale_v
)
else
:
else
:
assert
isinstance
(
scale_v
,
IrNode
)
assert
isinstance
(
scale_v
,
IrNode
)
scale_var_node
=
self
.
_var_scale_map
[
original_var_name
]
scale_var_node
=
self
.
_
quant_
var_scale_map
[
original_var_name
]
if
len
(
op_node
.
output_arg_names
())
!=
1
:
if
len
(
op_node
.
output_arg_names
())
!=
1
:
raise
ValueError
(
"Only support one output, but op %s has"
raise
ValueError
(
"Only support one output, but op %s has"
...
@@ -867,7 +864,7 @@ class QuantizationFreezePass(object):
...
@@ -867,7 +864,7 @@ class QuantizationFreezePass(object):
new_in
.
clear_outputs
()
new_in
.
clear_outputs
()
graph
.
update_input_link
(
old_in
,
new_in
,
op_node
)
graph
.
update_input_link
(
old_in
,
new_in
,
op_node
)
original_var_name
=
self
.
_original_var_name
(
name
)
original_var_name
=
self
.
_original_var_name
(
name
)
scale_v
=
self
.
_var_scale_map
[
original_var_name
]
scale_v
=
self
.
_
quant_
var_scale_map
[
original_var_name
]
if
original_var_name
in
persistable_vars
:
if
original_var_name
in
persistable_vars
:
assert
self
.
_is_float
(
assert
self
.
_is_float
(
scale_v
),
'The scale of parameter %s is not a float.'
%
(
scale_v
),
'The scale of parameter %s is not a float.'
%
(
...
@@ -876,7 +873,7 @@ class QuantizationFreezePass(object):
...
@@ -876,7 +873,7 @@ class QuantizationFreezePass(object):
else
:
else
:
max_range
*=
act_range
max_range
*=
act_range
assert
isinstance
(
scale_v
,
IrNode
)
assert
isinstance
(
scale_v
,
IrNode
)
scale_var_node
=
self
.
_var_scale_map
[
original_var_name
]
scale_var_node
=
self
.
_
quant_
var_scale_map
[
original_var_name
]
if
len
(
op_node
.
output_arg_names
())
!=
1
:
if
len
(
op_node
.
output_arg_names
())
!=
1
:
raise
ValueError
(
"Only support one output, but op %s has"
raise
ValueError
(
"Only support one output, but op %s has"
...
@@ -963,13 +960,7 @@ class QuantizationFreezePass(object):
...
@@ -963,13 +960,7 @@ class QuantizationFreezePass(object):
class
ConvertToInt8Pass
(
object
):
class
ConvertToInt8Pass
(
object
):
_supported_quantizable_op_type
=
\
def
__init__
(
self
,
scope
,
place
,
quantizable_op_type
=
None
):
QuantizationTransformPass
.
_supported_quantizable_op_type
def
__init__
(
self
,
scope
,
place
,
quantizable_op_type
=
[
'conv2d'
,
'depthwise_conv2d'
,
'mul'
]):
"""
"""
Convert the weights into int8_t type.
Convert the weights into int8_t type.
...
@@ -977,9 +968,8 @@ class ConvertToInt8Pass(object):
...
@@ -977,9 +968,8 @@ class ConvertToInt8Pass(object):
scope(fluid.Scope): scope is used to get the weight tensor values.
scope(fluid.Scope): scope is used to get the weight tensor values.
place(fluid.CPUPlace|fluid.CUDAPlace): place is used to restore the
place(fluid.CPUPlace|fluid.CUDAPlace): place is used to restore the
8bits weight tensors.
8bits weight tensors.
quantizable_op_type(list[str]): List the type of ops that will be quantized.
quantizable_op_type(list[str]): This input param will be removed latter. The pass
Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
will process all quantized op, so it is not necessary to set the input param.
QuantizationTransformPass and QuantizationFreezePass must be the same as this.
"""
"""
assert
scope
is
not
None
,
\
assert
scope
is
not
None
,
\
'The scope cannot be set None.'
'The scope cannot be set None.'
...
@@ -987,10 +977,6 @@ class ConvertToInt8Pass(object):
...
@@ -987,10 +977,6 @@ class ConvertToInt8Pass(object):
'The place cannot be set None.'
'The place cannot be set None.'
self
.
_scope
=
scope
self
.
_scope
=
scope
self
.
_place
=
place
self
.
_place
=
place
self
.
_quantizable_ops
=
quantizable_op_type
for
op
in
self
.
_quantizable_ops
:
assert
op
in
ConvertToInt8Pass
.
_supported_quantizable_op_type
,
\
op
+
" is not supported for quantization."
def
apply
(
self
,
graph
):
def
apply
(
self
,
graph
):
"""
"""
...
@@ -1006,10 +992,8 @@ class ConvertToInt8Pass(object):
...
@@ -1006,10 +992,8 @@ class ConvertToInt8Pass(object):
ops
=
graph
.
all_op_nodes
()
ops
=
graph
.
all_op_nodes
()
input_map
=
{}
input_map
=
{}
for
op_node
in
ops
:
for
op_node
in
ops
:
op_name
=
op_node
.
name
()
if
op_node
.
op
().
has_attr
(
"quantization_type"
)
and
\
if
op_name
in
self
.
_quantizable_ops
:
op_node
.
op
().
attr
(
"quantization_type"
)
==
"qat_with_weight"
:
if
QuantizationTransformPass
.
_is_skip_quant
(
graph
,
op_node
):
continue
for
var_node
in
op_node
.
inputs
:
for
var_node
in
op_node
.
inputs
:
name
=
var_node
.
name
()
name
=
var_node
.
name
()
if
name
in
persistable_vars
:
if
name
in
persistable_vars
:
...
@@ -1259,9 +1243,9 @@ class AddQuantDequantPass(object):
...
@@ -1259,9 +1243,9 @@ class AddQuantDequantPass(object):
"equal"
,
"gather"
,
"greater_equal"
,
"greater_than"
,
"less_equal"
,
"equal"
,
"gather"
,
"greater_equal"
,
"greater_than"
,
"less_equal"
,
"less_than"
,
"mean"
,
"not_equal"
,
"reshape"
,
"reshape2"
,
"less_than"
,
"mean"
,
"not_equal"
,
"reshape"
,
"reshape2"
,
"bilinear_interp"
,
"nearest_interp"
,
"trilinear_interp"
,
"slice"
,
"bilinear_interp"
,
"nearest_interp"
,
"trilinear_interp"
,
"slice"
,
"squeeze"
,
"elementwise_sub"
,
"mul"
,
"matmul"
"squeeze"
,
"elementwise_sub"
,
"mul"
,
"matmul"
,
"relu"
,
"relu6"
,
"leaky_relu"
,
"tanh"
,
"swish"
]
]
_activation_type
=
[
"relu"
,
"relu6"
,
"leaky_relu"
,
"tanh"
,
"swish"
]
def
__init__
(
self
,
def
__init__
(
self
,
scope
=
None
,
scope
=
None
,
...
@@ -1307,8 +1291,7 @@ class AddQuantDequantPass(object):
...
@@ -1307,8 +1291,7 @@ class AddQuantDequantPass(object):
else
:
else
:
self
.
_quantizable_op_type
=
quantizable_op_type
self
.
_quantizable_op_type
=
quantizable_op_type
for
op_type
in
quantizable_op_type
:
for
op_type
in
quantizable_op_type
:
assert
op_type
in
AddQuantDequantPass
.
_supported_quantizable_op_type
+
\
assert
op_type
in
AddQuantDequantPass
.
_supported_quantizable_op_type
,
\
AddQuantDequantPass
.
_activation_type
,
\
op_type
+
" is not supported for quantization."
op_type
+
" is not supported for quantization."
self
.
_quantizable_grad_op_type
=
[
self
.
_quantizable_grad_op_type
=
[
'%s_grad'
%
(
op
)
for
op
in
self
.
_quantizable_op_type
'%s_grad'
%
(
op
)
for
op
in
self
.
_quantizable_op_type
...
@@ -1343,17 +1326,15 @@ class AddQuantDequantPass(object):
...
@@ -1343,17 +1326,15 @@ class AddQuantDequantPass(object):
elif
isinstance
(
self
.
_skip_pattern
,
str
):
elif
isinstance
(
self
.
_skip_pattern
,
str
):
is_skip
=
op_node
.
op
().
has_attr
(
"op_namescope"
)
and
\
is_skip
=
op_node
.
op
().
has_attr
(
"op_namescope"
)
and
\
op_node
.
op
().
attr
(
"op_namescope"
).
find
(
self
.
_skip_pattern
)
!=
-
1
op_node
.
op
().
attr
(
"op_namescope"
).
find
(
self
.
_skip_pattern
)
!=
-
1
is_quantized
=
op_node
.
op
().
has_attr
(
"quantization_type"
)
and
\
is_op_node_quantized
=
False
op_node
.
op
().
attr
(
"quantization_type"
)
==
"qat_with_weight"
for
var_node
in
op_node
.
inputs
:
if
is_skip
or
is_quantized
or
\
var_name
=
var_node
.
name
()
if
var_name
.
endswith
(
'.dequantized'
):
is_op_node_quantized
=
True
if
is_skip
or
is_op_node_quantized
or
\
(
not
_is_input_all_not_persistable
(
graph
,
op_node
)):
(
not
_is_input_all_not_persistable
(
graph
,
op_node
)):
continue
continue
op_node
.
op
().
_set_attr
(
"quantization_type"
,
"qat_without_weight"
)
op_node
.
op
().
_set_attr
(
"activation_bits"
,
self
.
_quant_bits
)
input_name_list
=
_op_real_in_out_name
[
op_node
.
name
()][
0
]
input_name_list
=
_op_real_in_out_name
[
op_node
.
name
()][
0
]
arg_names
=
[]
arg_names
=
[]
for
input_name
in
input_name_list
:
for
input_name
in
input_name_list
:
...
...
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_mobilenetv1.py
浏览文件 @
589cd878
...
@@ -264,7 +264,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
...
@@ -264,7 +264,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
ptq
.
save_quantized_model
(
self
.
int8_model
)
ptq
.
save_quantized_model
(
self
.
int8_model
)
def
run_test
(
self
,
model
,
algo
,
data_urls
,
data_md5s
,
quantizable_op_type
,
def
run_test
(
self
,
model
,
algo
,
data_urls
,
data_md5s
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
):
is_full_quantize
,
is_use_cache_file
,
diff_threshold
):
infer_iterations
=
self
.
infer_iterations
infer_iterations
=
self
.
infer_iterations
batch_size
=
self
.
batch_size
batch_size
=
self
.
batch_size
sample_iterations
=
self
.
sample_iterations
sample_iterations
=
self
.
sample_iterations
...
@@ -296,11 +296,11 @@ class TestPostTrainingQuantization(unittest.TestCase):
...
@@ -296,11 +296,11 @@ class TestPostTrainingQuantization(unittest.TestCase):
sys
.
stdout
.
flush
()
sys
.
stdout
.
flush
()
delta_value
=
fp32_acc1
-
int8_acc1
delta_value
=
fp32_acc1
-
int8_acc1
self
.
assertLess
(
delta_value
,
0.025
)
self
.
assertLess
(
delta_value
,
diff_threshold
)
class
TestPostTrainingForMobilenetv1
(
TestPostTrainingQuantization
):
class
TestPostTraining
KL
ForMobilenetv1
(
TestPostTrainingQuantization
):
def
test_post_training_mobilenetv1
(
self
):
def
test_post_training_
kl_
mobilenetv1
(
self
):
model
=
"MobileNet-V1"
model
=
"MobileNet-V1"
algo
=
"KL"
algo
=
"KL"
data_urls
=
[
data_urls
=
[
...
@@ -310,10 +310,29 @@ class TestPostTrainingForMobilenetv1(TestPostTrainingQuantization):
...
@@ -310,10 +310,29 @@ class TestPostTrainingForMobilenetv1(TestPostTrainingQuantization):
quantizable_op_type
=
[
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
,
"pool2d"
,
"elementwise_add"
"conv2d"
,
"depthwise_conv2d"
,
"mul"
,
"pool2d"
,
"elementwise_add"
]
]
is_full_quantize
=
Tru
e
is_full_quantize
=
Fals
e
is_use_cache_file
=
False
is_use_cache_file
=
False
diff_threshold
=
0.025
self
.
run_test
(
model
,
algo
,
data_urls
,
data_md5s
,
quantizable_op_type
,
self
.
run_test
(
model
,
algo
,
data_urls
,
data_md5s
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
)
is_full_quantize
,
is_use_cache_file
,
diff_threshold
)
class
TestPostTrainingAbsMaxForMobilenetv1
(
TestPostTrainingQuantization
):
def
test_post_training_abs_max_mobilenetv1
(
self
):
model
=
"MobileNet-V1"
algo
=
"abs_max"
data_urls
=
[
'http://paddle-inference-dist.bj.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
]
data_md5s
=
[
'13892b0716d26443a8cdea15b3c6438b'
]
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
,
"pool2d"
,
"elementwise_add"
]
is_full_quantize
=
False
is_use_cache_file
=
False
diff_threshold
=
0.05
self
.
run_test
(
model
,
algo
,
data_urls
,
data_md5s
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
diff_threshold
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_resnet50.py
浏览文件 @
589cd878
...
@@ -20,7 +20,7 @@ from test_post_training_quantization_mobilenetv1 import TestPostTrainingQuantiza
...
@@ -20,7 +20,7 @@ from test_post_training_quantization_mobilenetv1 import TestPostTrainingQuantiza
class
TestPostTrainingForResnet50
(
TestPostTrainingQuantization
):
class
TestPostTrainingForResnet50
(
TestPostTrainingQuantization
):
def
test_post_training_resnet50
(
self
):
def
test_post_training_resnet50
(
self
):
model
=
"ResNet-50"
model
=
"ResNet-50"
algo
=
"
direct
"
algo
=
"
min_max
"
data_urls
=
[
data_urls
=
[
'http://paddle-inference-dist.bj.bcebos.com/int8/resnet50_int8_model.tar.gz'
'http://paddle-inference-dist.bj.bcebos.com/int8/resnet50_int8_model.tar.gz'
]
]
...
@@ -28,8 +28,9 @@ class TestPostTrainingForResnet50(TestPostTrainingQuantization):
...
@@ -28,8 +28,9 @@ class TestPostTrainingForResnet50(TestPostTrainingQuantization):
quantizable_op_type
=
[
"conv2d"
,
"mul"
]
quantizable_op_type
=
[
"conv2d"
,
"mul"
]
is_full_quantize
=
False
is_full_quantize
=
False
is_use_cache_file
=
False
is_use_cache_file
=
False
diff_threshold
=
0.025
self
.
run_test
(
model
,
algo
,
data_urls
,
data_md5s
,
quantizable_op_type
,
self
.
run_test
(
model
,
algo
,
data_urls
,
data_md5s
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
)
is_full_quantize
,
is_use_cache_file
,
diff_threshold
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录