Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
55164761
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
55164761
编写于
1月 25, 2022
作者:
F
fwenguang
提交者:
GitHub
1月 25, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU]add mlu batch_norm kernel pytest (#39071)
上级
ac3dc0bb
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
997 addition
and
0 deletion
+997
-0
python/paddle/fluid/tests/unittests/mlu/test_batch_norm_op_mlu.py
...addle/fluid/tests/unittests/mlu/test_batch_norm_op_mlu.py
+702
-0
python/paddle/fluid/tests/unittests/mlu/test_batch_norm_op_mlu_v2.py
...le/fluid/tests/unittests/mlu/test_batch_norm_op_mlu_v2.py
+295
-0
未找到文件。
python/paddle/fluid/tests/unittests/mlu/test_batch_norm_op_mlu.py
0 → 100644
浏览文件 @
55164761
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
os
import
unittest
import
numpy
as
np
import
paddle
import
paddle.fluid.core
as
core
from
paddle.fluid.op
import
Operator
import
paddle.fluid
as
fluid
import
sys
sys
.
path
.
append
(
'..'
)
from
op_test
import
OpTest
,
_set_use_system_allocator
from
paddle.fluid.framework
import
grad_var_name
import
paddle.fluid
as
fluid
from
paddle.fluid
import
Program
,
program_guard
_set_use_system_allocator
(
True
)
def
_reference_testing
(
x
,
scale
,
offset
,
mean
,
var
,
epsilon
,
data_format
):
x_shape
=
x
.
shape
if
len
(
x_shape
)
==
2
:
if
data_format
==
"NCHW"
:
x
=
np
.
reshape
(
x
,
(
x
.
shape
[
0
],
x
.
shape
[
1
],
1
,
1
))
else
:
x
=
np
.
reshape
(
x
,
(
x
.
shape
[
0
],
1
,
1
,
x
.
shape
[
1
]))
if
len
(
x_shape
)
==
3
:
if
data_format
==
"NCHW"
:
# NCL -> NCL1
x
=
np
.
reshape
(
x
,
(
x_shape
[
0
],
x_shape
[
1
],
x_shape
[
2
],
1
))
else
:
# NLC -> NL1C
x
=
np
.
reshape
(
x
,
(
x_shape
[
0
],
x_shape
[
1
],
1
,
x_shape
[
2
]))
if
data_format
==
"NCHW"
:
n
,
c
,
h
,
w
=
x
.
shape
mean_tile
=
np
.
reshape
(
mean
,
(
1
,
c
,
1
,
1
))
mean_tile
=
np
.
tile
(
mean_tile
,
(
n
,
1
,
h
,
w
))
var_tile
=
np
.
reshape
(
var
,
(
1
,
c
,
1
,
1
))
var_tile
=
np
.
tile
(
var_tile
,
(
n
,
1
,
h
,
w
))
normalized
=
(
x
-
mean_tile
)
/
np
.
sqrt
(
var_tile
+
epsilon
)
scale_tile
=
np
.
reshape
(
scale
,
(
1
,
c
,
1
,
1
))
scale_tile
=
np
.
tile
(
scale_tile
,
(
n
,
1
,
h
,
w
))
offset_tile
=
np
.
reshape
(
offset
,
(
1
,
c
,
1
,
1
))
offset_tile
=
np
.
reshape
(
offset_tile
,
(
1
,
c
,
1
,
1
))
y
=
normalized
*
scale_tile
+
offset_tile
elif
data_format
==
"NHWC"
:
normalized
=
(
x
-
mean
)
/
np
.
sqrt
(
var
+
epsilon
)
y
=
normalized
*
scale
+
offset
else
:
raise
ValueError
(
"Unknown data order."
)
if
len
(
x_shape
)
==
2
or
len
(
x_shape
)
==
3
:
y
=
np
.
reshape
(
y
,
x_shape
)
return
y
def
_cal_mean_variance
(
x
,
epsilon
,
data_format
):
assert
data_format
in
[
'NCHW'
,
'NHWC'
]
x_shape
=
x
.
shape
if
len
(
x_shape
)
==
3
:
if
data_format
==
"NCHW"
:
# NCL -> NCL1
x
=
np
.
reshape
(
x
,
(
x_shape
[
0
],
x_shape
[
1
],
x_shape
[
2
],
1
))
else
:
# NLC -> NL1C
x
=
np
.
reshape
(
x
,
(
x_shape
[
0
],
x_shape
[
1
],
1
,
x_shape
[
2
]))
x_square
=
x
*
x
axis
=
(
0
,
2
,
3
)
if
data_format
==
'NCHW'
else
(
0
,
1
,
2
)
C
=
x
.
shape
[
1
]
if
data_format
==
'NCHW'
else
x
.
shape
[
-
1
]
x_square_sum
=
np
.
sum
(
x_square
,
axis
)
x_sum
=
np
.
sum
(
x
,
axis
=
axis
)
element_count
=
np
.
size
(
x
)
/
C
mean
=
x_sum
/
element_count
var
=
x_square_sum
/
element_count
-
mean
*
mean
return
mean
,
var
def
_reference_training
(
x
,
scale
,
offset
,
epsilon
,
data_format
):
x_shape
=
x
.
shape
if
len
(
x_shape
)
==
3
:
if
data_format
==
"NCHW"
:
# NCL -> NCL1
x
=
np
.
reshape
(
x
,
(
x_shape
[
0
],
x_shape
[
1
],
x_shape
[
2
],
1
))
else
:
# NLC -> NL1C
x
=
np
.
reshape
(
x
,
(
x_shape
[
0
],
x_shape
[
1
],
1
,
x_shape
[
2
]))
if
data_format
==
"NCHW"
:
n
,
c
,
h
,
w
=
x
.
shape
x_square
=
x
*
x
x_square_sum
=
np
.
sum
(
x_square
,
(
0
,
2
,
3
))
x_sum
=
np
.
sum
(
x
,
axis
=
(
0
,
2
,
3
))
element_count
=
np
.
size
(
x
)
/
int
(
np
.
shape
(
x
)[
1
])
mean
=
x_sum
/
element_count
var
=
x_square_sum
/
element_count
-
mean
*
mean
mean_tile
=
np
.
reshape
(
mean
,
(
1
,
c
,
1
,
1
))
mean_tile
=
np
.
tile
(
mean_tile
,
(
n
,
1
,
h
,
w
))
var_tile
=
np
.
reshape
(
var
,
(
1
,
c
,
1
,
1
))
var_tile
=
np
.
tile
(
var_tile
,
(
n
,
1
,
h
,
w
))
normalized
=
(
x
-
mean_tile
)
/
np
.
sqrt
(
var_tile
+
epsilon
)
scale_tile
=
np
.
reshape
(
scale
,
(
1
,
c
,
1
,
1
))
scale_tile
=
np
.
tile
(
scale_tile
,
(
n
,
1
,
h
,
w
))
offset_tile
=
np
.
reshape
(
offset
,
(
1
,
c
,
1
,
1
))
offset_tile
=
np
.
reshape
(
offset_tile
,
(
1
,
c
,
1
,
1
))
y
=
normalized
*
scale_tile
+
offset_tile
elif
data_format
==
"NHWC"
:
x_square
=
x
*
x
x_square_sum
=
np
.
sum
(
x_square
,
(
0
,
1
,
2
))
x_sum
=
np
.
sum
(
x
,
axis
=
(
0
,
1
,
2
))
element_count
=
np
.
size
(
x
)
/
int
(
np
.
shape
(
x
)[
-
1
])
mean
=
x_sum
/
element_count
var
=
x_square_sum
/
element_count
-
mean
*
mean
normalized
=
(
x
-
mean
)
/
np
.
sqrt
(
var
+
epsilon
)
y
=
normalized
*
scale
+
offset
else
:
raise
ValueError
(
"Unknown data order."
)
if
len
(
x_shape
)
==
3
:
y
=
np
.
reshape
(
y
,
x_shape
)
return
y
,
mean
,
var
def
_reference_grad
(
x
,
y_grad
,
scale
,
mean
,
var
,
epsilon
,
data_format
):
# Use the following formulas to calculate gradients:
# grad_scale =
# sum(grad_y * (x - mean)) * rsqrt(var + epsilon)
#
# grad_offset = sum(output_y)
#
# x_grad =
# 1/N * scale * rsqrt(var + epsilon) * (N * grad_y - sum(grad_y) -
# (x - mean) * sum(grad_y * (x - mean)) / (var + epsilon))
# transfer from (N, C, H, W) to (N, H, W, C) to simplify computation
if
data_format
!=
"NCHW"
and
data_format
!=
"NHWC"
:
raise
ValueError
(
"Unknown data order."
)
x_shape
=
x
.
shape
if
len
(
x_shape
)
==
3
:
if
data_format
==
"NCHW"
:
# NCL -> NCL1
x
=
np
.
reshape
(
x
,
(
x_shape
[
0
],
x_shape
[
1
],
x_shape
[
2
],
1
))
y_grad
=
np
.
reshape
(
y_grad
,
(
x_shape
[
0
],
x_shape
[
1
],
x_shape
[
2
],
1
))
else
:
# NLC -> NL1C
x
=
np
.
reshape
(
x
,
(
x_shape
[
0
],
x_shape
[
1
],
1
,
x_shape
[
2
]))
y_grad
=
np
.
reshape
(
y_grad
,
(
x_shape
[
0
],
x_shape
[
1
],
1
,
x_shape
[
2
]))
if
data_format
==
"NCHW"
:
x
=
np
.
transpose
(
x
,
(
0
,
2
,
3
,
1
))
y_grad
=
np
.
transpose
(
y_grad
,
(
0
,
2
,
3
,
1
))
x_grad
=
scale
*
(
y_grad
-
np
.
mean
(
y_grad
,
axis
=
(
0
,
1
,
2
))
-
(
x
-
mean
)
*
np
.
mean
(
y_grad
*
(
x
-
mean
),
axis
=
(
0
,
1
,
2
))
/
(
var
+
epsilon
))
/
np
.
sqrt
(
var
+
epsilon
)
grad_scale
=
np
.
sum
(
y_grad
*
(
x
-
mean
)
/
np
.
sqrt
(
var
+
epsilon
),
axis
=
(
0
,
1
,
2
))
grad_offset
=
np
.
sum
(
y_grad
,
axis
=
(
0
,
1
,
2
))
# transfer back to N, C, H, W
if
data_format
==
"NCHW"
:
x_grad
=
np
.
transpose
(
x_grad
,
(
0
,
3
,
1
,
2
))
x
=
np
.
transpose
(
x
,
(
0
,
3
,
1
,
2
))
y_grad
=
np
.
transpose
(
y_grad
,
(
0
,
3
,
1
,
2
))
if
len
(
x_shape
)
==
3
:
x_grad
=
np
.
reshape
(
x_grad
,
x_shape
)
return
x_grad
,
grad_scale
,
grad_offset
def
create_or_get_tensor
(
scope
,
var_name
,
var
,
place
):
tensor
=
scope
.
var
(
var_name
).
get_tensor
()
if
var
is
not
None
:
assert
isinstance
(
var
,
np
.
ndarray
)
tensor
.
set_recursive_sequence_lengths
([])
tensor
.
set
(
var
,
place
)
return
tensor
def
set_output_grad
(
scope
,
outputs
,
place
,
feed_dict
=
None
):
def
__set_tensor__
(
name
,
data
=
None
):
out_tensor
=
scope
.
find_var
(
name
).
get_tensor
()
grad_tensor
=
scope
.
var
(
grad_var_name
(
name
)).
get_tensor
()
out_dtype
=
out_tensor
.
dtype
()
if
data
is
None
:
if
out_dtype
==
core
.
VarDesc
.
VarType
.
FP64
:
data
=
np
.
ones
(
out_tensor
.
shape
(),
dtype
=
np
.
float64
)
elif
out_dtype
==
core
.
VarDesc
.
VarType
.
FP32
:
data
=
np
.
ones
(
out_tensor
.
shape
(),
dtype
=
np
.
float32
)
else
:
raise
ValueError
(
"Not supported data type "
+
str
(
out_dtype
))
grad_tensor
.
set
(
data
,
place
)
for
output
in
outputs
:
data
=
None
if
output
in
feed_dict
:
data
=
feed_dict
[
output
]
__set_tensor__
(
output
,
data
)
class
TestBatchNormOpInference
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
dtype
=
np
.
float32
self
.
fuse_with_relu
=
False
self
.
init_kernel_type
()
def
__assert_close
(
self
,
tensor
,
np_array
,
msg
,
atol
=
1e-4
):
self
.
assertTrue
(
np
.
allclose
(
np
.
array
(
tensor
),
np_array
,
atol
=
atol
),
msg
)
def
check_with_place
(
self
,
place
,
data_layout
,
dtype
,
shape
):
epsilon
=
0.00001
if
len
(
shape
)
==
2
:
x_shape
=
shape
c
=
x_shape
[
1
]
else
:
n
,
h
,
w
,
c
=
shape
[
0
],
shape
[
1
],
shape
[
2
],
shape
[
3
]
if
data_layout
==
"NHWC"
:
x_shape
=
[
n
,
h
,
w
,
c
]
elif
data_layout
==
"NCHW"
:
x_shape
=
[
n
,
c
,
h
,
w
]
else
:
raise
ValueError
(
"Unknown data layout."
)
scale_shape
=
[
c
]
x_val
=
np
.
random
.
random_sample
(
x_shape
).
astype
(
dtype
)
# generate some negative values to test case with relu fused
x_val
=
x_val
-
0.5
scale_val
=
np
.
random
.
random_sample
(
scale_shape
).
astype
(
np
.
float32
)
bias_val
=
np
.
random
.
random_sample
(
scale_shape
).
astype
(
np
.
float32
)
mean
=
np
.
zeros
(
scale_shape
).
astype
(
np
.
float32
)
variance
=
np
.
ones
(
scale_shape
).
astype
(
np
.
float32
)
y_out
=
_reference_testing
(
x_val
,
scale_val
,
bias_val
,
mean
,
variance
,
epsilon
,
data_layout
).
astype
(
dtype
)
if
self
.
fuse_with_relu
:
y_out
=
np
.
maximum
(
y_out
,
0
)
scope
=
core
.
Scope
()
# create input
x_tensor
=
create_or_get_tensor
(
scope
,
"x_val"
,
OpTest
.
np_dtype_to_fluid_dtype
(
x_val
),
place
)
scale_tensor
=
create_or_get_tensor
(
scope
,
"scale_val"
,
OpTest
.
np_dtype_to_fluid_dtype
(
scale_val
),
place
)
bias_tensor
=
create_or_get_tensor
(
scope
,
"bias_val"
,
OpTest
.
np_dtype_to_fluid_dtype
(
bias_val
),
place
)
mean_tensor
=
create_or_get_tensor
(
scope
,
"mean"
,
OpTest
.
np_dtype_to_fluid_dtype
(
mean
),
place
)
variance_tensor
=
create_or_get_tensor
(
scope
,
"variance"
,
OpTest
.
np_dtype_to_fluid_dtype
(
variance
),
place
)
# create output
y_tensor
=
create_or_get_tensor
(
scope
,
"y_out"
,
None
,
place
)
saved_mean_tensor
=
create_or_get_tensor
(
scope
,
"saved_mean"
,
None
,
place
)
saved_variance_tensor
=
create_or_get_tensor
(
scope
,
"saved_variance"
,
None
,
place
)
mean_out_tensor
=
mean_tensor
variance_out_tensor
=
variance_tensor
batch_norm_op
=
Operator
(
"batch_norm"
,
# inputs
X
=
"x_val"
,
Scale
=
"scale_val"
,
Bias
=
"bias_val"
,
Mean
=
"mean"
,
Variance
=
"variance"
,
# outputs
Y
=
"y_out"
,
MeanOut
=
"mean"
,
VarianceOut
=
"variance"
,
SavedMean
=
"saved_mean"
,
SavedVariance
=
"saved_variance"
,
# attrs
is_test
=
True
,
data_layout
=
data_layout
,
use_mkldnn
=
False
,
fuse_with_relu
=
self
.
fuse_with_relu
,
epsilon
=
epsilon
)
batch_norm_op
.
run
(
scope
,
place
)
# check inference result
self
.
__assert_close
(
y_tensor
,
y_out
,
"inference output are different at "
+
str
(
place
)
+
", "
+
data_layout
+
", "
+
str
(
np
.
dtype
(
dtype
))
+
str
(
np
.
array
(
y_tensor
))
+
str
(
y_out
),
atol
=
1e-3
)
def
test_check_output
(
self
):
places
=
[
core
.
CPUPlace
()]
if
core
.
is_compiled_with_mlu
():
places
.
append
(
core
.
MLUPlace
(
0
))
for
place
in
places
:
for
data_format
in
[
"NCHW"
,
"NHWC"
]:
self
.
check_with_place
(
place
,
data_format
,
self
.
dtype
,
[
2
,
3
,
4
,
5
])
self
.
check_with_place
(
place
,
data_format
,
self
.
dtype
,
[
2
,
3
])
def
init_kernel_type
(
self
):
pass
class
TestFP16BatchNormOpInference
(
TestBatchNormOpInference
):
def
setUp
(
self
):
self
.
dtype
=
np
.
float16
self
.
fuse_with_relu
=
False
self
.
init_kernel_type
()
def
test_check_output
(
self
):
places
=
[]
if
core
.
is_compiled_with_mlu
():
places
.
append
(
core
.
MLUPlace
(
0
))
for
place
in
places
:
for
data_format
in
[
"NCHW"
,
"NHWC"
]:
self
.
check_with_place
(
place
,
data_format
,
self
.
dtype
,
[
2
,
3
,
4
,
5
])
self
.
check_with_place
(
place
,
data_format
,
self
.
dtype
,
[
2
,
3
])
class
TestBatchNormOpTraining
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
fuse_with_relu
=
False
self
.
data_formats
=
[
"NCHW"
,
"NHWC"
]
self
.
momentum
=
0.9
self
.
use_momentum_variable
=
False
self
.
epsilon
=
0.00001
self
.
init_kernel_type
()
self
.
init_test_case
()
def
init_test_case
(
self
):
self
.
use_global_stats
=
False
self
.
no_grad_set
=
set
()
self
.
fetch_list
=
[
'y'
,
'mean'
,
'variance'
,
'saved_mean'
,
'saved_variance'
,
'x@GRAD'
,
'scale@GRAD'
,
'bias@GRAD'
]
def
__assert_close
(
self
,
tensor
,
np_array
,
msg
,
atol
=
1e-4
):
np
.
allclose
(
np
.
array
(
tensor
),
np_array
,
atol
=
atol
)
def
ref_forward_backward
(
self
,
x
,
y_grad
,
scale
,
bias
,
mean
,
variance
,
epsilon
,
momentum
,
shape
,
data_layout
):
# run forward
y
,
saved_mean
,
var_ref
=
_reference_training
(
x
,
scale
,
bias
,
epsilon
,
data_layout
)
mean_out
=
saved_mean
*
(
1.
-
momentum
)
+
momentum
*
mean
variance_out
=
var_ref
*
(
1.
-
momentum
)
+
momentum
*
variance
saved_variance
=
1.
/
np
.
sqrt
(
var_ref
+
epsilon
)
# run backward
x_grad
,
scale_grad
,
bias_grad
=
_reference_grad
(
x
,
y_grad
,
scale
,
saved_mean
,
var_ref
,
epsilon
,
data_layout
)
return
y
,
mean_out
,
variance_out
,
saved_mean
,
saved_variance
,
x_grad
,
scale_grad
,
bias_grad
def
set_mean_variance
(
self
,
scale_shape
,
x
,
data_layout
):
mean
,
variance
=
_cal_mean_variance
(
x
,
self
.
epsilon
,
data_layout
)
mean_pre
=
np
.
zeros
(
scale_shape
).
astype
(
np
.
float32
)
variance_pre
=
np
.
ones
(
scale_shape
).
astype
(
np
.
float32
)
# computing global mean/variance for one step
if
self
.
use_global_stats
:
mom
=
self
.
momentum
mean
=
mean
*
(
1.
-
mom
)
+
mom
*
mean_pre
variance
=
variance
*
(
1.
-
mom
)
+
mom
*
variance_pre
return
mean
,
variance
def
test_forward_backward
(
self
):
def
test_with_place
(
place
,
data_layout
,
shape
):
# attr
epsilon
=
self
.
epsilon
momentum
=
self
.
momentum
if
data_layout
==
"NCHW"
:
n
,
c
,
h
,
w
=
shape
[
0
],
shape
[
1
],
shape
[
2
],
shape
[
3
]
else
:
n
,
h
,
w
,
c
=
shape
[
0
],
shape
[
1
],
shape
[
2
],
shape
[
3
]
scale_shape
=
[
c
]
np
.
random
.
seed
(
123
)
x
=
np
.
random
.
random_sample
(
shape
).
astype
(
np
.
float32
)
scale
=
np
.
random
.
random_sample
(
scale_shape
).
astype
(
np
.
float32
)
bias
=
np
.
random
.
random_sample
(
scale_shape
).
astype
(
np
.
float32
)
mean
,
variance
=
self
.
set_mean_variance
(
scale_shape
,
x
,
data_layout
)
y_grad
=
np
.
random
.
random_sample
(
shape
).
astype
(
np
.
float32
)
momentum_var
=
np
.
array
([
momentum
]).
astype
(
np
.
float32
)
y
,
mean_out
,
variance_out
,
saved_mean
,
saved_variance
,
x_grad
,
scale_grad
,
bias_grad
=
self
.
ref_forward_backward
(
x
,
y_grad
,
scale
,
bias
,
mean
,
variance
,
epsilon
,
momentum
,
shape
,
data_layout
)
var_dict
=
locals
()
var_dict
[
'y@GRAD'
]
=
y_grad
var_dict
[
'x@GRAD'
]
=
x_grad
var_dict
[
'scale@GRAD'
]
=
scale_grad
var_dict
[
'bias@GRAD'
]
=
bias_grad
var_names
=
[
'x'
,
'scale'
,
'bias'
,
'mean'
,
'variance'
,
'y'
,
'saved_mean'
,
'saved_variance'
,
'momentum_var'
]
ground_truth
=
{
name
:
var_dict
[
name
]
for
name
in
var_names
}
program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
program
):
block
=
program
.
global_block
()
for
name
in
ground_truth
:
block
.
create_var
(
name
=
name
,
dtype
=
'float32'
,
shape
=
ground_truth
[
name
].
shape
)
inputs
=
{
"X"
:
block
.
var
(
'x'
),
"Scale"
:
block
.
var
(
'scale'
),
"Bias"
:
block
.
var
(
'bias'
),
"Mean"
:
block
.
var
(
'mean'
),
"Variance"
:
block
.
var
(
'variance'
)
}
attrs
=
{
"epsilon"
:
epsilon
,
"is_test"
:
False
,
"data_layout"
:
data_layout
,
"use_mkldnn"
:
False
,
"fuse_with_relu"
:
self
.
fuse_with_relu
,
"use_global_stats"
:
self
.
use_global_stats
}
if
self
.
use_momentum_variable
:
inputs
[
'MomentumTensor'
]
=
block
.
var
(
'momentum_var'
)
else
:
attrs
[
'momentum'
]
=
momentum
outputs
=
{
"Y"
:
block
.
var
(
'y'
),
"MeanOut"
:
block
.
var
(
'mean'
),
# share memory
"VarianceOut"
:
block
.
var
(
'variance'
),
# share memory
"SavedMean"
:
block
.
var
(
'saved_mean'
),
"SavedVariance"
:
block
.
var
(
'saved_variance'
)
}
block
.
create_var
(
name
=
"reserve_space"
,
dtype
=
'float32'
)
outputs
[
"ReserveSpace"
]
=
block
.
var
(
'reserve_space'
)
bn_op
=
block
.
append_op
(
type
=
"batch_norm"
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
attrs
)
block
.
create_var
(
name
=
'y@GRAD'
,
dtype
=
'float32'
,
shape
=
y
.
shape
)
# generate backward op_desc
grad_op_desc_list
,
op_grad_to_var
=
core
.
get_grad_op_desc
(
bn_op
.
desc
,
self
.
no_grad_set
,
[])
grad_op_desc
=
grad_op_desc_list
[
0
]
new_op_desc
=
block
.
desc
.
append_op
()
new_op_desc
.
copy_from
(
grad_op_desc
)
for
var_name
in
grad_op_desc
.
output_arg_names
():
block
.
desc
.
var
(
var_name
.
encode
(
"ascii"
))
grad_op_desc
.
infer_var_type
(
block
.
desc
)
grad_op_desc
.
infer_shape
(
block
.
desc
)
for
arg
in
grad_op_desc
.
output_arg_names
():
grad_var
=
block
.
desc
.
find_var
(
arg
.
encode
(
"ascii"
))
grad_var
.
set_dtype
(
core
.
VarDesc
.
VarType
.
FP32
)
program
.
_sync_with_cpp
()
exe
=
fluid
.
Executor
(
place
)
out
=
exe
.
run
(
program
,
feed
=
{
name
:
var_dict
[
name
]
for
name
in
[
'x'
,
'scale'
,
'bias'
,
'mean'
,
'variance'
,
'y@GRAD'
,
'momentum_var'
]
},
fetch_list
=
self
.
fetch_list
)
for
id
,
name
in
enumerate
(
self
.
fetch_list
):
if
name
==
'variance'
:
self
.
__assert_close
(
var_dict
[
name
],
out
[
id
],
name
,
atol
=
1e-3
)
continue
self
.
__assert_close
(
var_dict
[
name
],
out
[
id
],
name
)
print
(
"op test forward passed: "
,
str
(
place
),
data_layout
)
places
=
[
core
.
CPUPlace
()]
if
core
.
is_compiled_with_mlu
():
places
.
append
(
core
.
MLUPlace
(
0
))
for
place
in
places
:
for
data_format
in
self
.
data_formats
:
test_with_place
(
place
,
data_format
,
[
2
,
3
,
4
,
5
])
def
init_kernel_type
(
self
):
pass
class
TestBatchNormOpTrainingCase1
(
TestBatchNormOpTraining
):
def
init_test_case
(
self
):
self
.
use_global_stats
=
False
self
.
no_grad_set
=
set
([
'scale@GRAD'
,
'bias@GRAD'
])
self
.
fetch_list
=
[
'y'
,
'mean'
,
'variance'
,
'x@GRAD'
]
class
TestBatchNormOpTrainingCase2
(
TestBatchNormOpTraining
):
def
init_test_case
(
self
):
self
.
use_global_stats
=
False
self
.
no_grad_set
=
set
()
self
.
fetch_list
=
[
'y'
,
'mean'
,
'variance'
,
'saved_mean'
,
'saved_variance'
,
'x@GRAD'
,
'scale@GRAD'
,
'bias@GRAD'
]
os
.
environ
[
'FLAGS_cudnn_batchnorm_spatial_persistent'
]
=
"1"
class
TestBatchNormOpTrainingCase3
(
TestBatchNormOpTraining
):
def
init_test_case
(
self
):
self
.
use_global_stats
=
False
self
.
no_grad_set
=
set
([
'x@GRAD'
])
self
.
fetch_list
=
[
'y'
,
'mean'
,
'variance'
,
'scale@GRAD'
,
'bias@GRAD'
]
class
TestBatchNormOpTrainingMomentumVariable
(
TestBatchNormOpTraining
):
def
init_test_case
(
self
):
self
.
use_momentum_variable
=
True
self
.
use_global_stats
=
False
self
.
no_grad_set
=
set
()
self
.
fetch_list
=
[
'y'
,
'mean'
,
'variance'
,
'saved_mean'
,
'saved_variance'
,
'x@GRAD'
,
'scale@GRAD'
,
'bias@GRAD'
]
class
TestBatchNormOpFreezeStatsTraining
(
TestBatchNormOpTraining
):
def
init_test_case
(
self
):
self
.
use_global_stats
=
True
self
.
no_grad_set
=
set
()
self
.
fetch_list
=
[
'y'
,
'mean'
,
'variance'
,
'x@GRAD'
,
'scale@GRAD'
,
'bias@GRAD'
]
def
reference_grad
(
self
,
x
,
y_grad
,
scale
,
mean
,
var
,
epsilon
,
data_format
):
if
data_format
==
"NCHW"
:
x
=
np
.
transpose
(
x
,
(
0
,
2
,
3
,
1
))
y_grad
=
np
.
transpose
(
y_grad
,
(
0
,
2
,
3
,
1
))
x_grad
=
scale
*
y_grad
/
np
.
sqrt
(
var
+
epsilon
)
grad_scale
=
np
.
sum
(
y_grad
*
(
x
-
mean
)
/
np
.
sqrt
(
var
+
epsilon
),
axis
=
(
0
,
1
,
2
))
grad_offset
=
np
.
sum
(
y_grad
,
axis
=
(
0
,
1
,
2
))
# transfer back to N, C, H, W
if
data_format
==
"NCHW"
:
x_grad
=
np
.
transpose
(
x_grad
,
(
0
,
3
,
1
,
2
))
x
=
np
.
transpose
(
x
,
(
0
,
3
,
1
,
2
))
y_grad
=
np
.
transpose
(
y_grad
,
(
0
,
3
,
1
,
2
))
return
x_grad
,
grad_scale
,
grad_offset
def
ref_forward_backward
(
self
,
x
,
y_grad
,
scale
,
bias
,
mean
,
variance
,
epsilon
,
momentum
,
shape
,
data_layout
):
if
data_layout
!=
"NCHW"
and
data_layout
!=
"NHWC"
:
raise
ValueError
(
"Unknown data order."
)
if
data_layout
==
"NCHW"
:
x
=
np
.
transpose
(
x
,
(
0
,
2
,
3
,
1
))
# run normalizaton
normalized
=
(
x
-
mean
)
/
np
.
sqrt
(
variance
+
epsilon
)
y
=
normalized
*
scale
+
bias
# transfer back to N, C, H, W
if
data_layout
==
"NCHW"
:
x
=
np
.
transpose
(
x
,
(
0
,
3
,
1
,
2
))
y
=
np
.
transpose
(
y
,
(
0
,
3
,
1
,
2
))
mean_out
=
mean
variance_out
=
variance
saved_variance
=
1.
/
np
.
sqrt
(
variance
+
epsilon
)
# run backward
x_grad
,
scale_grad
,
bias_grad
=
self
.
reference_grad
(
x
,
y_grad
,
scale
,
mean
,
variance
,
epsilon
,
data_layout
)
return
y
,
mean_out
,
variance_out
,
mean
,
saved_variance
,
x_grad
,
scale_grad
,
bias_grad
class
TestBatchNormOpFreezeStatsAndScaleBiasTraining
(
TestBatchNormOpFreezeStatsTraining
):
def
init_test_case
(
self
):
self
.
use_global_stats
=
True
self
.
no_grad_set
=
set
([
'scale@GRAD'
,
'bias@GRAD'
])
self
.
fetch_list
=
[
'y'
,
'mean'
,
'variance'
,
'x@GRAD'
]
class
TestBatchNormOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
program_guard
(
Program
(),
Program
()):
# the input of batch_norm must be Variable.
x1
=
fluid
.
create_lod_tensor
(
np
.
array
([
-
1
,
3
,
5
,
5
]),
[[
1
,
1
,
1
,
1
]],
fluid
.
CPUPlace
())
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
batch_norm
,
x1
)
# the input dtype of batch_norm must be float16 or float32 or float64
# float16 only can be set on GPU place
x2
=
fluid
.
layers
.
data
(
name
=
'x2'
,
shape
=
[
3
,
4
,
5
,
6
],
dtype
=
"int32"
)
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
batch_norm
,
x2
)
class
TestDygraphBatchNormAPIError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
program_guard
(
Program
(),
Program
()):
batch_norm
=
fluid
.
dygraph
.
BatchNorm
(
10
)
# the input of BatchNorm must be Variable.
x1
=
fluid
.
create_lod_tensor
(
np
.
array
([
-
1
,
3
,
5
,
5
]),
[[
1
,
1
,
1
,
1
]],
fluid
.
CPUPlace
())
self
.
assertRaises
(
TypeError
,
batch_norm
,
x1
)
# the input dtype of BatchNorm must be float16 or float32 or float64
# float16 only can be set on GPU place
x2
=
fluid
.
layers
.
data
(
name
=
'x2'
,
shape
=
[
3
,
4
,
5
,
6
],
dtype
=
"int32"
)
self
.
assertRaises
(
TypeError
,
batch_norm
,
x2
)
class
TestDygraphBatchNormTrainableStats
(
unittest
.
TestCase
):
def
test_dygraph
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_mlu
():
places
.
append
(
fluid
.
MLUPlace
(
0
))
for
p
in
places
:
shape
=
[
4
,
10
,
4
,
4
]
def
compute
(
x
,
is_test
,
trainable_statistics
):
with
fluid
.
dygraph
.
guard
(
p
):
bn
=
fluid
.
dygraph
.
BatchNorm
(
shape
[
1
],
is_test
=
is_test
,
trainable_statistics
=
trainable_statistics
)
y
=
bn
(
fluid
.
dygraph
.
to_variable
(
x
))
return
y
.
numpy
()
x
=
np
.
random
.
randn
(
*
shape
).
astype
(
"float32"
)
y1
=
compute
(
x
,
False
,
False
)
y2
=
compute
(
x
,
True
,
True
)
self
.
assertTrue
(
np
.
allclose
(
y1
,
y2
))
def
test_static
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_mlu
():
places
.
append
(
fluid
.
MLUPlace
(
0
))
for
p
in
places
:
exe
=
fluid
.
Executor
(
p
)
shape
=
[
4
,
10
,
16
,
16
]
def
compute
(
x_np
,
is_test
,
trainable_statistics
):
with
program_guard
(
Program
(),
Program
()):
bn
=
fluid
.
dygraph
.
BatchNorm
(
shape
[
1
],
is_test
=
is_test
,
trainable_statistics
=
trainable_statistics
)
x
=
fluid
.
data
(
name
=
'x'
,
shape
=
x_np
.
shape
,
dtype
=
x_np
.
dtype
)
y
=
bn
(
x
)
exe
.
run
(
fluid
.
default_startup_program
())
r
=
exe
.
run
(
feed
=
{
'x'
:
x_np
},
fetch_list
=
[
y
])[
0
]
return
r
x
=
np
.
random
.
randn
(
*
shape
).
astype
(
"float32"
)
y1
=
compute
(
x
,
False
,
False
)
y2
=
compute
(
x
,
True
,
True
)
self
.
assertTrue
(
np
.
allclose
(
y1
,
y2
))
class
TestDygraphBatchNormOpenReserveSpace
(
unittest
.
TestCase
):
def
test_reservespace
(
self
):
with
program_guard
(
Program
(),
Program
()):
paddle
.
enable_static
()
x
=
np
.
random
.
random
(
size
=
(
3
,
10
,
3
,
7
)).
astype
(
'float32'
)
x
=
fluid
.
data
(
name
=
'x'
,
shape
=
x
.
shape
,
dtype
=
x
.
dtype
)
# Set this FLAG, the BatchNorm API will pass "reserve_space" argument into batch_norm op.
os
.
environ
[
'FLAGS_cudnn_batchnorm_spatial_persistent'
]
=
'1'
batch_norm
=
fluid
.
dygraph
.
BatchNorm
(
7
,
data_layout
=
"NHWC"
)
hidden1
=
batch_norm
(
x
)
os
.
environ
[
'FLAGS_cudnn_batchnorm_spatial_persistent'
]
=
'0'
if
__name__
==
'__main__'
:
paddle
.
enable_static
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/mlu/test_batch_norm_op_mlu_v2.py
0 → 100644
浏览文件 @
55164761
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
unittest
import
numpy
as
np
import
paddle.fluid.core
as
core
from
paddle.fluid.op
import
Operator
import
paddle.fluid
as
fluid
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
,
_set_use_system_allocator
from
paddle.fluid.framework
import
grad_var_name
import
paddle.fluid
as
fluid
from
paddle.fluid
import
Program
,
program_guard
import
paddle
class
TestBatchNorm
(
unittest
.
TestCase
):
def
test_name
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_mlu
():
places
.
append
(
fluid
.
MLUPlace
(
0
))
for
p
in
places
:
with
fluid
.
dygraph
.
guard
(
p
):
batch_norm1d
=
paddle
.
nn
.
BatchNorm1D
(
1
,
name
=
"test"
)
def
test_error
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_mlu
():
places
.
append
(
fluid
.
MLUPlace
(
0
))
for
p
in
places
:
#paddle.disable_static()
x_data_4
=
np
.
random
.
random
(
size
=
(
2
,
1
,
3
,
3
)).
astype
(
'float32'
)
x_data_3
=
np
.
random
.
random
(
size
=
(
2
,
1
,
3
)).
astype
(
'float32'
)
def
error1d_dataformat
():
x_data_4
=
np
.
random
.
random
(
size
=
(
2
,
1
,
3
,
3
)).
astype
(
'float32'
)
batch_norm1d
=
paddle
.
nn
.
BatchNorm1D
(
1
,
data_format
=
'NCDHW'
)
batch_norm1d
(
fluid
.
dygraph
.
to_variable
(
x_data_4
))
def
error2d_dataformat
():
x_data_3
=
np
.
random
.
random
(
size
=
(
2
,
1
,
3
)).
astype
(
'float32'
)
batch_norm2d
=
paddle
.
nn
.
BatchNorm2D
(
1
,
data_format
=
'NCDHW'
)
batch_norm2d
(
fluid
.
dygraph
.
to_variable
(
x_data_3
))
def
error3d_dataformat
():
x_data_4
=
np
.
random
.
random
(
size
=
(
2
,
1
,
3
,
3
)).
astype
(
'float32'
)
batch_norm3d
=
paddle
.
nn
.
BatchNorm3D
(
1
,
data_format
=
'NCL'
)
batch_norm3d
(
fluid
.
dygraph
.
to_variable
(
x_data_4
))
def
error1d
():
x_data_4
=
np
.
random
.
random
(
size
=
(
2
,
1
,
3
,
3
)).
astype
(
'float32'
)
batch_norm1d
=
paddle
.
nn
.
BatchNorm1D
(
1
)
batch_norm1d
(
fluid
.
dygraph
.
to_variable
(
x_data_4
))
def
error2d
():
x_data_3
=
np
.
random
.
random
(
size
=
(
2
,
1
,
3
)).
astype
(
'float32'
)
batch_norm2d
=
paddle
.
nn
.
BatchNorm2D
(
1
)
batch_norm2d
(
fluid
.
dygraph
.
to_variable
(
x_data_3
))
def
error3d
():
x_data_4
=
np
.
random
.
random
(
size
=
(
2
,
1
,
3
,
3
)).
astype
(
'float32'
)
batch_norm3d
=
paddle
.
nn
.
BatchNorm3D
(
1
)
batch_norm3d
(
fluid
.
dygraph
.
to_variable
(
x_data_4
))
with
fluid
.
dygraph
.
guard
(
p
):
self
.
assertRaises
(
ValueError
,
error1d
)
self
.
assertRaises
(
ValueError
,
error2d
)
self
.
assertRaises
(
ValueError
,
error3d
)
self
.
assertRaises
(
ValueError
,
error1d_dataformat
)
self
.
assertRaises
(
ValueError
,
error2d_dataformat
)
self
.
assertRaises
(
ValueError
,
error3d_dataformat
)
def
test_dygraph
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_mlu
():
places
.
append
(
fluid
.
MLUPlace
(
0
))
for
p
in
places
:
shape
=
[
4
,
10
,
4
,
4
]
def
compute_v1
(
x
,
is_test
,
trainable_statistics
):
with
fluid
.
dygraph
.
guard
(
p
):
bn
=
fluid
.
dygraph
.
BatchNorm
(
shape
[
1
],
is_test
=
is_test
,
trainable_statistics
=
trainable_statistics
)
y
=
bn
(
fluid
.
dygraph
.
to_variable
(
x
))
return
y
.
numpy
()
def
compute_v2
(
x
):
with
fluid
.
dygraph
.
guard
(
p
):
bn
=
paddle
.
nn
.
BatchNorm2D
(
shape
[
1
])
y
=
bn
(
fluid
.
dygraph
.
to_variable
(
x
))
return
y
.
numpy
()
def
compute_v3
(
x
,
is_test
,
trainable_statistics
):
with
fluid
.
dygraph
.
guard
(
p
):
bn
=
fluid
.
dygraph
.
BatchNorm
(
shape
[
1
],
is_test
=
is_test
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
1.0
),
trainable
=
False
),
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
0.0
),
trainable
=
False
),
trainable_statistics
=
trainable_statistics
)
y
=
bn
(
fluid
.
dygraph
.
to_variable
(
x
))
return
y
.
numpy
()
def
compute_v4
(
x
):
with
fluid
.
dygraph
.
guard
(
p
):
bn
=
paddle
.
nn
.
BatchNorm2D
(
shape
[
1
],
weight_attr
=
False
,
bias_attr
=
False
)
y
=
bn
(
fluid
.
dygraph
.
to_variable
(
x
))
return
y
.
numpy
()
x
=
np
.
random
.
randn
(
*
shape
).
astype
(
"float32"
)
y1
=
compute_v1
(
x
,
False
,
False
)
y2
=
compute_v2
(
x
)
y3
=
compute_v3
(
x
,
False
,
False
)
y4
=
compute_v4
(
x
)
self
.
assertTrue
(
np
.
allclose
(
y1
,
y2
))
self
.
assertTrue
(
np
.
allclose
(
y3
,
y4
))
def
test_static
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_mlu
():
places
.
append
(
fluid
.
MLUPlace
(
0
))
for
p
in
places
:
exe
=
fluid
.
Executor
(
p
)
shape
=
[
4
,
10
,
16
,
16
]
def
compute_v1
(
x_np
,
is_test
,
trainable_statistics
):
with
program_guard
(
Program
(),
Program
()):
bn
=
fluid
.
dygraph
.
BatchNorm
(
shape
[
1
],
is_test
=
is_test
,
trainable_statistics
=
trainable_statistics
)
x
=
fluid
.
data
(
name
=
'x'
,
shape
=
x_np
.
shape
,
dtype
=
x_np
.
dtype
)
y
=
bn
(
x
)
exe
.
run
(
fluid
.
default_startup_program
())
r
=
exe
.
run
(
feed
=
{
'x'
:
x_np
},
fetch_list
=
[
y
])[
0
]
return
r
def
compute_v2
(
x_np
):
with
program_guard
(
Program
(),
Program
()):
bn
=
paddle
.
nn
.
BatchNorm2D
(
shape
[
1
])
x
=
fluid
.
data
(
name
=
'x'
,
shape
=
x_np
.
shape
,
dtype
=
x_np
.
dtype
)
y
=
bn
(
x
)
exe
.
run
(
fluid
.
default_startup_program
())
r
=
exe
.
run
(
feed
=
{
'x'
:
x_np
},
fetch_list
=
[
y
])[
0
]
return
r
x
=
np
.
random
.
randn
(
*
shape
).
astype
(
"float32"
)
y1
=
compute_v1
(
x
,
False
,
False
)
y2
=
compute_v2
(
x
)
self
.
assertTrue
(
np
.
allclose
(
y1
,
y2
))
class
TestBatchNormChannelLast
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
original_dtyep
=
paddle
.
get_default_dtype
()
paddle
.
set_default_dtype
(
"float32"
)
self
.
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_mlu
():
self
.
places
.
append
(
fluid
.
MLUPlace
(
0
))
def
tearDown
(
self
):
paddle
.
set_default_dtype
(
self
.
original_dtyep
)
def
test_1d
(
self
):
for
p
in
self
.
places
:
with
fluid
.
dygraph
.
guard
(
p
):
x
=
paddle
.
randn
([
2
,
6
,
4
])
net1
=
paddle
.
nn
.
BatchNorm1D
(
4
,
data_format
=
"NLC"
)
net2
=
paddle
.
nn
.
BatchNorm1D
(
4
)
net2
.
weight
=
net1
.
weight
net2
.
bias
=
net1
.
bias
y1
=
net1
(
x
)
channel_first_x
=
paddle
.
transpose
(
x
,
[
0
,
2
,
1
])
y2
=
net2
(
channel_first_x
)
y2
=
paddle
.
transpose
(
y2
,
[
0
,
2
,
1
])
self
.
assertEqual
(
np
.
allclose
(
y1
.
numpy
(),
y2
.
numpy
(),
atol
=
1e-07
),
True
)
def
test_2d
(
self
):
for
p
in
self
.
places
:
with
fluid
.
dygraph
.
guard
(
p
):
x
=
paddle
.
randn
([
2
,
6
,
6
,
4
])
net1
=
paddle
.
nn
.
BatchNorm2D
(
4
,
data_format
=
"NHWC"
)
net2
=
paddle
.
nn
.
BatchNorm2D
(
4
)
net2
.
weight
=
net1
.
weight
net2
.
bias
=
net1
.
bias
y1
=
net1
(
x
)
channel_first_x
=
paddle
.
transpose
(
x
,
[
0
,
3
,
1
,
2
])
y2
=
net2
(
channel_first_x
)
y2
=
paddle
.
transpose
(
y2
,
[
0
,
2
,
3
,
1
])
self
.
assertEqual
(
np
.
allclose
(
y1
.
numpy
(),
y2
.
numpy
(),
atol
=
1e-07
),
True
)
def
test_3d
(
self
):
for
p
in
self
.
places
:
with
fluid
.
dygraph
.
guard
(
p
):
x
=
paddle
.
randn
([
2
,
6
,
6
,
6
,
4
])
net1
=
paddle
.
nn
.
BatchNorm3D
(
4
,
data_format
=
"NDHWC"
)
net2
=
paddle
.
nn
.
BatchNorm3D
(
4
)
net2
.
weight
=
net1
.
weight
net2
.
bias
=
net1
.
bias
y1
=
net1
(
x
)
channel_first_x
=
paddle
.
transpose
(
x
,
[
0
,
4
,
1
,
2
,
3
])
y2
=
net2
(
channel_first_x
)
y2
=
paddle
.
transpose
(
y2
,
[
0
,
2
,
3
,
4
,
1
])
self
.
assertEqual
(
np
.
allclose
(
y1
.
numpy
(),
y2
.
numpy
(),
atol
=
1e-07
),
True
)
# res = np.allclose(y1.numpy(), y2.numpy())
# if res == False:
# np.savetxt("./y1.txt", y1.numpy().flatten(), fmt='%.10f', delimiter='\n')
# np.savetxt("./y2.txt", y2.numpy().flatten(), fmt='%.10f', delimiter='\n')
# self.assertEqual(res, True)
class
TestBatchNormUseGlobalStats
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_mlu
():
self
.
places
.
append
(
fluid
.
MLUPlace
(
0
))
self
.
init_test
()
### train mode
def
init_test
(
self
):
self
.
use_global_stats
=
True
self
.
trainable_statistics
=
False
def
test_global_stats
(
self
):
for
p
in
self
.
places
:
with
fluid
.
dygraph
.
guard
(
p
):
x
=
paddle
.
randn
([
2
,
6
,
6
,
4
])
net1
=
paddle
.
fluid
.
dygraph
.
BatchNorm
(
6
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
1.0
)),
use_global_stats
=
self
.
use_global_stats
,
trainable_statistics
=
self
.
trainable_statistics
)
net2
=
paddle
.
nn
.
BatchNorm2D
(
6
,
use_global_stats
=
self
.
use_global_stats
)
net2
.
weight
=
net1
.
weight
net2
.
bias
=
net1
.
bias
if
self
.
trainable_statistics
==
True
:
net1
.
training
=
False
net2
.
training
=
False
y1
=
net1
(
x
)
y2
=
net2
(
x
)
self
.
assertEqual
(
np
.
allclose
(
y1
.
numpy
(),
y2
.
numpy
()),
True
)
class
TestBatchNormUseGlobalStatsCase1
(
TestBatchNormUseGlobalStats
):
### test mode
def
init_test
(
self
):
self
.
use_global_stats
=
False
self
.
trainable_statistics
=
True
class
TestBatchNormUseGlobalStatsCase2
(
TestBatchNormUseGlobalStats
):
### train mode
def
init_test
(
self
):
self
.
use_global_stats
=
False
self
.
trainable_statistics
=
False
class
TestBatchNormUseGlobalStatsCase3
(
TestBatchNormUseGlobalStats
):
### test mode
def
init_test
(
self
):
self
.
use_global_stats
=
True
self
.
trainable_statistics
=
True
if
__name__
==
'__main__'
:
paddle
.
enable_static
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录