"comment":"\nLocal Response Normalization Operator.\n\nThis operator comes from the paper:\n<<ImageNet Classification with Deep Convolutional Neural Networks>>.\n\nThe original formula is:\n\n$$\nOutput(i, x, y) = Input(i, x, y) / \\left(\nk + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}\n(Input(j, x, y))^2\n\\right)^{\\beta}\n$$\n\nFunction implementation:\n\nInputs and outpus are in NCHW format, while input.shape.ndims() equals 4.\nAnd dimensions 0 ~ 3 represent batch size, feature maps, rows,\nand columns, respectively.\n\nInput and Output in the formula above is for each map(i) of one image, and\nInput(i, x, y), Output(i, x, y) represents an element in an image.\n\nC is the number of feature maps of one image. n is a hyper-parameter\nconfigured when operator is initialized. The sum in the denominator\nis the sum of the same positions in the neighboring maps.\n\n",
"comment":"\nLocal Response Normalization Operator.\n\nThis operator comes from the paper:\n<<ImageNet Classification with Deep Convolutional Neural Networks>>.\n\nThe original formula is:\n\n$$\nOutput(i, x, y) = Input(i, x, y) / \\left(\nk + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}\n(Input(j, x, y))^2\n\\right)^{\\beta}\n$$\n\nFunction implementation:\n\nInputs and outpus are in NCHW format, while input.shape.ndims() equals 4.\nAnd dimensions 0 ~ 3 represent batch size, feature maps, rows,\nand columns, respectively.\n\nInput and Output in the formula above is for each map(i) of one image, and\nInput(i, x, y), Output(i, x, y) represents an element in an image.\n\nC is the number of feature maps of one image. n is a hyper-parameter\nconfigured when operator is initialized. The sum in the denominator\nis the sum of the same positions in the neighboring maps.\n\n",