未验证 提交 570cf1d3 编写于 作者: L Li Fuchen 提交者: GitHub

modified the example of diag_embed english doc, test=develop (#24012) (#24134)

上级 7f124bee
...@@ -46,27 +46,68 @@ def diag_embed(input, offset=0, dim1=-2, dim2=-1): ...@@ -46,27 +46,68 @@ def diag_embed(input, offset=0, dim1=-2, dim2=-1):
This OP creates a tensor whose diagonals of certain 2D planes (specified by dim1 and dim2) This OP creates a tensor whose diagonals of certain 2D planes (specified by dim1 and dim2)
are filled by ``input``. By default, a 2D plane formed by the last two dimensions are filled by ``input``. By default, a 2D plane formed by the last two dimensions
of the returned tensor will be selected. of the returned tensor will be selected.
The argument ``offset`` determines which diagonal is generated: The argument ``offset`` determines which diagonal is generated:
- If offset = 0, it is the main diagonal. - If offset = 0, it is the main diagonal.
- If offset > 0, it is above the main diagonal. - If offset > 0, it is above the main diagonal.
- If offset < 0, it is below the main diagonal. - If offset < 0, it is below the main diagonal.
Args: Args:
input(Variable|numpy.ndarray): The input tensor. Must be at least 1-dimensional. The input data type should be float32, float64, int32, int64. input(Variable|numpy.ndarray): The input tensor. Must be at least 1-dimensional. The input data type should be float32, float64, int32, int64.
offset(int, optional): Which diagonal to consider. Default: 0 (main diagonal). offset(int, optional): Which diagonal to consider. Default: 0 (main diagonal).
dim1(int, optional): The first dimension with respect to which to take diagonal. Default: -2. dim1(int, optional): The first dimension with respect to which to take diagonal. Default: -2.
dim2(int, optional): The second dimension with respect to which to take diagonal. Default: -1. dim2(int, optional): The second dimension with respect to which to take diagonal. Default: -1.
Returns: Returns:
Variable, the output data type is the same as input data type. Variable, the output data type is the same as input data type.
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle.nn.functional as F import paddle.nn.functional as F
import paddle.fluid.dygraph as dg import paddle.fluid.dygraph as dg
import numpy as np import numpy as np
diag_embed = np.random.randn(2, 3).astype('float32') diag_embed = np.random.randn(2, 3).astype('float32')
# [[ 0.7545889 , -0.25074545, 0.5929117 ],
# [-0.6097662 , -0.01753256, 0.619769 ]]
with dg.guard(): with dg.guard():
data1 = F.diag_embed(diag_embed) data1 = F.diag_embed(diag_embed)
data2 = F.diag_embed(diag_embed, offset=1, dim1=0, dim2=2) data1.numpy()
# [[[ 0.7545889 , 0. , 0. ],
# [ 0. , -0.25074545, 0. ],
# [ 0. , 0. , 0.5929117 ]],
# [[-0.6097662 , 0. , 0. ],
# [ 0. , -0.01753256, 0. ],
# [ 0. , 0. , 0.619769 ]]]
data2 = F.diag_embed(diag_embed, offset=-1, dim1=0, dim2=2)
data2.numpy()
# [[[ 0. , 0. , 0. , 0. ],
# [ 0.7545889 , 0. , 0. , 0. ],
# [ 0. , -0.25074545, 0. , 0. ],
# [ 0. , 0. , 0.5929117 , 0. ]],
#
# [[ 0. , 0. , 0. , 0. ],
# [-0.6097662 , 0. , 0. , 0. ],
# [ 0. , -0.01753256, 0. , 0. ],
# [ 0. , 0. , 0.619769 , 0. ]]]
data3 = F.diag_embed(diag_embed, offset=1, dim1=0, dim2=2)
data3.numpy()
# [[[ 0. , 0.7545889 , 0. , 0. ],
# [ 0. , -0.6097662 , 0. , 0. ]],
#
# [[ 0. , 0. , -0.25074545, 0. ],
# [ 0. , 0. , -0.01753256, 0. ]],
#
# [[ 0. , 0. , 0. , 0.5929117 ],
# [ 0. , 0. , 0. , 0.619769 ]],
#
# [[ 0. , 0. , 0. , 0. ],
# [ 0. , 0. , 0. , 0. ]]]
""" """
inputs = {'Input': [input]} inputs = {'Input': [input]}
attrs = {'offset': offset, 'dim1': dim1, 'dim2': dim2} attrs = {'offset': offset, 'dim1': dim1, 'dim2': dim2}
...@@ -80,26 +121,24 @@ def diag_embed(input, offset=0, dim1=-2, dim2=-1): ...@@ -80,26 +121,24 @@ def diag_embed(input, offset=0, dim1=-2, dim2=-1):
'diag_embed') 'diag_embed')
input_shape = list(input.shape) input_shape = list(input.shape)
assert (len(input_shape) >= 1, \ assert len(input_shape) >= 1, \
"Input must be at least 1-dimensional, " \ "Input must be at least 1-dimensional, " \
"But received Input's dimensional: %s.\n" % \ "But received Input's dimensional: %s.\n" % \
len(input_shape)) len(input_shape)
assert ( assert np.abs(dim1) <= len(input_shape), \
np.abs(dim1) <= len(input_shape), "Dim1 is out of range (expected to be in range of [%d, %d], but got %d).\n" \
"Dim1 is out of range (expected to be in range of [%d, %d], but got %d).\n" % (-(len(input_shape) + 1), len(input_shape), dim1)
% (-(len(input_shape) + 1), len(input_shape), dim1))
assert ( assert np.abs(dim2) <= len(input_shape), \
np.abs(dim2) <= len(input_shape), "Dim2 is out of range (expected to be in range of [%d, %d], but got %d).\n" \
"Dim2 is out of range (expected to be in range of [%d, %d], but got %d).\n" % (-(len(input_shape) + 1), len(input_shape), dim2)
% (-(len(input_shape) + 1), len(input_shape), dim2))
dim1_ = dim1 if dim1 >= 0 else len(input_shape) + dim1 + 1 dim1_ = dim1 if dim1 >= 0 else len(input_shape) + dim1 + 1
dim2_ = dim2 if dim2 >= 0 else len(input_shape) + dim2 + 1 dim2_ = dim2 if dim2 >= 0 else len(input_shape) + dim2 + 1
assert ( dim1_ != dim2_, assert dim1_ != dim2_, \
"dim1 and dim2 cannot be the same dimension." \ "dim1 and dim2 cannot be the same dimension." \
"But received dim1 = %d, dim2 = %d\n"%(dim1, dim2)) "But received dim1 = %d, dim2 = %d\n"%(dim1, dim2)
if not in_dygraph_mode(): if not in_dygraph_mode():
__check_input(input, offset, dim1, dim2) __check_input(input, offset, dim1, dim2)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册