diff --git a/paddle/fluid/framework/ir/multihead_matmul_fuse_pass.cc b/paddle/fluid/framework/ir/multihead_matmul_fuse_pass.cc index 03d433f4db1658226631977209462b4c86ffe95c..26dbb5f99941d77a7a2745243f72e9bdec4348cf 100644 --- a/paddle/fluid/framework/ir/multihead_matmul_fuse_pass.cc +++ b/paddle/fluid/framework/ir/multihead_matmul_fuse_pass.cc @@ -424,7 +424,8 @@ PDNode* MultiHeadMatmulPattern::operator()() { } PDNode* MultiHeadMatmulV3Pattern::operator()() { - std::unordered_set matmul_ops{"matmul", "matmul_v2"}; + // Add mul op to support huggingface onnx model convertsion by x2paddle + std::unordered_set matmul_ops{"mul", "matmul", "matmul_v2"}; auto* input0 = pattern->NewNode(input0_repr()); input0->assert_is_ops_input(matmul_ops); diff --git a/paddle/fluid/inference/api/paddle_pass_builder.cc b/paddle/fluid/inference/api/paddle_pass_builder.cc index 261d3db92f590dd431afa0071b522d94423fb65e..5fdf5fb3139d6ce4b110f5536992bfa3ec7a6e88 100644 --- a/paddle/fluid/inference/api/paddle_pass_builder.cc +++ b/paddle/fluid/inference/api/paddle_pass_builder.cc @@ -163,6 +163,8 @@ GpuPassStrategy::GpuPassStrategy() : PassStrategy({}) { "gpu_cpu_flatten2_matmul_fuse_pass", // "gpu_cpu_map_matmul_v2_to_mul_pass", // "gpu_cpu_map_matmul_v2_to_matmul_pass", // + "matmul_scale_fuse_pass", // + "multihead_matmul_fuse_pass_v3", // "gpu_cpu_map_matmul_to_mul_pass", // "fc_fuse_pass", // "fc_elementwise_layernorm_fuse_pass", // diff --git a/python/paddle/fluid/tests/unittests/ir/inference/test_matmul_scale_fuse_pass.py b/python/paddle/fluid/tests/unittests/ir/inference/test_matmul_scale_fuse_pass.py index 7e3ddf95fb7646e74916bbb4813ce9f04ff694ce..ef837e1892b6e1170a5af6a7f27a6028d0f8f26d 100644 --- a/python/paddle/fluid/tests/unittests/ir/inference/test_matmul_scale_fuse_pass.py +++ b/python/paddle/fluid/tests/unittests/ir/inference/test_matmul_scale_fuse_pass.py @@ -47,6 +47,12 @@ class TestMatmulScaleFusePass(PassAutoScanTest): "matmul", ], (1e-5, 1e-5) + # gpu + config = self.create_inference_config(use_gpu=True) + yield config, [ + "matmul", + ], (1e-5, 1e-5) + def sample_program_config(self, draw): # 1. Generate shape and attr of matmul x_shape = draw( diff --git a/python/paddle/fluid/tests/unittests/ir/inference/test_multihead_matmul_fuse_pass_v3.py b/python/paddle/fluid/tests/unittests/ir/inference/test_multihead_matmul_fuse_pass_v3.py new file mode 100644 index 0000000000000000000000000000000000000000..dcb90358fe3d72a98c2c6a6dc5fadd3004e6c4f9 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/ir/inference/test_multihead_matmul_fuse_pass_v3.py @@ -0,0 +1,215 @@ +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from auto_scan_test import PassAutoScanTest, IgnoreReasons +from program_config import TensorConfig, ProgramConfig, OpConfig +import numpy as np +import paddle.inference as paddle_infer +from functools import partial +from typing import Optional, List, Callable, Dict, Any, Set +import unittest + +import hypothesis +from hypothesis import given, settings, seed, example, assume, reproduce_failure +import hypothesis.strategies as st + + +class TestMultiheadMatmulFusePass(PassAutoScanTest): + + def sample_predictor_configs(self, program_config): + # gpu + config = self.create_inference_config(use_gpu=True) + yield config, ["multihead_matmul", "mul"], (1e-2, 1e-3) + + def sample_program_config(self, draw): + + def generate_mul_input(): + return np.random.random([1, 128, 768]).astype(np.float32) - 0.5 + + def generate_elewise_input(): + return np.random.random([1, 12, 128, 128]).astype(np.float32) + + mul_0 = OpConfig("mul", + inputs={ + "X": ["mul_x"], + "Y": ["mul_0_w"] + }, + outputs={"Out": ["mul_0_out"]}, + x_num_col_dims=2, + y_num_col_dims=1) + mul_1 = OpConfig("mul", + inputs={ + "X": ["mul_x"], + "Y": ["mul_1_w"] + }, + outputs={"Out": ["mul_1_out"]}, + x_num_col_dims=2, + y_num_col_dims=1) + mul_2 = OpConfig("mul", + inputs={ + "X": ["mul_x"], + "Y": ["mul_2_w"] + }, + outputs={"Out": ["mul_2_out"]}, + x_num_col_dims=2, + y_num_col_dims=1) + ele_0 = OpConfig("elementwise_add", + inputs={ + "X": [mul_0.outputs["Out"][0]], + "Y": ["ele_0_w"] + }, + outputs={"Out": ["ele_0_out"]}, + axis=-1) + ele_1 = OpConfig("elementwise_add", + inputs={ + "X": [mul_1.outputs["Out"][0]], + "Y": ["ele_1_w"] + }, + outputs={"Out": ["ele_1_out"]}, + axis=-1) + ele_2 = OpConfig("elementwise_add", + inputs={ + "X": [mul_2.outputs["Out"][0]], + "Y": ["ele_2_w"] + }, + outputs={"Out": ["ele_2_out"]}, + axis=-1) + reshape_0 = OpConfig("reshape2", + inputs={"X": [ele_0.outputs["Out"][0]]}, + outputs={ + "Out": ["reshape_0_out"], + "XShape": ["reshape_0_Xout"] + }, + shape=(1, 128, 12, 64)) + reshape_1 = OpConfig("reshape2", + inputs={"X": [ele_1.outputs["Out"][0]]}, + outputs={ + "Out": ["reshape_1_out"], + "XShape": ["reshape_1_Xout"] + }, + shape=(1, 128, 12, 64)) + reshape_2 = OpConfig("reshape2", + inputs={"X": [ele_2.outputs["Out"][0]]}, + outputs={ + "Out": ["reshape_2_out"], + "XShape": ["reshape_2_Xout"] + }, + shape=(1, 128, 12, 64)) + transpose_0 = OpConfig("transpose2", + inputs={"X": [reshape_0.outputs["Out"][0]]}, + outputs={"Out": ["transpose_0_out"]}, + axis=(0, 2, 1, 3)) + transpose_1 = OpConfig("transpose2", + inputs={"X": [reshape_1.outputs["Out"][0]]}, + outputs={"Out": ["transpose_1_out"]}, + axis=(0, 2, 3, 1)) + transpose_2 = OpConfig("transpose2", + inputs={"X": [reshape_2.outputs["Out"][0]]}, + outputs={"Out": ["transpose_2_out"]}, + axis=(0, 2, 1, 3)) + matmul_0 = OpConfig("matmul", + inputs={ + "X": [transpose_0.outputs["Out"][0]], + "Y": [transpose_1.outputs["Out"][0]] + }, + outputs={"Out": ["matmul_0_out"]}, + alpha=0.125, + transpose_X=False, + transpose_Y=False, + fused_reshape_Out=[], + fused_reshape_X=[], + fused_reshape_Y=[], + fused_transpose_Out=[], + fused_transpose_X=[], + fused_transpose_Y=[]) + ele_3 = OpConfig("elementwise_add", + inputs={ + "X": [matmul_0.outputs["Out"][0]], + "Y": ["eltadd_qk_b_var"] + }, + outputs={"Out": ["ele_3_out"]}, + axis=-1) + softmax_op = OpConfig("softmax", + inputs={"X": [ele_3.outputs["Out"][0]]}, + outputs={"Out": ["softmax_out"]}, + axis=3, + is_test=True) + matmul_1 = OpConfig("matmul", + inputs={ + "X": [softmax_op.outputs["Out"][0]], + "Y": [transpose_2.outputs["Out"][0]] + }, + outputs={"Out": ["matmul_1_out"]}, + alpha=1.0, + transpose_X=False, + transpose_Y=False, + fused_reshape_Out=[], + fused_reshape_X=[], + fused_reshape_Y=[], + fused_transpose_Out=[], + fused_transpose_X=[], + fused_transpose_Y=[]) + transpose_3 = OpConfig("transpose2", + inputs={"X": [matmul_1.outputs["Out"][0]]}, + outputs={"Out": ["transpose_3_out"]}, + axis=(0, 2, 1, 3)) + reshape_3 = OpConfig("reshape2", + inputs={"X": [transpose_3.outputs["Out"][0]]}, + outputs={ + "Out": ["reshape_3_out"], + "XShape": ["reshape_3_Xout"] + }, + shape=(1, 128, 768)) + mul_3 = OpConfig("mul", + inputs={ + "X": [reshape_3.outputs["Out"][0]], + "Y": ["mul_3_w"] + }, + outputs={"Out": ["mul_3_out"]}, + x_num_col_dims=2, + y_num_col_dims=1) + ops = [ + mul_0, mul_1, mul_2, ele_0, ele_1, ele_2, reshape_0, reshape_1, + reshape_2, transpose_0, transpose_1, transpose_2, matmul_0, ele_3, + softmax_op, matmul_1, transpose_3, reshape_3, mul_3 + ] + program_config = ProgramConfig( + ops=ops, + inputs={ + "mul_x": + TensorConfig(data_gen=partial(generate_mul_input)), + "eltadd_qk_b_var": + TensorConfig(data_gen=partial(generate_elewise_input)) + }, + weights={ + "mul_0_w": TensorConfig(shape=[768, 768]), + "mul_1_w": TensorConfig(shape=[768, 768]), + "mul_2_w": TensorConfig(shape=[768, 768]), + "mul_3_w": TensorConfig(shape=[768, 768]), + "ele_0_w": TensorConfig(shape=[768]), + "ele_1_w": TensorConfig(shape=[768]), + "ele_2_w": TensorConfig(shape=[768]) + }, + outputs=[ops[-1].outputs["Out"][0]]) + return program_config + + def test(self): + self.run_and_statis(quant=False, + max_examples=100, + min_success_num=1, + passes=["multihead_matmul_fuse_pass_v3"]) + + +if __name__ == "__main__": + unittest.main()