提交 5447046a 编写于 作者: D dzhwinter

merge develop branch

......@@ -36,6 +36,7 @@ include(simd)
################################ Configurations #######################################
option(WITH_GPU "Compile PaddlePaddle with NVIDIA GPU" ${CUDA_FOUND})
option(WITH_AMD_GPU "Compile PaddlePaddle with AMD GPU" OFF)
option(WITH_AVX "Compile PaddlePaddle with AVX intrinsics" ${AVX_FOUND})
option(WITH_MKL "Compile PaddlePaddle with MKL support." ${AVX_FOUND})
option(WITH_DSO "Compile PaddlePaddle with dynamic linked CUDA" ON)
......@@ -180,6 +181,11 @@ if(WITH_GPU)
include(cuda)
endif(WITH_GPU)
if(WITH_AMD_GPU)
find_package(HIP)
include(hip)
endif(WITH_AMD_GPU)
if(WITH_MKLML)
list(APPEND EXTERNAL_LIBS ${MKLML_IOMP_LIB})
endif()
......
......@@ -18,12 +18,13 @@ import sys
import time
import numpy as np
import paddle.v2 as paddle
import paddle.v2.fluid as fluid
import paddle.v2.fluid.core as core
import paddle.v2.fluid.profiler as profiler
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.profiler as profiler
import argparse
import functools
import os
from paddle.fluid import debuger
def str2bool(v):
......@@ -182,7 +183,6 @@ def main():
start_time = time.time()
num_samples = 0
train_pass_acc.reset()
with profiler.profiler("CPU", 'total') as prof:
for batch_id, data in enumerate(train_reader()):
ts = time.time()
img_data = np.array(
......@@ -254,9 +254,7 @@ def main():
pserver_prog = t.get_pserver_program(current_endpoint)
pserver_startup = t.get_startup_program(current_endpoint,
pserver_prog)
print("starting server side startup")
exe.run(pserver_startup)
print("starting parameter server...")
exe.run(pserver_prog)
elif training_role == "TRAINER":
# Parameter initialization
......
......@@ -292,14 +292,18 @@ def run_benchmark(cluster_spec, server):
return np.mean(test_accs)
config = tf.ConfigProto(
intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
intra_op_parallelism_threads=1,
inter_op_parallelism_threads=1,
log_device_placement=True)
config.gpu_options.allow_growth = True
hooks = [tf.train.StopAtStepHook(last_step=1000000)]
with tf.train.MonitoredTrainingSession(
master=server.target, is_chief=(args.task_index == 0),
hooks=hooks) as sess:
master=server.target,
is_chief=(args.task_index == 0),
hooks=hooks,
config=config) as sess:
iters, num_samples, start_time = 0, 0, 0.0
for pass_id in range(args.num_passes):
# train
......
......@@ -57,11 +57,7 @@ if(NOT WITH_GOLANG)
add_definitions(-DPADDLE_WITHOUT_GOLANG)
endif(NOT WITH_GOLANG)
if(NOT WITH_GPU)
add_definitions(-DHPPL_STUB_FUNC)
list(APPEND CMAKE_CXX_SOURCE_FILE_EXTENSIONS cu)
else()
if(WITH_GPU)
add_definitions(-DPADDLE_WITH_CUDA)
FIND_PACKAGE(CUDA REQUIRED)
......@@ -84,7 +80,14 @@ else()
# Include cuda and cudnn
include_directories(${CUDNN_INCLUDE_DIR})
include_directories(${CUDA_TOOLKIT_INCLUDE})
endif(NOT WITH_GPU)
elseif(WITH_AMD_GPU)
add_definitions(-DPADDLE_WITH_HIP)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -D__HIP_PLATFORM_HCC__")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -D__HIP_PLATFORM_HCC__")
else()
add_definitions(-DHPPL_STUB_FUNC)
list(APPEND CMAKE_CXX_SOURCE_FILE_EXTENSIONS cu)
endif()
if (WITH_MKLML AND MKLML_IOMP_LIB)
message(STATUS "Enable Intel OpenMP with ${MKLML_IOMP_LIB}")
......
......@@ -24,7 +24,7 @@ set(BOOST_PROJECT "extern_boost")
# So we use 1.41.0 here.
set(BOOST_VER "1.41.0")
set(BOOST_TAR "boost_1_41_0")
set(BOOST_URL "http://paddlepaddledeps.s3-website-us-west-1.amazonaws.com/${BOOST_TAR}.tar.gz")
set(BOOST_URL "http://paddlepaddledeps.bj.bcebos.com/${BOOST_TAR}.tar.gz")
set(BOOST_SOURCES_DIR ${THIRD_PARTY_PATH}/boost)
set(BOOST_DOWNLOAD_DIR "${BOOST_SOURCES_DIR}/src/${BOOST_PROJECT}")
set(BOOST_INCLUDE_DIR "${BOOST_DOWNLOAD_DIR}/${BOOST_TAR}" CACHE PATH "boost include directory." FORCE)
......
......@@ -4,7 +4,21 @@ SET(EIGEN_SOURCE_DIR ${THIRD_PARTY_PATH}/eigen3)
SET(EIGEN_INCLUDE_DIR ${EIGEN_SOURCE_DIR}/src/extern_eigen3)
INCLUDE_DIRECTORIES(${EIGEN_INCLUDE_DIR})
ExternalProject_Add(
if(WITH_AMD_GPU)
ExternalProject_Add(
extern_eigen3
${EXTERNAL_PROJECT_LOG_ARGS}
GIT_REPOSITORY "https://github.com/sabreshao/hipeigen.git"
GIT_TAG 0cba03ff9f8f9f70bbd92ac5857b031aa8fed6f9
PREFIX ${EIGEN_SOURCE_DIR}
UPDATE_COMMAND ""
CONFIGURE_COMMAND ""
BUILD_COMMAND ""
INSTALL_COMMAND ""
TEST_COMMAND ""
)
else()
ExternalProject_Add(
extern_eigen3
${EXTERNAL_PROJECT_LOG_ARGS}
GIT_REPOSITORY "https://github.com/RLovelett/eigen.git"
......@@ -15,7 +29,8 @@ ExternalProject_Add(
BUILD_COMMAND ""
INSTALL_COMMAND ""
TEST_COMMAND ""
)
)
endif()
if (${CMAKE_VERSION} VERSION_LESS "3.3.0")
set(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/eigen3_dummy.c)
......
......@@ -34,7 +34,7 @@ SET(MKLML_DOWNLOAD_DIR "${MKLML_SOURCE_DIR}/src/${MKLML_PROJECT}")
SET(MKLML_DST_DIR "mklml")
SET(MKLML_INSTALL_ROOT "${THIRD_PARTY_PATH}/install")
SET(MKLML_INSTALL_DIR ${MKLML_INSTALL_ROOT}/${MKLML_DST_DIR})
SET(MKLML_ROOT ${MKLML_INSTALL_DIR}/${MKLML_VER})
SET(MKLML_ROOT ${MKLML_INSTALL_DIR})
SET(MKLML_INC_DIR ${MKLML_ROOT}/include)
SET(MKLML_LIB_DIR ${MKLML_ROOT}/lib)
SET(MKLML_LIB ${MKLML_LIB_DIR}/libmklml_intel.so)
......@@ -46,7 +46,7 @@ INCLUDE_DIRECTORIES(${MKLML_INC_DIR})
FILE(WRITE ${MKLML_DOWNLOAD_DIR}/CMakeLists.txt
"PROJECT(MKLML)\n"
"cmake_minimum_required(VERSION 3.0)\n"
"install(DIRECTORY ${MKLML_VER}\n"
"install(DIRECTORY ${MKLML_VER}/include ${MKLML_VER}/lib \n"
" DESTINATION ${MKLML_DST_DIR})\n")
ExternalProject_Add(
......
......@@ -317,6 +317,82 @@ function(nv_test TARGET_NAME)
endif()
endfunction(nv_test)
function(hip_library TARGET_NAME)
if (WITH_AMD_GPU)
set(options STATIC static SHARED shared)
set(oneValueArgs "")
set(multiValueArgs SRCS DEPS)
cmake_parse_arguments(hip_library "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
set(_sources ${hip_library_SRCS})
HIP_PREPARE_TARGET_COMMANDS(${TARGET_NAME} OBJ _generated_files _source_files ${_sources} HIPCC_OPTIONS ${_hipcc_options} HCC_OPTIONS ${_hcc_options} NVCC_OPTIONS ${_nvcc_options})
if(_source_files)
list(REMOVE_ITEM _sources ${_source_files})
endif()
if(hip_library_SRCS)
if (hip_library_SHARED OR hip_library_shared) # build *.so
add_library(${TARGET_NAME} SHARED ${_cmake_options} ${_generated_files} ${_sources})
set_target_properties(${TARGET_NAME} PROPERTIES LINKER_LANGUAGE HIP)
else()
add_library(${TARGET_NAME} STATIC ${_cmake_options} ${_generated_files} ${_sources})
set_target_properties(${TARGET_NAME} PROPERTIES LINKER_LANGUAGE CXX)
target_link_libraries(${TARGET_NAME} /opt/rocm/hip/lib/libhip_hcc.so /opt/rocm/hip/lib/libhip_device.a)
find_fluid_modules(${TARGET_NAME})
endif()
if (hip_library_DEPS)
add_dependencies(${TARGET_NAME} ${hip_library_DEPS})
target_link_libraries(${TARGET_NAME} ${hip_library_DEPS})
endif()
# cpplint code style
foreach(source_file ${hip_library_SRCS})
string(REGEX REPLACE "\\.[^.]*$" "" source ${source_file})
if(EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${source}.h)
list(APPEND hip_library_HEADERS ${CMAKE_CURRENT_SOURCE_DIR}/${source}.h)
endif()
endforeach()
add_style_check_target(${TARGET_NAME} ${hip_library_SRCS} ${hip_library_HEADERS})
else(hip_library_SRCS)
if (hip_library_DEPS)
merge_static_libs(${TARGET_NAME} ${hip_library_DEPS})
else()
message(FATAL "Please specify source file or library in nv_library.")
endif()
endif(hip_library_SRCS)
endif()
endfunction(hip_library)
function(hip_binary TARGET_NAME)
if (WITH_AMD_GPU)
set(options "")
set(oneValueArgs "")
set(multiValueArgs SRCS DEPS)
cmake_parse_arguments(hip_binary "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
hip_add_executable(${TARGET_NAME} ${hip_binary_SRCS})
if(hip_binary_DEPS)
target_link_libraries(${TARGET_NAME} ${hip_binary_DEPS})
add_dependencies(${TARGET_NAME} ${hip_binary_DEPS})
endif()
endif()
endfunction(hip_binary)
function(hip_test TARGET_NAME)
if (WITH_AMD_GPU AND WITH_TESTING)
set(options "")
set(oneValueArgs "")
set(multiValueArgs SRCS DEPS)
cmake_parse_arguments(hip_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
set(_sources ${hip_test_SRCS})
HIP_PREPARE_TARGET_COMMANDS(${TARGET_NAME} OBJ _generated_files _source_files ${_sources} HIPCC_OPTIONS ${_hipcc_options} HCC_OPTIONS ${_hcc_options} NVCC_OPTIONS ${_nvcc_options})
if(_source_files)
list(REMOVE_ITEM _sources ${_source_files})
endif()
add_executable(${TARGET_NAME} ${_cmake_options} ${_generated_files} ${_sources})
set_target_properties(${TARGET_NAME} PROPERTIES LINKER_LANGUAGE HIP)
target_link_libraries(${TARGET_NAME} ${hip_test_DEPS} paddle_gtest_main paddle_memory gtest gflags)
add_dependencies(${TARGET_NAME} ${hip_test_DEPS} paddle_gtest_main paddle_memory gtest gflags)
add_test(${TARGET_NAME} ${TARGET_NAME})
endif()
endfunction(hip_test)
function(go_library TARGET_NAME)
set(options STATIC static SHARED shared)
set(oneValueArgs "")
......
if(NOT WITH_AMD_GPU)
return()
endif()
include_directories("/opt/rocm/include")
include_directories("/opt/rocm/hipblas/include")
include_directories("/opt/rocm/hiprand/include")
include_directories("/opt/rocm/rocrand/include")
include_directories("/opt/rocm/rccl/include")
include_directories("/opt/rocm/thrust")
list(APPEND EXTERNAL_LIBS "-L/opt/rocm/lib/ -lhip_hcc")
set(HIP_HCC_FLAGS "${HIP_HCC_FLAGS} -fPIC -DPADDLE_WITH_HIP -std=c++14" )
if(WITH_DSO)
set(HIP_HCC_FLAGS "${HIP_HCC_FLAGS} -DPADDLE_USE_DSO")
endif(WITH_DSO)
if(WITH_DOUBLE)
set(HIP_HCC_FLAGS "${HIP_HCC_FLAGS} -DPADDLE_TYPE_DOUBLE")
endif(WITH_DOUBLE)
if(WITH_TESTING)
set(HIP_HCC_FLAGS "${HIP_HCC_FLAGS} -DPADDLE_WITH_TESTING")
endif(WITH_TESTING)
if(CMAKE_BUILD_TYPE STREQUAL "Debug")
list(APPEND HIP_HCC_FLAGS ${CMAKE_CXX_FLAGS_DEBUG})
elseif(CMAKE_BUILD_TYPE STREQUAL "RelWithDebInfo")
list(APPEND HIP_HCC_FLAGS ${CMAKE_CXX_FLAGS_RELWITHDEBINFO})
elseif(CMAKE_BUILD_TYPE STREQUAL "MinSizeRel")
list(APPEND HIP_HCC_FLAGS ${CMAKE_CXX_FLAGS_MINSIZEREL})
endif()
if("x${HCC_HOME}" STREQUAL "x")
set(HCC_HOME "/opt/rocm/hcc")
endif()
set(CMAKE_HIP_LINK_EXECUTABLE "${HIP_HIPCC_CMAKE_LINKER_HELPER} ${HCC_HOME} <FLAGS> <CMAKE_CXX_LINK_FLAGS> <LINK_FLAGS> <OBJECTS> -o <TARGET> <LINK_LIBRARIES>")
set(CMAKE_HIP_CREATE_SHARED_LIBRARY "${HIP_HIPCC_CMAKE_LINKER_HELPER} ${HCC_HOME} <CMAKE_CXX_LINK_FLAGS> <LINK_FLAGS> <OBJECTS> -o <TARGET> <LINK_LIBRARIES> -shared")
set(CMAKE_HIP_CREATE_SHARED_MODULE "${HIP_HIPCC_CMAKE_LINKER_HELPER} ${HCC_HOME} <CMAKE_CXX_LINK_FLAGS> <LINK_FLAGS> <OBJECTS> -o <TARGET> <LINK_LIBRARIES> -shared")
......@@ -69,6 +69,12 @@ if(NOT CBLAS_FOUND)
SRCS ${CBLAS_INSTALL_DIR}/lib ${CBLAS_INSTALL_DIR}/include
DSTS ${dst_dir} ${dst_dir}
)
elseif (WITH_MKLML)
set(dst_dir "${CMAKE_INSTALL_PREFIX}/third_party/install/mklml")
copy(mklml_lib
SRCS ${MKLML_LIB} ${MKLML_IOMP_LIB} ${MKLML_INC_DIR}
DSTS ${dst_dir}/lib ${dst_dir}/lib ${dst_dir}
)
endif()
# paddle fluid module
......
add_subdirectory(v2)
add_subdirectory(fluid)
if(NOT DEFINED SPHINX_THEME)
set(SPHINX_THEME default)
endif()
if(NOT DEFINED SPHINX_THEME_DIR)
set(SPHINX_THEME_DIR)
endif()
# configured documentation tools and intermediate build results
set(BINARY_BUILD_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/_build")
# Sphinx cache with pickled ReST documents
set(SPHINX_CACHE_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/_doctrees")
# HTML output director
set(SPHINX_HTML_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/html")
configure_file(
"${CMAKE_CURRENT_SOURCE_DIR}/../templates/conf.py.en.in"
"${BINARY_BUILD_DIR_EN}/conf.py"
@ONLY)
sphinx_add_target(paddle_fluid_docs
html
${BINARY_BUILD_DIR_EN}
${SPHINX_CACHE_DIR_EN}
${CMAKE_CURRENT_SOURCE_DIR}
${SPHINX_HTML_DIR_EN})
# configured documentation tools and intermediate build results
set(BINARY_BUILD_DIR_CN "${CMAKE_CURRENT_BINARY_DIR}/cn/_build")
# Sphinx cache with pickled ReST documents
set(SPHINX_CACHE_DIR_CN "${CMAKE_CURRENT_BINARY_DIR}/cn/_doctrees")
# HTML output directory
set(SPHINX_HTML_DIR_CN "${CMAKE_CURRENT_BINARY_DIR}/cn/html")
configure_file(
"${CMAKE_CURRENT_SOURCE_DIR}/../templates/conf.py.cn.in"
"${BINARY_BUILD_DIR_CN}/conf.py"
@ONLY)
sphinx_add_target(paddle_fluid_docs_cn
html
${BINARY_BUILD_DIR_CN}
${SPHINX_CACHE_DIR_CN}
${CMAKE_CURRENT_SOURCE_DIR}
${SPHINX_HTML_DIR_CN})
Build and Install
------------
# go_op Design
## Introduction
The **go_op** allows user's of PaddlePaddle to run program blocks on a detached
thread. It works in conjuction with CSP operators (channel_send,
channel_receive, channel_open, channel_close, and select) to allow users to
concurrently process data and communicate easily between different threads.
## How to use it
```
channel = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR)
with fluid.Go():
# Send a tensor of value 99 to "channel" on a detached thread
tensor = fill_constant(shape=[1], dtype='int', value=99)
tensor.stop_gradient = True
fluid.channel_send(channel, tensor)
# Receive sent tensor from "channel" on the main thread
result = fill_constant(shape=[1], dtype='int', value=-1)
fluid.channel_recv(ch, result)
```
The go operator can be accessed by using the fluid.Go() control flow. This
will create a new sub block, where the user can add additional operators
to be ran on the thread.
**Note:** Since back propegation is currently not support in the go_op, users
should ensure that operators in the go block does not require gradient
calculations.
## How it Works
Similar to other control blocks, go_op will create a sub block and add it
as a child to the current block. Operators and variables defined in this
block will be added to the go sub_block.
In addition, the go operator will create a new child scope whose parent is
the global scope. Please refer to [block captures](#block-captures) for more
information.
When Paddle executor runs go_op, go_op will take the sub_block and pass it to
the executor.run method (along with a newly created local scope) on a detached
thread.
An example of the generated program description is shown below. Take note of
the **go_op** in particular. It is added as an operator in the current
block (in this example, block0). The **go_op** contains a `sub_block`
attribute, which points to the id of the block that will be executed in a
detached thread.
```
blocks {
idx: 0
parent_idx: -1
vars {
name: "return_value"
type {
type: LOD_TENSOR
lod_tensor {
tensor {
data_type: INT64
}
}
}
}
vars {
name: "status_recv"
type {
type: LOD_TENSOR
lod_tensor {
tensor {
data_type: BOOL
}
}
}
}
...
ops {
outputs {
parameter: "Out"
arguments: "channel"
}
type: "channel_create"
attrs {
name: "data_type"
type: INT
i: 7
}
attrs {
name: "capacity"
type: INT
i: 0
}
}
ops {
inputs {
parameter: "X"
arguments: "channel"
}
type: "go"
attrs {
name: "sub_block"
type: BLOCK
block_idx: 1
}
}
ops {
inputs {
parameter: "Channel"
arguments: "channel"
}
outputs {
parameter: "Out"
arguments: "return_value"
}
outputs {
parameter: "Status"
arguments: "status_recv"
}
type: "channel_recv"
}
...
}
blocks {
idx: 1
parent_idx: 0
vars {
name: "status"
type {
type: LOD_TENSOR
lod_tensor {
tensor {
data_type: BOOL
}
}
}
}
...
ops {
outputs {
parameter: "Out"
arguments: "fill_constant_1.tmp_0"
}
type: "fill_constant"
attrs {
name: "force_cpu"
type: BOOLEAN
b: false
}
attrs {
name: "value"
type: FLOAT
f: 99.0
}
attrs {
name: "shape"
type: INTS
ints: 1
}
attrs {
name: "dtype"
type: INT
i: 3
}
}
ops {
inputs {
parameter: "Channel"
arguments: "channel"
}
inputs {
parameter: "X"
arguments: "fill_constant_1.tmp_0"
}
outputs {
parameter: "Status"
arguments: "status"
}
type: "channel_send"
attrs {
name: "copy"
type: BOOLEAN
b: false
}
}
```
## Current Limitations
#### <a name="block-captures"></a>Scopes and block captures:
Paddle utilizes [scopes](./../concepts/scope.md) to store variables used in a
block. When a block is executed, a new local scope is created from the parent
scope (ie: scope derived from the parent block) and associated with the new
child block. After the block finishes executing, then the local scope and
all associated variables in the scope is deleted.
This works well in a single threaded scenario, however with introduction of
go_op, a child block may continue to execute even after the parent block has
exited. If the go_op tries to access variables located in the parent block's
scope, it may receive a segmentation fault because the parent scope may have
been deleted.
We need to implement block closures in order to prevent access to parent
scope variables from causing a segmentation fault. As a temporary workaround,
please ensure that all variables accessed in the go block is not destructed
before it is being accessed. Currently, the go_op will explicitly enforce
this requirement and raise an exception if a variable could not be found in
the scope.
Please refer to [Closure issue](https://github.com/PaddlePaddle/Paddle/issues/8502)
for more details.
#### Green Threads
Golang utilizes `green threads`, which is a mechnism for the runtime library to
manage multiple threads (instead of natively by the OS). Green threads usually
allows for faster thread creation and switching, as there is less overhead
when spawning these threads. For the first version of CSP, we only support
OS threads.
#### Backward Propegation:
go_op currently does not support backwards propagation. Please use go_op with
non training operators.
# select_op Design
## Introduction
In golang, the [**select**](https://golang.org/ref/spec#Select_statements)
statement lets a goroutine wait on multiple communication operations at the
same time. The **select** blocks until one of its cases can run, then
executes the case. If multiple cases are ready to run, then one case is
choosen at random to be executed.
With the introduction of CSP for Paddle, we mimic this behavior by
creating a ***select_op***.
## How to use it
The **select_op** is available as a c++ operator. However most users
will prefer to use the much simplier Python API.
- **fluid.Select()**: Creates a select operator and adds it to the current
block within the main program. Also creates a sub block and adds it to the
main program. This sub block is used to hold all variables and operators
used by the case statements.
Within the select block, users can add cases by
calling **select.case** or **select.default** method.
- **fluid.Select.case(channel_action, channel, result_variable)**: Represents
a fluid channel send/recv case. This method creates a SelectCase block
guard and adds it to the Select block. The arguments into this method tells
the select which channel operation to listen to.
- **fluid.Select.default()**: Represents the fluid default case. This default
case is executed if none of the channel send/recv cases are available to
execute.
**Example:**
```
ch1 = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR)
quit_ch = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR)
x = fill_constant(shape=[1], dtype=core.VarDesc.VarType.INT32, value=0)
y = fill_constant(shape=[1], dtype=core.VarDesc.VarType.INT32, value=1)
while_cond = fill_constant(shape=[1], dtype=core.VarDesc.VarType.BOOL, value=True)
while_op = While(cond=while_cond)
with while_op.block():
with fluid.Select() as select:
with select.case(fluid.channel_send, channel, x):
# Send x, then perform Fibonacci calculation on x and y
x_tmp = fill_constant(shape=[1], dtype=core.VarDesc.VarType.INT32, value=0)
assign(input=x, output=x_tmp)
assign(input=y, output=x)
assign(elementwise_add(x=x_tmp, y=y), output=y)
with select.case(fluid.channel_recv, quit_channel, result2):
# Exit out of While loop
while_false = fill_constant(shape=[1], dtype=core.VarDesc.VarType.BOOL, value=False)
helper = layer_helper.LayerHelper('assign')
helper.append_op(
type='assign',
inputs={'X': [while_false]},
outputs={'Out': [while_cond]})
```
## How it Works
### Program Description
```
blocks {
idx: 0
...
// Create "case_to_execute" variable
ops {
outputs {
parameter: "Out"
arguments: "fill_constant_110.tmp_0"
}
type: "fill_constant"
attrs {
name: "force_cpu"
type: BOOLEAN
b: false
}
attrs {
name: "value"
type: FLOAT
f: -1.0
}
attrs {
name: "shape"
type: INTS
ints: 1
}
attrs {
name: "dtype"
type: INT
i: 2
}
}
// Create "select" operator.
// inputs:
// X: All input variables used by operators within the select block
// case_to_execute: Variable filled in by select_op when it determines
// which case to execute.
//
// outputs:
// Out: All output variables referenced by operators within select block.
//
// attrs:
// sub_block: The block id containing the select "cases"
// cases: Serialized list of all cases in the select op.
// Each case is serialized as: '<index>,<type>,<channel>,<value>'
// where type is 0 for default, 1 for send, and 2 for receive.
// No channel and values are needed for default cases.
ops {
inputs {
parameter: "X"
arguments: "fill_constant_103.tmp_0"
arguments: "fill_constant_104.tmp_0"
}
inputs {
parameter: "case_to_execute"
arguments: "fill_constant_110.tmp_0"
}
outputs {
parameter: "Out"
arguments: "fill_constant_110.tmp_0"
}
type: "select"
attrs {
name: "sub_block"
type: BLOCK
block_idx: 1
}
attrs {
name: "cases"
type: STRINGS
strings: "0,1,channel_101,fill_constant_109.tmp_0"
strings: "1,2,channel_102,fill_constant_108.tmp_0"
}
}
...
}
```
The python select API will add the **select_op** to the current block. In addition, it will
iterate through all it's case statements and add any input variables required by case statements
into **X**. It will also create a temp variable called **case_to_execute**. This variable is
filled in by the select_op after it has completed processing the case statements.
If there are no available cases to execute (ie: all cases are blocked on channel operations, and
there is no default statement), then the select_op will block the current thread. The thread will
unblock once there is a channel operation affecting one of the case statements, at which point, the
**select_op** will set the **case_to_execute** variable to the index of the case to execute.
Finally the select_op will call executor.run on the **sub_block**.
```
blocks {
idx: 1
parent_idx: 0
...
// Fill a tensor with the case index (ie: 0,1,2,3,ect.)
ops {
outputs {
parameter: "Out"
arguments: "fill_constant_111.tmp_0"
}
type: "fill_constant"
attrs {
name: "force_cpu"
type: BOOLEAN
b: false
}
attrs {
name: "value"
type: FLOAT
f: 0.0
}
attrs {
name: "shape"
type: INTS
ints: 1
}
attrs {
name: "dtype"
type: INT
i: 2
}
}
// Create an "equal" operator to compare the case index with the "case_to_execute"
// tensor (which was filled in by the select op).
ops {
inputs {
parameter: "X"
arguments: "fill_constant_111.tmp_0" // case 0
}
inputs {
parameter: "Y"
arguments: "fill_constant_110.tmp_0" // case_to_execute
}
outputs {
parameter: "Out"
arguments: "equal_0.tmp_0"
}
type: "equal"
attrs {
name: "axis"
type: INT
i: -1
}
}
// Use the output of the "equal" operator as a condition for the "conditional_block".
// If the condition evaluates to true, then execute the "sub_block" (which represents
// the select case's body)
ops {
inputs {
parameter: "Params"
}
inputs {
parameter: "X"
arguments: "equal_0.tmp_0"
}
outputs {
parameter: "Out"
}
outputs {
parameter: "Scope"
arguments: "_generated_var_0"
}
type: "conditional_block"
attrs {
name: "is_scalar_condition"
type: BOOLEAN
b: true
}
attrs {
name: "sub_block"
type: BLOCK
block_idx: 4
}
}
...
// Repeat the above operators for each case statements inside the select body
}
```
Cases are represented by a **conditional_block operator**, whose's condition is set as the output of
equal(**case_to_execute**, **case_index**). Since each case index is unique in this sub-block,
only one case will be executed.
### select_op flow
<p align="center">
<img src="./images/select_op_workflow.png"/><br/>
</p>
The select algorithm is inspired by golang's select routine. Please refer to
http://www.tapirgames.com/blog/golang-concurrent-select-implementation for more information.
## Backward Pass
TODO
......@@ -26,7 +26,7 @@ lookup of rows.
The following figure illustrates the multiplication of x with two
non-zero elements, or say, two symbols, and a lookup table W:
![lookup table](./lookup_table.png)
![lookup table](./src/lookup_table.png)
### The Backward Algorithm
......@@ -42,7 +42,7 @@ or some more sophisticated algorithms that rely on both W' and W:
$$W = f(W, W')$$
The following figure illustrates the backward pass of the lookup
operator: ![lookup table training](./lookup_table_training.png)
operator: ![lookup table training](./src/lookup_table_training.png)
## Distributed Storage Service
......
......@@ -5,7 +5,7 @@ This document describes the RNN (Recurrent Neural Network) operator and how it i
## RNN Algorithm Implementation
<p align="center">
<img src="./images/rnn.jpg"/>
<img src="./rnn.jpg"/>
</p>
The above diagram shows an RNN unrolled into a full network.
......@@ -22,7 +22,7 @@ There are several important concepts here:
There could be local variables defined in each step-net. PaddlePaddle runtime realizes these variables in *step-scopes* which are created for each step.
<p align="center">
<img src="./images/rnn.png"/><br/>
<img src="./rnn.png"/><br/>
Figure 2 illustrates the RNN's data flow
</p>
......@@ -49,7 +49,7 @@ or copy the memory value of the previous step to the current ex-memory variable.
### Usage in Python
For more information on Block, please refer to the [design doc](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/block.md).
For more information on Block, please refer to the [design doc](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/design/concepts/block.md).
We can define an RNN's step-net using a Block:
......@@ -93,7 +93,7 @@ For example, we could have a 2-level RNN, where the top level corresponds to par
The following figure illustrates feeding in text into the lower level, one sentence at a step, and the feeding in step outputs to the top level. The final top level output is about the whole text.
<p align="center">
<img src="./images/2_level_rnn.png"/>
<img src="./2_level_rnn.png"/>
</p>
```python
......@@ -149,5 +149,5 @@ If the `output_all_steps` is set to False, it will only output the final time st
<p align="center">
<img src="images/rnn_2level_data.png"/>
<img src="./rnn_2level_data.png"/>
</p>
设计思想
------------
......@@ -103,7 +103,7 @@ In computability theory, a system of data-manipulation rules, such as a programm
There are two ways to execute a Fluid program. When a program is executed, it creates a protobuf message [`ProgramDesc`](https://github.com/PaddlePaddle/Paddle/blob/a91efdde6910ce92a78e3aa7157412c4c88d9ee8/paddle/framework/framework.proto#L145) that describes the process and is conceptually like an [abstract syntax tree](https://en.wikipedia.org/wiki/Abstract_syntax_tree).
There is a C++ class [`Executor`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/executor.h), which runs a `ProgramDesc`, similar to how an interpreter runs a Python program.
There is a C++ class [`Executor`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/executor.h), which runs a `ProgramDesc`, similar to how an interpreter runs a Python program.
Fluid is moving towards the direction of a compiler, which is explain in [fluid_compiler.md](fluid_compiler.md).
......
开发标准
------------
Development
------------
This is Development page
新手入门
------------
新手入门
GET STARTED
------------
This is get started page
# Fluid 分布式版本使用指南
本篇文章将说明如何在PaddlePaddle Fluid版本下进行分布式训练的配置和执行,以及将单机训练脚本改造成支持集群训练的版本
## 准备工作
* 可用的集群
包含一个或多个计算节点的集群,每一个节点都能够执行PaddlePaddle的训练任务且拥有唯一的IP地址,集群内的所有计算节点可以通过网络相互通信。
* 安装PaddlePaddle Fluid with Distribution版本
所有的计算节点上均需要按照分布式版本的PaddlePaddle, 在用于GPU等设备的机器上还需要额外安装好相应的驱动程序和CUDA的库。
**注意:**当前对外提供的PaddlePaddle版本并不支持分布式,需要通过源码重新编译。编译和安装方法参见[编译和安装指南](http://www.paddlepaddle.org/docs/develop/documentation/en/getstarted/build_and_install/index_en.html)。
cmake编译命令中需要将WITH_DISTRIBUTE设置为ON,下面是一个cmake编译指令示例:
``` bash
cmake .. -DWITH_DOC=OFF -DWITH_GPU=OFF -DWITH_DISTRIBUTE=ON -DWITH_SWIG_PY=ON -DWITH_PYTHON=ON
```
## 更新训练脚本
这里,我们以[Deep Learing 101](http://www.paddlepaddle.org/docs/develop/book/01.fit_a_line/index.html)课程中的第一章 fit a line 为例,描述如何将单机训练脚本改造成支持集群训练的版本。
### 单机训练脚本示例
```python
import paddle.v2 as paddle
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(x=cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
sgd_optimizer.minimize(avg_cost)
BATCH_SIZE = 20
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.uci_housing.train(), buf_size=500),
batch_size=BATCH_SIZE)
place = fluid.CPUPlace()
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
PASS_NUM = 100
for pass_id in range(PASS_NUM):
fluid.io.save_persistables(exe, "./fit_a_line.model/")
fluid.io.load_persistables(exe, "./fit_a_line.model/")
for data in train_reader():
avg_loss_value, = exe.run(fluid.default_main_program(),
feed=feeder.feed(data),
fetch_list=[avg_cost])
if avg_loss_value[0] < 10.0:
exit(0) # if avg cost less than 10.0, we think our code is good.
exit(1)
```
我们创建了一个简单的全连接神经网络程序,并且通过Fluid的Executor执行了100次迭代,现在我们需要将该单机版本的程序更新为分布式版本的程序。
### 介绍Parameter Server
在非分布式版本的训练脚本中,只存在Trainer一种角色,它不仅处理常规的计算任务,也处理参数相关的计算、保存和优化任务。在分布式版本的训练过程中,由于存在多个Trainer节点进行同样的数据计算任务,因此需要有一个中心化的节点来统一处理参数相关的保存和分配。在PaddlePaddle中,我们称这样的节点为[Parameter Server](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/design/dist_train/parameter_server.md)
**因此,在分布式的Fluid环境中,我们有两个角色需要创建,分别是Parameter Server和Trainer。**
### 分布式训练
Fliud专门提供了工具[Distributed Transpiler](https://github.com/PaddlePaddle/Paddle/blob/ba65d54d9d3b41cd3c5171b00f476d4e60133ddb/doc/fluid/design/dist_train/distributed_architecture.md#distributed-transpiler)用于将单机版的训练程序转换为分布式版本的训练程序。工具背后的理念是找出程序的优化算子和梯度参数,将他们分隔为两部分,通过send/recv 操作算子进行连接,优化算子和梯度参数可以在优化器的minimize函数的返回值中获取到。
```python
optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost)
```
将Distributed Transpiler、优化算子和梯度函数放在一个代码中如下:
```python
... #define the program, cost, and create sgd optimizer
optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost) #get optimize OPs and gradient parameters
t = fluid.DistributeTranspiler() # create the transpiler instance
# slice the program into 2 pieces with optimizer_ops and gradient parameters list, as well as pserver_endpoints, which is a comma separated list of [IP:PORT] and number of trainers
t.transpile(optimize_ops, params_grads, pservers=pserver_endpoints, trainers=2)
... #create executor
# in pserver, run this
#current_endpoint here means current pserver IP:PORT you wish to run on
pserver_prog = t.get_pserver_program(current_endpoint)
pserver_startup = t.get_startup_program(current_endpoint, pserver_prog)
exe.run(pserver_startup)
exe.run(pserver_prog)
# in trainer, run this
... # define data reader
exe.run(fluid.default_startup_program())
for pass_id in range(100):
for data in train_reader():
exe.run(t.get_trainer_program())
```
### 分布式训练脚本运行说明
分布式任务的运行需要将表格中说明的多个参数进行赋值:
| 参数名 | 值类型 | 说明 | 示例 |
|:-------------|:------|:---------------------------------------|:-------------|
| trainer_id | int | 当前训练节点的ID,训练节点ID编号为0 - n-1, n为trainers的值 | 0/1/2/3 |
| pservers | str | parameter server 列表 | 127.0.0.1:6710,127.0.0.1:6711 |
| trainers | int | 训练节点的总个数,>0的数字 | 4 |
| server_endpoint | str | 当前所起的服务节点的IP:PORT | 127.0.0.1:8789 |
| training_role | str | 节点角色, TRAINER/PSERVER | PSERVER |
**注意:** ```training_role```是用来区分当前所起服务的角色的,用于训练程序中,用户可根据需要自行定义,其他参数为fluid.DistributeTranspiler的transpile函数所需要,需要在调用函数前进行定义,样例如下:
```python
t = fluid.DistributeTranspiler()
t.transpile(
optimize_ops,
params_grads,
trainer_id,
pservers=pserver,
trainers=trainers)
if training_role == "PSERVER":
pserver_prog = t.get_pserver_program(server_endpoint)
pserver_startup = t.get_startup_program(server_endpoint, pserver_prog)
```
### Demo
完整的demo代码位于Fluid的test目录下的[book](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/fluid/tests/book/test_fit_a_line.py)中。
第一步,进入demo代码所在目录:
```bash
cd /paddle/python/paddle/fluid/tests/book
```
第二步,启动Parameter Server:
```bash
PADDLE_INIT_PORT=6174 PADDLE_INIT_PSERVERS=192.168.1.2 TRAINERS=2 POD_IP=192.168.1.2 PADDLE_INIT_TRAINER_ID=1 TRAINING_ROLE=PSERVER python test_fit_a_line.py
```
执行命令后请等待出现提示: ```Server listening on 192.168.1.2:6174 ```, 表示Paramter Server已经正常启动。
第三步,启动Trainer:
```bash
PADDLE_INIT_PORT=6174 PADDLE_INIT_PSERVERS=192.168.1.3 TRAINERS=2 POD_IP=192.168.1.3 PADDLE_INIT_TRAINER_ID=1 TRAINING_ROLE=TRAINER python test_fit_a_line.py
```
由于我们定义的Trainer的数量是2个,因此需要在另外一个计算节点上再启动一个Trainer。
现在我们就启动了一个包含一个Parameter Server和两个Trainer的分布式训练任务。
进阶使用
------------
HOW TO
------------
This is how to page
PaddlePaddle Fluid
==========================
.. toctree::
:maxdepth: 1
getstarted/index_cn.rst
design/index_cn.rst
build_and_install/index_cn.rst
howto/index_cn.rst
dev/index_cn.rst
faq/index_cn.rst
PaddlePaddle Fluid
==========================
.. toctree::
:maxdepth: 1
getstarted/index_en.rst
design/index_en.rst
build_and_install/index_en.rst
howto/index_en.rst
dev/index_en.rst
faq/index_en.rst
......@@ -47,3 +47,10 @@ DecayedAdagrad
:members:
:noindex:
Adadelta
--------------
.. autoclass:: paddle.fluid.optimizer.AdadeltaOptimizer
:members:
:noindex:
Development
------------
PaddlePaddle adheres to the following three sections of code and document specifications.
PaddlePaddle uses git for version control and Docker is used for building and testing environment. The code includes Cuda, C++, Python, Shell and other programming languages,which comply with Google C++ Style, Pep-8, and the code base includes style checking by an automatic inspection tool. Code comments need to follow the Doxygen specification. The code that does not meet the style requirements will fail to compile. We provide the following guidelines for the use of Git, build tests and code development.
.. toctree::
:maxdepth: 1
contribute_to_paddle_en.md
PaddlePaddle is well documented in English and Chinese. We recommend using the English version of the documents and problem description. The design documents focus on problem descriptions, backgrounds, and are followed by solutions. As documents are generated by Sphinx, code comments should comply with the Sphinx documentation standard. We recommend to use the paddlepaddle.org tool to compile and generate and preview documents locally. Please refer to:
.. toctree::
:maxdepth: 1
write_docs_en.rst
PaddlePaddle V2 defines new operations by adding new Layers. You can implement various complex layers by combining basic APIs to satisfy most applications. If you want to customize layer, please refer to the following, and welcome to propose patch.
.. toctree::
:maxdepth: 1
new_layer_en.rst
......@@ -2,13 +2,14 @@
如何贡献文档
#############
PaddlePaddle的文档包括中英文两个部分。文档都是通过 ``cmake`` 驱动 ``sphinx`` 编译生成,也可以利用paddlepaddle.org工具来编译和预览文档
PaddlePaddle的文档包括中英文两个部分。文档都是通过 ``cmake`` 驱动 ``sphinx`` 编译生成的,PaddlePaddle.org工具可以帮助我们实现这一编译过程,并提供更好的预览效果
如何构建文档
============
PaddlePaddle的文档构建有两种方式,分别为使用paddlepaddle.org工具和不使用paddlepaddle.org工具,两种方式都有各自的优点,前者方便预览,后者方便开发者进行调试。这两种方式中又分别有使用docker和不使用docker的两种构建方法。
我们建议使用PaddlePaddle.org工具来构建文档。
使用PaddlePaddle.org工具
------------------------
......@@ -31,7 +32,7 @@ PaddlePaddle.org工具可以配合Docker使用,需要在系统里先安装好D
docker run -it -p 8000:8000 -v `pwd`:/var/content paddlepaddle/paddlepaddle.org:latest
注意: PaddlePaddle.org 会在 -v (volume) 指定的内容存储库运行命令
之后再用网页连到http://localhost:8000就可以在网页上生成需要的文档
之后再用网页连到 http://localhost:8000 就可以在网页上生成需要的文档
编译后的文件将被存储在工作目录 <paddlepaddle working directory>/.ppo_workspace/content。
如果不想使用Docker,你还可以通过运行Django框架直接激活工具的服务器。使用下面的命令来运行它。
......@@ -56,7 +57,7 @@ PaddlePaddle.org工具可以配合Docker使用,需要在系统里先安装好D
python manage.py runserver
工具服务器将读取环境变量 CONTENT_DIR 搜索代码库。请指定的PaddlePaddle工作目录给环境变量 CONTENT_DIR。
之后再用网页连到http://localhost:8000就可以在网页上生成需要的文档。
之后再用网页连到 http://localhost:8000 就可以在网页上生成需要的文档。
编译后的文件将被存储在工作目录 <paddlepaddle working directory>/.ppo_workspace/content。
想了解更多PaddlePaddle.org工具的详细信息,可以 `点击这里 <https://github.com/PaddlePaddle/PaddlePaddle.org/blob/develop/README.cn.md>`_ 。
......@@ -96,7 +97,7 @@ PaddlePaddle.org工具可以配合Docker使用,需要在系统里先安装好D
python -m SimpleHTTPServer 8088
在浏览器中输入http://localhost:8088就可以看到编译生成的中/英文的文档页面和英文的API页面,下图为生成的英文文档首页示例。注意,示例中由于使用了sphinx的原始主题,所以页面的风格与官网并不一致,但这并不影响开发者进行调试。
在浏览器中输入 http://localhost:8088 就可以看到编译生成的中/英文的文档页面和英文的API页面,下图为生成的英文文档首页示例。注意,示例中由于使用了sphinx的原始主题,所以页面的风格与官网并不一致,但这并不影响开发者进行调试。
.. image:: src/doc_en.png
:align: center
......
......@@ -2,21 +2,20 @@
Contribute Documentation
########################
PaddlePaddle supports English documentation ``doc`` and Chinese documentation ``doc_cn``.
Both are compiled by `cmake`_ and `sphinx`_ , the compiled documentations will be stored under ``doc`` and ``doc_cn`` directories.
When using the PaddlePaddle.org to compile documentations, the compiled documentations will be stored under a consolidated directory: .ppo_workspace/content
PaddlePaddle's documentation includes both Chinese and English versions. The documentation is built using the ``cmake`` command to drive the ``sphinx`` compiler. The PaddlePaddle.org tool helps us to implement this compilation process and provides better preview results.
How to Build Documentations
============
How to build Documentation
===========================
We recommend using PaddlePaddle.org tool to build documentation
PaddlePaddle's documentation is built in two ways: using the PaddlePaddle.org tool and without using it. Both methods have their own advantages. The former facilitates previewing, while the latter facilitates debugging by the developer. We could choose to build the documentation with Docker or without it in each of the above ways.
We recommend using PaddlePaddle.org tool to build documentation.
Use PaddlePaddle.org tool
--------------
This is the recommended method to build documentation. It can compile documentation and preview the documentation in a web browser.
Using PaddlePaddle.org tool
-----------------------------
This is the recommended method to build documentation, because it can automatically compile the documentation and preview the documentation directly in a web page. Note that, although you can preview the documentation in other ways, its style may not be consistent with the official website. Compiling with the PaddlePaddle.org tool produces a preview that will be consistent with the official website documentation style.
The tool uses Docker, please install it on your system. Please check Docker official website on how to install Docker. You may use the following commands to activate the tool
The PaddlePaddle.org tool can be used with Docker and Docker needs to be installed first. Please refer to `Docker's official website <https://docs.docker.com/>`_ on how to install Docker. After installing Docker, you may use the following commands to activate the tool
.. code-block:: bash
......@@ -32,8 +31,8 @@ The tool uses Docker, please install it on your system. Please check Docker offi
# Please specify the working directory through -v
docker run -it -p 8000:8000 -v `pwd`:/var/content paddlepaddle/paddlepaddle.org:latest
Note: PaddlePaddle.org will read the content repos specified in the -v (volume) flag of the docker run command
Use a web browser and navigate to http://localhost:8000, click the buttons to compile the documentation
Note: PaddlePaddle.org will read the content repos specified in the -v (volume) flag of the docker run commands
Use a web browser and navigate to http://localhost:8000. Click the buttons to compile the documentation.
The compiled documentations will be stored in <paddlepaddle working directory>/.ppo_workspace/content
......@@ -58,19 +57,62 @@ If you don't wish to use Docker, you can also activate the tool through Django.
pip install -r requirements.txt
python manage.py runserver
Use a web browser and navigate to http://localhost:8000, click the buttons to compile the documentation
Specify the PaddlePaddle working directory for the environment variable CONTENT_DIR so that the tool could find where the working directory is.
Use a web browser and navigate to http://localhost:8000. Click the buttons to compile the documentation
The compiled documentations will be stored in <paddlepaddle working directory>/.ppo_workspace/content
If you want to learn more on the PaddlePaddle.org, please `click here <https://github.com/PaddlePaddle/PaddlePaddle.org/blob/develop/README.md>`_ 。
Please `click here <https://github.com/PaddlePaddle/PaddlePaddle.org/blob/develop/README.md>`_ for more information about the PaddlePaddle.org tool.
Manually Building the Documentation
-------------------------------------
Build PaddlePaddle's documentation with Docker,you need to install Docker first. Please refer to `Docker's official website <https://docs.docker.com/>`_ on how to install Docker. After Docker is installed, you could use the scripts in the source directory to build the documentation.
[TBD]
If you do not wish to use Docker, you can also use the following commands to directly build the PaddlePaddle documentation.
.. code-block:: bash
mkdir paddle
cd paddle
git clone https://github.com/PaddlePaddle/Paddle.git
mkdir -p build
cd build
cmake .. -DCMAKE_BUILD_TYPE=Release -DWITH_GPU=OFF -DWITH_MKL=OFF -DWITH_DOC=ON
# If you only need to build documents, use the following commands
make -j $processors gen_proto_py
make -j $processors paddle_docs paddle_docs_cn
# If you only need to build APIs, use the following commands
make -j $processors gen_proto_py framework_py_proto
make -j $processors copy_paddle_pybind
make -j $processors paddle_api_docs
$processors indicates that as many processes as the CPU cores are started to compile in parallel. It should be set according to the number of CPU cores of your machine.
After the compilation is complete, enter the ``doc/v2`` directory. If you chose to build documents, it will generate ``cn/html/`` and ``en/html`` subdirectories under this directory. If you chose to build APIs,it will generate``api/en/html`` subdirectory. Please enter these directories respectively and execute the following commands:
.. code-block:: bash
python -m SimpleHTTPServer 8088
Use a web browser and navigate to http://localhost:8000, you could see the compiled Chinese/English documents page and the English APIs page. The following figure is an example of the built English documents home page. Note that due to the sphinx's original theme used in the example, the style of the page is not consistent with the official website, but this does not affect the developer's debugging.
How to write Documentations
============
.. image:: src/doc_en.png
:align: center
:scale: 60 %
PaddlePaddle uses `sphinx`_ to compile documentations,Please check sphinx official website for more detail.
How to write Documentation
===========================
PaddlePaddle uses `sphinx`_ to compile documentation,Please check sphinx official website for more detail.
How to update www.paddlepaddle.org
============================
===================================
Please create PRs and submit them to github, please check `Contribute Code <http://www.paddlepaddle.org/docs/develop/documentation/en/howto/dev/contribute_to_paddle_en.html>`_ 。
PaddlePaddle develop branch will update the documentation once the PR is merged. User may check latest `Chinese Docs <http://www.paddlepaddle.org/docs/develop/documentation/zh/getstarted/index_cn.html>`_ and
......
FAQ
====
This document provides answers to some of the frequently asked questions about PaddlePaddle. If you have a question that is not covered here, please go to `PaddlePaddle Community <https://github.com/PaddlePaddle/Paddle/issues>`_ , to find an answer or submit new `issue <https://github.com/PaddlePaddle/Paddle/issues/new>`_ , we will reply in time.
.. toctree::
:maxdepth: 1
......
GET STARTED
============
If you want to quickly know how to use PaddlePaddle, please refer to the following guide:
.. toctree::
:maxdepth: 1
quickstart_en.rst
While using PaddlePaddle to build applications, please understand some basic concepts.
Here is an example of linear regression. It introduces workflow of PaddlePaddle, including data format, model configuration and training, etc.
.. toctree::
:maxdepth: 1
concepts/use_concepts_en.rst
C-API Prediction Library
C-API Inference Library
========================
After we train a neural network, we use it to do inference. Inference is the process of preparing input data and propagating it through the model to produce the result.
Compared with model training, prediction has the following features:
#. Inference does not require backpropagation and parameter updates, as required during training.
#. Labels are not needed in prediction.
#. Most of the time, predictions need to be integrated with the user system.
Therefore, the model prediction SDK needs to be designed separately and has the following features:
#. The predictive SDK does not include backpropagation and parameter updates to reduce the size of the SDK.
#. The predictive SDK needs a simple user interface for ease of use.
#. Since the input data may have a variety of structures, the format of the input data is clearly and compactly packaged.
#. In order to be compatible with user's system, the SDK's interface must conform to the C-standard interface.
PaddlePaddle provides C-API to solve the above problem. Following are the guidelines to use the C-API:
.. toctree::
:maxdepth: 1
......
......@@ -2,6 +2,9 @@ Distributed Training
====================
The effectiveness of the deep learning model is often directly related to the scale of the data: it can generally achieve better results after increasing the size of the dataset on the same model. However, it can not fit in one single computer when the amount of data increases to a certain extent. At this point, using multiple computers for distributed training is a natural solution. In distributed training, the training data is divided into multiple copies (sharding), and multiple machines participating in the training read their own data for training and collaboratively update the parameters of the overall model.
Distributed training generally has framwork as shown below:
.. image:: src/ps_en.png
:width: 500
......
HOW TO
=======
========
PaddlePaddle provides the users the ability to flexibly set various command line parameters to control the model training and inference process. Please refer to the following instructions on using PaddlePaddle:
.. toctree::
:maxdepth: 1
cmd_parameter/index_en.rst
PaddlePaddle supports distributed training tasks on fabric clusters, MPI clusters, and Kubernetes clusters. For detailed configuration and usage instructions, refer to:
.. toctree::
:maxdepth: 1
cluster/index_en.rst
PaddlePaddle provides a C-API for inference. We provide the following guidelines for using the C-API:
.. toctree::
:maxdepth: 1
capi/index_en.rst
PaddlePaddle supports a variety of flexible and efficient recurrent neural networks. For details, please refer to:
.. toctree::
:maxdepth: 1
rnn/index_en.rst
How to use the built-in timing tool, nvprof, or nvvp to run performance analysis and tuning, please refer to:
.. toctree::
:maxdepth: 1
optimization/gpu_profiling_en.rst
......@@ -34,7 +34,7 @@ class Channel {
public:
virtual bool CanSend() = 0;
virtual bool CanReceive() = 0;
virtual bool Send(T*) = 0;
virtual void Send(T*) = 0;
virtual bool Receive(T*) = 0;
virtual size_t Cap() = 0;
virtual void Lock() = 0;
......@@ -84,96 +84,113 @@ class ChannelHolder {
}
template <typename T>
bool Send(T* data) {
if (!IsInitialized()) return false;
PADDLE_ENFORCE_EQ(holder_->Type(), std::type_index(typeid(T)));
void Send(T* data) {
PADDLE_ENFORCE_EQ(IsInitialized(), true,
"The Channel hasn't been initialized");
PADDLE_ENFORCE_EQ(
holder_->Type(), std::type_index(typeid(T)),
"Channel type is not same as the type of the data being sent");
// Static cast should be safe because we have ensured that types are same
Channel<T>* channel = static_cast<Channel<T>*>(holder_->Ptr());
return channel != nullptr ? channel->Send(data) : false;
PADDLE_ENFORCE_EQ(channel != nullptr, true, "Channel should not be null.");
channel->Send(data);
}
template <typename T>
bool Receive(T* data) {
if (!IsInitialized()) return false;
PADDLE_ENFORCE_EQ(holder_->Type(), std::type_index(typeid(T)));
PADDLE_ENFORCE_EQ(IsInitialized(), true,
"The Channel hasn't been initialized");
PADDLE_ENFORCE_EQ(
holder_->Type(), std::type_index(typeid(T)),
"Channel type is not same as the type of the data being sent");
Channel<T>* channel = static_cast<Channel<T>*>(holder_->Ptr());
return channel != nullptr ? channel->Receive(data) : false;
PADDLE_ENFORCE_EQ(channel != nullptr, true, "Channel should not be null.");
return channel->Receive(data);
}
bool IsClosed() {
if (IsInitialized()) {
PADDLE_ENFORCE_EQ(IsInitialized(), true,
"The Channel hasn't been initialized");
return holder_->IsClosed();
}
return false;
}
bool CanSend() {
if (IsInitialized()) {
PADDLE_ENFORCE_EQ(IsInitialized(), true,
"The Channel hasn't been initialized");
return holder_->CanSend();
}
return false;
}
bool CanReceive() {
if (IsInitialized()) {
PADDLE_ENFORCE_EQ(IsInitialized(), true,
"The Channel hasn't been initialized");
return holder_->CanReceive();
}
return false;
}
void close() {
if (IsInitialized()) holder_->Close();
PADDLE_ENFORCE_EQ(IsInitialized(), true,
"The Channel hasn't been initialized");
holder_->Close();
}
size_t Cap() {
if (IsInitialized()) return holder_->Cap();
return -1;
PADDLE_ENFORCE_EQ(IsInitialized(), true,
"The Channel hasn't been initialized");
return holder_->Cap();
}
void Lock() {
if (IsInitialized()) holder_->Lock();
PADDLE_ENFORCE_EQ(IsInitialized(), true,
"The Channel hasn't been initialized");
holder_->Lock();
}
void Unlock() {
if (IsInitialized()) holder_->Unlock();
PADDLE_ENFORCE_EQ(IsInitialized(), true,
"The Channel hasn't been initialized");
holder_->Unlock();
}
template <typename T>
void AddToSendQ(const void* referrer, T* data,
std::shared_ptr<std::condition_variable_any> cond,
std::function<bool(ChannelAction)> cb) {
if (IsInitialized()) {
PADDLE_ENFORCE_EQ(IsInitialized(), true,
"The Channel hasn't been initialized");
Channel<T>* channel = static_cast<Channel<T>*>(holder_->Ptr());
if (channel != nullptr) {
channel->AddToSendQ(referrer, data, cond, cb);
}
}
}
template <typename T>
void AddToReceiveQ(const void* referrer, T* data,
std::shared_ptr<std::condition_variable_any> cond,
std::function<bool(ChannelAction)> cb) {
if (IsInitialized()) {
PADDLE_ENFORCE_EQ(IsInitialized(), true,
"The Channel hasn't been initialized");
Channel<T>* channel = static_cast<Channel<T>*>(holder_->Ptr());
if (channel != nullptr) {
channel->AddToReceiveQ(referrer, data, cond, cb);
}
}
}
void RemoveFromSendQ(const void* referrer) {
if (IsInitialized()) holder_->RemoveFromSendQ(referrer);
PADDLE_ENFORCE_EQ(IsInitialized(), true,
"The Channel hasn't been initialized");
holder_->RemoveFromSendQ(referrer);
}
void RemoveFromReceiveQ(const void* referrer) {
if (IsInitialized()) holder_->RemoveFromReceiveQ(referrer);
PADDLE_ENFORCE_EQ(IsInitialized(), true,
"The Channel hasn't been initialized");
holder_->RemoveFromReceiveQ(referrer);
}
inline bool IsInitialized() const { return holder_ != nullptr; }
inline const std::type_index Type() {
PADDLE_ENFORCE_EQ(IsInitialized(), true);
PADDLE_ENFORCE_EQ(IsInitialized(), true,
"The Channel hasn't been initialized");
return holder_->Type();
}
......
......@@ -31,7 +31,7 @@ class ChannelImpl : public paddle::framework::Channel<T> {
public:
virtual bool CanSend();
virtual bool CanReceive();
virtual bool Send(T *);
virtual void Send(T *);
virtual bool Receive(T *);
virtual size_t Cap() { return cap_; }
virtual void Lock();
......@@ -76,10 +76,9 @@ class ChannelImpl : public paddle::framework::Channel<T> {
}
};
bool send_return(bool value) {
void send_return() {
send_ctr--;
destructor_cond_.notify_all();
return value;
}
bool recv_return(bool value) {
......@@ -118,15 +117,15 @@ bool ChannelImpl<T>::CanReceive() {
}
template <typename T>
bool ChannelImpl<T>::Send(T *item) {
void ChannelImpl<T>::Send(T *item) {
send_ctr++;
std::unique_lock<std::recursive_mutex> lock{mu_};
// If channel is closed, do nothing
// If channel is closed, throw exception
if (closed_) {
lock.unlock();
// TODO(abhinavarora) Should panic on closed channel
return send_return(false);
send_return();
PADDLE_THROW("Cannot send on closed channel");
}
// If there is a receiver, directly pass the value we want
......@@ -143,7 +142,7 @@ bool ChannelImpl<T>::Send(T *item) {
if (m->callback != nullptr) do_send = m->callback(ChannelAction::SEND);
if (do_send)
*(m->data) = std::move(*item);
else
else {
// We cannot do the data transfer because
// this QueueMessage was added by Select
// and some other case was executed.
......@@ -151,12 +150,17 @@ bool ChannelImpl<T>::Send(T *item) {
// We do not care about notifying other
// because they would have been notified
// by the executed select case.
return send_return(Send(item));
lock.unlock();
Send(item);
send_return();
return;
}
// Wake up the blocked process and unlock
m->Notify();
lock.unlock();
return send_return(true);
send_return();
return;
}
// Unbuffered channel will always bypass this
......@@ -167,7 +171,8 @@ bool ChannelImpl<T>::Send(T *item) {
buf_.push_back(std::move(*item));
// Release lock and return true
lock.unlock();
return send_return(true);
send_return();
return;
}
// Block on channel, because some receiver will complete
......@@ -175,8 +180,12 @@ bool ChannelImpl<T>::Send(T *item) {
auto m = std::make_shared<QueueMessage>(item);
sendq.push_back(m);
m->Wait(lock);
// TODO(abhinavarora) Should panic on closed channel
return send_return(!m->chan_closed);
if (m->chan_closed) {
lock.unlock();
send_return();
PADDLE_THROW("Cannot send on closed channel");
}
send_return();
}
template <typename T>
......
......@@ -16,7 +16,6 @@ limitations under the License. */
#include <chrono>
#include <thread>
#include "gtest/gtest.h"
using paddle::framework::Channel;
......@@ -41,7 +40,7 @@ void RecevingOrderEqualToSendingOrder(Channel<int> *ch) {
unsigned sum_send = 0;
std::thread t([&]() {
for (int i = 0; i < 5; i++) {
EXPECT_EQ(ch->Send(&i), true);
ch->Send(&i);
sum_send += i;
}
});
......@@ -61,7 +60,7 @@ TEST(Channel, SufficientBufferSizeDoesntBlock) {
const size_t buffer_size = 10;
auto ch = MakeChannel<size_t>(buffer_size);
for (size_t i = 0; i < buffer_size; ++i) {
EXPECT_EQ(ch->Send(&i), true); // should not block
ch->Send(&i);
}
size_t out;
......@@ -82,7 +81,7 @@ void SendReceiveWithACloseChannelShouldPanic(Channel<size_t> *ch) {
const size_t data = 5;
std::thread send_thread{[&]() {
size_t i = data;
EXPECT_EQ(ch->Send(&i), true); // should not block
ch->Send(&i); // should not block
}};
std::thread recv_thread{[&]() {
......@@ -94,12 +93,18 @@ void SendReceiveWithACloseChannelShouldPanic(Channel<size_t> *ch) {
send_thread.join();
recv_thread.join();
// After closing send should return false. Receive should
// also return false as there is no data in queue.
// After closing send should panic. Receive should
// also false as there is no data in queue.
CloseChannel(ch);
send_thread = std::thread{[&]() {
size_t i = data;
EXPECT_EQ(ch->Send(&i), false); // should return false
bool is_exception = false;
try {
ch->Send(&i);
} catch (paddle::platform::EnforceNotMet e) {
is_exception = true;
}
EXPECT_EQ(is_exception, true);
}};
recv_thread = std::thread{[&]() {
size_t i;
......@@ -129,7 +134,7 @@ TEST(Channel, ReceiveFromBufferedChannelReturnResidualValuesTest) {
auto ch = MakeChannel<size_t>(buffer_size);
for (size_t i = 0; i < buffer_size; ++i) {
EXPECT_EQ(ch->Send(&i), true); // sending should not block
ch->Send(&i); // sending should not block
}
size_t out;
......@@ -160,9 +165,16 @@ TEST(Channel, ConcurrentSendNonConcurrentReceiveWithSufficientBufferSize) {
// Try to write more than buffer size.
for (size_t i = 0; i < 2 * buffer_size; ++i) {
if (i < buffer_size)
EXPECT_EQ(ch->Send(&i), true); // should block after 10 iterations
else
EXPECT_EQ(ch->Send(&i), false);
ch->Send(&i); // should block after 10 iterations
else {
bool is_exception = false;
try {
ch->Send(&i);
} catch (paddle::platform::EnforceNotMet e) {
is_exception = true;
}
EXPECT_EQ(is_exception, true);
}
}
});
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait 0.2 sec
......@@ -231,7 +243,13 @@ void ChannelCloseUnblocksSendersTest(Channel<int> *ch, bool isBuffered) {
t[i] = std::thread(
[&](bool *ended, bool *success) {
int data = 10;
*success = ch->Send(&data);
bool is_exception = false;
try {
ch->Send(&data);
} catch (paddle::platform::EnforceNotMet e) {
is_exception = true;
}
*success = !is_exception;
*ended = true;
},
&thread_ended[i], &send_success[i]);
......@@ -316,8 +334,11 @@ TEST(Channel, UnbufferedLessReceiveMoreSendTest) {
// Try to send more number of times
// than receivers
for (int i = 0; i < 4; i++) {
try {
ch->Send(&i);
sum_send += i;
} catch (paddle::platform::EnforceNotMet e) {
}
}
});
for (int i = 0; i < 3; i++) {
......@@ -382,7 +403,13 @@ void ChannelDestroyUnblockSenders(Channel<int> *ch, bool isBuffered) {
t[i] = std::thread(
[&](bool *ended, bool *success) {
int data = 10;
*success = ch->Send(&data);
bool is_exception = false;
try {
ch->Send(&data);
} catch (paddle::platform::EnforceNotMet e) {
is_exception = true;
}
*success = !is_exception;
*ended = true;
},
&thread_ended[i], &send_success[i]);
......@@ -508,7 +535,7 @@ void ChannelHolderSendReceive(ChannelHolder *ch) {
unsigned sum_send = 0;
std::thread t([&]() {
for (int i = 0; i < 5; i++) {
EXPECT_EQ(ch->Send(&i), true);
ch->Send(&i);
sum_send += i;
}
});
......@@ -541,8 +568,22 @@ TEST(ChannelHolder, ChannelUninitializedTest) {
ChannelHolder *ch = new ChannelHolder();
EXPECT_EQ(ch->IsInitialized(), false);
int i = 10;
EXPECT_EQ(ch->Send(&i), false);
EXPECT_EQ(ch->Receive(&i), false);
bool send_exception = false;
try {
ch->Send(&i);
} catch (paddle::platform::EnforceNotMet e) {
send_exception = true;
}
EXPECT_EQ(send_exception, true);
bool recv_exception = false;
try {
ch->Receive(&i);
} catch (paddle::platform::EnforceNotMet e) {
recv_exception = true;
}
EXPECT_EQ(recv_exception, true);
bool is_exception = false;
try {
ch->Type();
......@@ -669,7 +710,13 @@ void ChannelHolderCloseUnblocksSendersTest(ChannelHolder *ch, bool isBuffered) {
t[i] = std::thread(
[&](bool *ended, bool *success) {
int data = 10;
*success = ch->Send(&data);
bool is_exception = false;
try {
ch->Send(&data);
} catch (paddle::platform::EnforceNotMet e) {
is_exception = true;
}
*success = !is_exception;
*ended = true;
},
&thread_ended[i], &send_success[i]);
......@@ -760,7 +807,13 @@ void ChannelHolderDestroyUnblockSenders(ChannelHolder *ch, bool isBuffered) {
t[i] = std::thread(
[&](bool *ended, bool *success) {
int data = 10;
*success = ch->Send(&data);
bool is_exception = false;
try {
ch->Send(&data);
} catch (paddle::platform::EnforceNotMet e) {
is_exception = true;
}
*success = !is_exception;
*ended = true;
},
&thread_ended[i], &send_success[i]);
......
......@@ -150,7 +150,8 @@ void AddFibonacciSelect(Scope *scope, p::CPUPlace *place, ProgramDesc *program,
// Select block
AddOp("select", {{"X", {dataChanName, quitChanName}},
{"case_to_execute", {"caseToExecute"}}},
{}, {{"sub_block", casesBlock},
{{"Out", {}}},
{{"sub_block", casesBlock},
{"cases", std::vector<std::string>{case0Config, case1Config}}},
whileBlock);
......@@ -209,9 +210,8 @@ TEST(Concurrency, Go_Op) {
executor.Run(program, &scope, 0, true, true);
// After we call executor.run, the Go operator should do a channel_send to set
// the
// "result" variable to 99
// After we call executor.run, the Go operator should do a channel_send to
// set the "result" variable to 99.
auto *finalData = tensor.data<int>();
EXPECT_EQ(finalData[0], 99);
}
......
......@@ -14,12 +14,8 @@ limitations under the License. */
#include "paddle/fluid/framework/executor.h"
#include <set>
#include "gflags/gflags.h"
#include "paddle/fluid/framework/channel.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
......@@ -40,14 +36,13 @@ namespace {
int kProgramId = -1;
} // namespace
struct ExecutorPrepareContext {
ExecutorPrepareContext(const framework::ProgramDesc& prog, size_t block_id)
ExecutorPrepareContext::ExecutorPrepareContext(
const framework::ProgramDesc& prog, size_t block_id)
: prog_(prog), block_id_(block_id) {}
const framework::ProgramDesc prog_;
size_t block_id_;
std::vector<std::unique_ptr<OperatorBase>> ops_;
};
ExecutorPrepareContext::~ExecutorPrepareContext() {
VLOG(5) << "destroy ExecutorPrepareContext";
}
Executor::Executor(const platform::Place& place) : place_(place) {}
......@@ -101,9 +96,8 @@ static void CheckTensorNANOrInf(const std::string& name,
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
bool create_local_scope, bool create_vars) {
platform::RecordBlock b(block_id);
auto* ctx = Prepare(pdesc, block_id);
RunPreparedContext(ctx, scope, create_local_scope, create_vars);
delete ctx;
auto ctx = Prepare(pdesc, block_id);
RunPreparedContext(ctx.get(), scope, create_local_scope, create_vars);
}
// Check whether the block already has feed operators and feed_holder.
......@@ -191,7 +185,7 @@ void Executor::Run(const ProgramDesc& program, Scope* scope,
std::map<std::string, const LoDTensor*>& feed_targets,
std::map<std::string, LoDTensor*>& fetch_targets,
const std::string& feed_holder_name,
const std::string& fetch_holder_name) {
const std::string& fetch_holder_name, bool create_vars) {
platform::RecordBlock b(kProgramId);
bool has_feed_ops =
has_feed_operators(program.Block(0), feed_targets, feed_holder_name);
......@@ -261,7 +255,7 @@ void Executor::Run(const ProgramDesc& program, Scope* scope,
}
}
Run(*copy_program, scope, 0, true, true);
Run(*copy_program, scope, 0, create_vars, create_vars);
// obtain the data of fetch_targets from fetch_holder
for (auto* op : global_block->AllOps()) {
......@@ -274,15 +268,15 @@ void Executor::Run(const ProgramDesc& program, Scope* scope,
}
}
ExecutorPrepareContext* Executor::Prepare(const ProgramDesc& program,
int block_id) {
std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
const ProgramDesc& program, int block_id) {
auto* ctx = new ExecutorPrepareContext(program, block_id);
PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), program.Size());
auto& block = program.Block(block_id);
for (auto& op_desc : block.AllOps()) {
ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
}
return ctx;
return std::unique_ptr<ExecutorPrepareContext>(ctx);
}
void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
......
......@@ -22,7 +22,16 @@ limitations under the License. */
namespace paddle {
namespace framework {
struct ExecutorPrepareContext;
struct ExecutorPrepareContext {
ExecutorPrepareContext(const framework::ProgramDesc& prog, size_t block_id);
~ExecutorPrepareContext();
const framework::ProgramDesc& prog_;
size_t block_id_;
std::vector<std::unique_ptr<OperatorBase>> ops_;
};
class Executor {
public:
// TODO(dzhwinter) : Do not rely on this function, it will be removed
......@@ -45,10 +54,11 @@ class Executor {
std::map<std::string, const LoDTensor*>& feed_targets,
std::map<std::string, LoDTensor*>& fetch_targets,
const std::string& feed_holder_name = "feed",
const std::string& fetch_holder_name = "fetch");
const std::string& fetch_holder_name = "fetch",
bool create_vars = true);
static ExecutorPrepareContext* Prepare(const ProgramDesc& program,
int block_id);
static std::unique_ptr<ExecutorPrepareContext> Prepare(
const ProgramDesc& program, int block_id);
void RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
bool create_local_scope = true,
......
......@@ -176,7 +176,7 @@ class Vector {
// resize the vector
void resize(size_t size) {
if (size + 1 < capacity()) {
if (size + 1 <= capacity()) {
size_ = size;
} else {
MutableCPU();
......
......@@ -104,3 +104,11 @@ TEST(mixed_vector, ForEach) {
for (auto& v : tmp) {
}
}
TEST(mixed_vector, Reserve) {
paddle::framework::Vector<int> vec;
vec.reserve(1);
vec.push_back(0);
vec.push_back(0);
vec.push_back(0);
}
......@@ -45,10 +45,11 @@ class Tensor {
friend struct EigenVector;
public:
Tensor() : offset_(0) {}
Tensor() : offset_(0), is_pinned_(false) {}
/*! Constructor with place should only be used in pybind. */
explicit Tensor(const platform::Place& place) : offset_(0) {
explicit Tensor(const platform::Place& place)
: offset_(0), is_pinned_(false) {
holder_->set_place(place);
}
......@@ -69,11 +70,12 @@ class Tensor {
* @note If not exist, then allocation.
*/
template <typename T>
inline T* mutable_data(platform::Place place);
inline T* mutable_data(platform::Place place, bool is_pinned = false);
inline void* mutable_data(platform::Place place, std::type_index type);
inline void* mutable_data(platform::Place place, std::type_index type,
bool is_pinned = false);
inline void* mutable_data(platform::Place place);
inline void* mutable_data(platform::Place place, bool is_pinned = false);
/**
* @brief Return a pointer to mutable memory block.
......@@ -84,7 +86,8 @@ class Tensor {
* @note If not exist, then allocation.
*/
template <typename T>
inline T* mutable_data(DDim dims, platform::Place place);
inline T* mutable_data(DDim dims, platform::Place place,
bool is_pinned = false);
/*! Return the dimensions of the memory block. */
inline const DDim& dims() const;
......@@ -92,6 +95,9 @@ class Tensor {
/*! Return the numel of the memory block. */
inline int64_t numel() const;
/*! Return the numel of the memory block. */
inline bool isPinned() const;
/*! Resize the dimensions of the memory block. */
inline Tensor& Resize(const DDim& dims);
......@@ -146,12 +152,14 @@ class Tensor {
template <typename Place>
struct PlaceholderImpl : public Placeholder {
PlaceholderImpl(Place place, size_t size, std::type_index type)
: ptr_(static_cast<uint8_t*>(memory::Alloc(place, size)),
memory::PODDeleter<uint8_t, Place>(place)),
PlaceholderImpl(Place place, size_t size, std::type_index type,
bool is_pinned = false)
: ptr_(static_cast<uint8_t*>(memory::Alloc(place, size, is_pinned)),
memory::PODDeleter<uint8_t, Place>(place, is_pinned)),
place_(place),
size_(size),
type_(type) {
type_(type),
is_pinned_(is_pinned) {
PADDLE_ENFORCE_NOT_NULL(ptr_, "Insufficient %s memory to allocation.",
(is_cpu_place(place_) ? "CPU" : "GPU"));
}
......@@ -174,6 +182,9 @@ class Tensor {
/* the current type of memory */
std::type_index type_;
/*! use pinned memory or not. */
bool is_pinned_;
};
/*! holds the memory block if allocated. */
......@@ -208,6 +219,7 @@ class Tensor {
* PlaceHolder::ptr_ and where the tensor data really begins.
*/
size_t offset_;
bool is_pinned_;
};
inline void Tensor::switch_place(platform::Place new_place) {
......
......@@ -101,25 +101,27 @@ inline T* Tensor::data() {
}
template <typename T>
inline T* Tensor::mutable_data(DDim dims, platform::Place place) {
inline T* Tensor::mutable_data(DDim dims, platform::Place place,
bool is_pinned) {
static_assert(std::is_pod<T>::value, "T must be POD");
Resize(dims);
return mutable_data<T>(place);
return mutable_data<T>(place, is_pinned);
}
template <typename T>
inline T* Tensor::mutable_data(platform::Place place) {
inline T* Tensor::mutable_data(platform::Place place, bool is_pinned) {
static_assert(std::is_pod<T>::value, "T must be POD");
return reinterpret_cast<T*>(mutable_data(place, typeid(T)));
return reinterpret_cast<T*>(mutable_data(place, typeid(T), is_pinned));
}
inline void* Tensor::mutable_data(platform::Place place, std::type_index type) {
inline void* Tensor::mutable_data(platform::Place place, std::type_index type,
bool is_pinned) {
if (holder_ != nullptr) {
holder_->set_type(type);
}
PADDLE_ENFORCE_GT(
numel(), 0,
"When calling this method, the Tensor's numel must be larger than zero. "
PADDLE_ENFORCE_GE(numel(), 0,
"When calling this method, the Tensor's numel must be "
"equal or larger than zero. "
"Please check Tensor::Resize has been called first.");
int64_t size = numel() * SizeOfType(type);
/* some versions of boost::variant don't have operator!= */
......@@ -127,26 +129,27 @@ inline void* Tensor::mutable_data(platform::Place place, std::type_index type) {
holder_->size() < size + offset_) {
if (platform::is_cpu_place(place)) {
holder_.reset(new PlaceholderImpl<platform::CPUPlace>(
boost::get<platform::CPUPlace>(place), size, type));
boost::get<platform::CPUPlace>(place), size, type, is_pinned));
} else if (platform::is_gpu_place(place)) {
#ifndef PADDLE_WITH_CUDA
PADDLE_THROW("'CUDAPlace' is not supported in CPU only device.");
}
#else
holder_.reset(new PlaceholderImpl<platform::CUDAPlace>(
boost::get<platform::CUDAPlace>(place), size, type));
boost::get<platform::CUDAPlace>(place), size, type, is_pinned));
}
#endif
offset_ = 0;
is_pinned_ = is_pinned;
}
return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(holder_->ptr()) +
offset_);
}
inline void* Tensor::mutable_data(platform::Place place) {
inline void* Tensor::mutable_data(platform::Place place, bool is_pinned) {
PADDLE_ENFORCE(this->holder_ != nullptr,
"Cannot invoke mutable data if current hold nothing");
return mutable_data(place, holder_->type());
return mutable_data(place, holder_->type(), is_pinned);
}
inline Tensor& Tensor::ShareDataWith(const Tensor& src) {
......@@ -188,6 +191,8 @@ inline const DDim& Tensor::dims() const { return dims_; }
inline int64_t Tensor::numel() const { return product(dims_); }
inline bool Tensor::isPinned() const { return is_pinned_; }
inline Tensor ReshapeToMatrix(const Tensor& src, int num_col_dims) {
Tensor res;
res.ShareDataWith(src);
......
......@@ -119,6 +119,50 @@ void GPUAllocator::Free(void* p, size_t size, size_t index) {
bool GPUAllocator::UseGpu() const { return true; }
// PINNED memory allows direct DMA transfers by the GPU to and from system
// memory. It’s locked to a physical address.
void* CUDAPinnedAllocator::Alloc(size_t& index, size_t size) {
if (size <= 0) return nullptr;
void* p;
// NOTE: here, we use GpuMaxAllocSize() as the maximum memory size
// of host pinned allocation. Allocates too much would reduce
// the amount of memory available to the underlying system for paging.
size_t usable = paddle::platform::GpuMaxAllocSize() - fallback_alloc_size_;
if (size > usable) return nullptr;
// PINNED memory is visible to all CUDA contexts.
cudaError_t result = cudaMallocHost(&p, size);
if (result == cudaSuccess) {
index = 1;
fallback_alloc_size_ += size;
return p;
}
return nullptr;
}
void CUDAPinnedAllocator::Free(void* p, size_t size, size_t index) {
cudaError_t err;
PADDLE_ASSERT(index == 1);
PADDLE_ASSERT(fallback_alloc_size_ >= size);
fallback_alloc_size_ -= size;
err = cudaFreeHost(p);
// Purposefully allow cudaErrorCudartUnloading, because
// that is returned if you ever call cudaFreeHost after the
// driver has already shutdown. This happens only if the
// process is terminating, in which case we don't care if
// cudaFreeHost succeeds.
if (err != cudaErrorCudartUnloading) {
PADDLE_ENFORCE(err, "cudaFreeHost failed in GPUPinnedAllocator::Free.");
}
}
bool CUDAPinnedAllocator::UseGpu() const { return true; }
#endif
} // namespace detail
......
......@@ -51,6 +51,18 @@ class GPUAllocator : public SystemAllocator {
size_t gpu_alloc_size_ = 0;
size_t fallback_alloc_size_ = 0;
};
class CUDAPinnedAllocator : public SystemAllocator {
public:
virtual void* Alloc(size_t& index, size_t size);
virtual void Free(void* p, size_t size, size_t index);
virtual bool UseGpu() const;
private:
size_t gpu_alloc_size_ =
0; // TODO(zcd): how to define the upper limit of CUDAPinnedMemory?
size_t fallback_alloc_size_ = 0;
};
#endif
} // namespace detail
......
......@@ -38,7 +38,8 @@ BuddyAllocator* GetCPUBuddyAllocator() {
}
template <>
void* Alloc<platform::CPUPlace>(platform::CPUPlace place, size_t size) {
void* Alloc<platform::CPUPlace>(platform::CPUPlace place, size_t size,
bool is_pinned) {
VLOG(10) << "Allocate " << size << " bytes on " << platform::Place(place);
void* p = GetCPUBuddyAllocator()->Alloc(size);
VLOG(10) << " pointer=" << p;
......@@ -46,7 +47,8 @@ void* Alloc<platform::CPUPlace>(platform::CPUPlace place, size_t size) {
}
template <>
void Free<platform::CPUPlace>(platform::CPUPlace place, void* p) {
void Free<platform::CPUPlace>(platform::CPUPlace place, void* p,
bool is_pinned) {
VLOG(10) << "Free pointer=" << p << " on " << platform::Place(place);
GetCPUBuddyAllocator()->Free(p);
}
......@@ -82,15 +84,47 @@ BuddyAllocator* GetGPUBuddyAllocator(int gpu_id) {
return as[gpu_id];
}
BuddyAllocator* GetCUDAPinnedBuddyAllocator(int gpu_id) {
static BuddyAllocator** as = NULL;
if (as == NULL) {
int gpu_num = platform::GetCUDADeviceCount();
as = new BuddyAllocator*[gpu_num];
for (int gpu = 0; gpu < gpu_num; gpu++) {
as[gpu] = nullptr;
}
}
platform::SetDeviceId(gpu_id);
if (!as[gpu_id]) {
as[gpu_id] = new BuddyAllocator(new detail::CUDAPinnedAllocator,
platform::GpuMinChunkSize(),
platform::GpuMaxChunkSize());
VLOG(10) << "\n\nNOTE: each GPU device use "
<< FLAGS_fraction_of_gpu_memory_to_use * 100
<< "% of GPU memory.\n"
<< "You can set GFlags environment variable '"
<< "FLAGS_fraction_of_gpu_memory_to_use"
<< "' to change the fraction of GPU usage.\n\n";
}
return as[gpu_id];
}
template <>
size_t Used<platform::CUDAPlace>(platform::CUDAPlace place) {
return GetGPUBuddyAllocator(place.device)->Used();
}
template <>
void* Alloc<platform::CUDAPlace>(platform::CUDAPlace place, size_t size) {
void* Alloc<platform::CUDAPlace>(platform::CUDAPlace place, size_t size,
bool is_pinned) {
void* ptr;
if (is_pinned) {
auto* buddy_allocator = GetCUDAPinnedBuddyAllocator(place.device);
ptr = buddy_allocator->Alloc(size);
} else {
auto* buddy_allocator = GetGPUBuddyAllocator(place.device);
auto* ptr = buddy_allocator->Alloc(size);
ptr = buddy_allocator->Alloc(size);
}
if (ptr == nullptr) {
int cur_dev = platform::GetCurrentDeviceId();
platform::SetDeviceId(place.device);
......@@ -108,8 +142,13 @@ void* Alloc<platform::CUDAPlace>(platform::CUDAPlace place, size_t size) {
}
template <>
void Free<platform::CUDAPlace>(platform::CUDAPlace place, void* p) {
void Free<platform::CUDAPlace>(platform::CUDAPlace place, void* p,
bool is_pinned) {
if (is_pinned) {
GetCUDAPinnedBuddyAllocator(place.device)->Free(p);
} else {
GetGPUBuddyAllocator(place.device)->Free(p);
}
}
#endif
......
......@@ -33,7 +33,7 @@ namespace memory {
* address is valid or not.
*/
template <typename Place>
void* Alloc(Place place, size_t size);
void* Alloc(Place place, size_t size, bool is_pinned = false);
/**
* \brief Free memory block in one place.
......@@ -43,7 +43,7 @@ void* Alloc(Place place, size_t size);
*
*/
template <typename Place>
void Free(Place place, void* ptr);
void Free(Place place, void* ptr, bool is_pinned = false);
/**
* \brief Total size of used memory in one place.
......@@ -74,11 +74,13 @@ class PODDeleter {
static_assert(std::is_pod<T>::value, "T must be POD");
public:
explicit PODDeleter(Place place) : place_(place) {}
void operator()(T* ptr) { Free(place_, static_cast<void*>(ptr)); }
explicit PODDeleter(Place place, bool is_pinned = false)
: place_(place), is_pinned_(is_pinned) {}
void operator()(T* ptr) { Free(place_, static_cast<void*>(ptr), is_pinned_); }
private:
Place place_;
bool is_pinned_;
};
/**
......
......@@ -59,7 +59,7 @@ TEST(BuddyAllocator, CPUMultAlloc) {
EXPECT_EQ(total_size, 0UL);
for (auto size :
{128, 256, 1024, 4096, 16384, 65536, 262144, 1048576, 4194304}) {
{0, 128, 256, 1024, 4096, 16384, 65536, 262144, 1048576, 4194304}) {
ps[paddle::memory::Alloc(cpu, size)] = size;
// Buddy Allocator doesn't manage too large memory chunk
......@@ -117,7 +117,7 @@ TEST(BuddyAllocator, GPUMultAlloc) {
EXPECT_EQ(total_size, 0UL);
for (auto size :
{128, 256, 1024, 4096, 16384, 65536, 262144, 1048576, 4194304}) {
{0, 128, 256, 1024, 4096, 16384, 65536, 262144, 1048576, 4194304}) {
ps[paddle::memory::Alloc(gpu, size)] = size;
// Buddy Allocator doesn't manage too large memory chunk
......
......@@ -12,6 +12,8 @@ function(op_library TARGET)
set(OP_LIBRARY ${TARGET} ${OP_LIBRARY} PARENT_SCOPE)
set(cc_srcs)
set(cu_srcs)
set(hip_cu_srcs)
set(miopen_hip_cc_srcs)
set(cu_cc_srcs)
set(cudnn_cu_cc_srcs)
set(CUDNN_FILE)
......@@ -36,10 +38,19 @@ function(op_library TARGET)
if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${TARGET}.cu)
list(APPEND cu_srcs ${TARGET}.cu)
endif()
if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${TARGET}.hip.cu)
list(APPEND hip_cu_srcs ${TARGET}.hip.cu)
endif()
string(REPLACE "_op" "_cudnn_op" CUDNN_FILE "${TARGET}")
if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${CUDNN_FILE}.cu.cc)
list(APPEND cudnn_cu_cc_srcs ${CUDNN_FILE}.cu.cc)
endif()
if(WITH_AMD_GPU)
string(REPLACE "_op" "_miopen_op" MIOPEN_FILE "${TARGET}")
if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${MIOPEN_FILE}.hip.cc)
list(APPEND miopen_hip_cc_srcs ${MIOPEN_FILE}.hip.cc)
endif()
endif()
if(WITH_MKLDNN)
string(REPLACE "_op" "_mkldnn_op" MKLDNN_FILE "${TARGET}")
if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${MKLDNN_FILE}.cc)
......@@ -48,10 +59,14 @@ function(op_library TARGET)
endif()
else()
foreach(src ${op_library_SRCS})
if (${src} MATCHES ".*\\.cu$")
if (${src} MATCHES ".*\\.hip.cu$")
list(APPEND hip_cu_srcs ${src})
elseif (${src} MATCHES ".*\\.cu$")
list(APPEND cu_srcs ${src})
elseif(${src} MATCHES ".*_cudnn_op.cu.cc$")
list(APPEND cudnn_cu_cc_srcs ${src})
elseif(WITH_AMD_GPU AND ${src} MATCHES ".*_miopen_op.hip.cc$")
list(APPEND miopen_hip_cc_srcs ${src})
elseif(WITH_MKLDNN AND ${src} MATCHES ".*_mkldnn_op.cc$")
list(APPEND mkldnn_cc_srcs ${src})
elseif(${src} MATCHES ".*\\.cu.cc$")
......@@ -76,6 +91,9 @@ function(op_library TARGET)
if (WITH_GPU)
nv_library(${TARGET} SRCS ${cc_srcs} ${cu_cc_srcs} ${cudnn_cu_cc_srcs} ${mkldnn_cc_srcs} ${cu_srcs} DEPS ${op_library_DEPS}
${op_common_deps})
elseif (WITH_AMD_GPU)
hip_library(${TARGET} SRCS ${cc_srcs} ${hip_cu_srcs} ${miopen_hip_cc_srcs} ${mkldnn_cc_srcs} DEPS ${op_library_DEPS}
${op_common_deps})
else()
cc_library(${TARGET} SRCS ${cc_srcs} ${mkldnn_cc_srcs} DEPS ${op_library_DEPS}
${op_common_deps})
......@@ -88,7 +106,7 @@ function(op_library TARGET)
endif()
endforeach()
# The registration of USE_OP, please refer to paddle/framework/op_registry.h.
# The registration of USE_OP, please refer to paddle/fluid/framework/op_registry.h.
# Note that it's enough to just adding one operator to pybind in a *_op.cc file.
# And for detail pybind information, please see generated paddle/pybind/pybind.h.
file(READ ${TARGET}.cc TARGET_CONTENT)
......@@ -114,7 +132,10 @@ function(op_library TARGET)
list(LENGTH cu_srcs cu_srcs_len)
list(LENGTH cu_cc_srcs cu_cc_srcs_len)
list(LENGTH mkldnn_cc_srcs mkldnn_cc_srcs_len)
if (${pybind_flag} EQUAL 0 AND ${mkldnn_cc_srcs_len} EQUAL 0 AND ${cu_srcs_len} EQUAL 0 AND ${cu_cc_srcs_len} EQUAL 0)
list(LENGTH hip_cu_srcs hip_cu_srcs_len)
list(LENGTH miopen_hip_cc_srcs miopen_hip_cc_srcs_len)
if (${pybind_flag} EQUAL 0 AND ${mkldnn_cc_srcs_len} EQUAL 0 AND ${cu_srcs_len} EQUAL 0 AND ${cu_cc_srcs_len} EQUAL 0 AND
${hip_cu_srcs_len} EQUAL 0 AND ${miopen_hip_cc_srcs_len} EQUAL 0)
file(APPEND ${pybind_file} "USE_CPU_ONLY_OP(${TARGET});\n")
set(pybind_flag 1)
endif()
......@@ -125,10 +146,20 @@ function(op_library TARGET)
file(APPEND ${pybind_file} "USE_OP_DEVICE_KERNEL(${TARGET}, CUDNN);\n")
endif()
# pybind USE_OP_DEVICE_KERNEL for MIOPEN
if (WITH_AMD_GPU AND ${miopen_hip_cc_srcs_len} GREATER 0)
file(APPEND ${pybind_file} "USE_OP_DEVICE_KERNEL(${TARGET}, MIOPEN);\n")
endif()
# pybind USE_OP_DEVICE_KERNEL for MKLDNN
if (WITH_MKLDNN AND ${mkldnn_cc_srcs_len} GREATER 0)
# Append first implemented MKLDNN activation operator
if (${MKLDNN_FILE} STREQUAL "activation_mkldnn_op")
file(APPEND ${pybind_file} "USE_OP_DEVICE_KERNEL(relu, MKLDNN);\n")
else()
file(APPEND ${pybind_file} "USE_OP_DEVICE_KERNEL(${TARGET}, MKLDNN);\n")
endif()
endif()
# pybind USE_OP
if (${pybind_flag} EQUAL 0)
......@@ -156,9 +187,13 @@ if(WITH_DISTRIBUTE)
set_source_files_properties(recv_op.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS})
op_library(listen_and_serv_op DEPS ${DISTRIBUTE_DEPS})
set_source_files_properties(listen_and_serv_op.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS})
op_library(send_vars_op DEPS ${DISTRIBUTE_DEPS})
set_source_files_properties(send_vars_op.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS})
op_library(send_barrier_op DEPS ${DISTRIBUTE_DEPS})
set_source_files_properties(send_barrier_op.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS})
cc_test(test_send_recv SRCS send_recv_op_test.cc DEPS send_op listen_and_serv_op sum_op executor)
else()
set(DEPS_OPS ${DEPS_OPS} send_op recv_op listen_and_serv_op)
set(DEPS_OPS ${DEPS_OPS} send_op recv_op listen_and_serv_op send_vars_op send_barrier_op)
endif()
op_library(cond_op DEPS framework_proto tensor net_op)
......@@ -229,3 +264,4 @@ cc_test(strided_memcpy_test SRCS strided_memcpy_test.cc DEPS tensor paddle_memor
cc_test(save_load_op_test SRCS save_load_op_test.cc DEPS save_op load_op)
cc_test(save_load_combine_op_test SRCS save_load_combine_op_test.cc DEPS save_combine_op load_combine_op)
nv_test(nccl_op_test SRCS nccl_op_test.cu.cc DEPS nccl_op gpu_info device_context)
nv_test(dropout_op_test SRCS dropout_op_test.cc DEPS dropout_op tensor)
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "mkldnn.hpp"
#include "mkldnn_activation_op.h"
#include "paddle/fluid/operators/activation_op.h"
namespace paddle {
namespace operators {
using paddle::framework::Tensor;
using paddle::platform::MKLDNNDeviceContext;
namespace {
template <typename T, typename ExecContext>
void eltwise_forward(const ExecContext &ctx, mkldnn::algorithm algorithm,
const T alpha = 0, const T beta = 0) {
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
"It must use CPUPlace.");
auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
const auto &mkldnn_engine = dev_ctx.GetEngine();
// get buffers
const auto *src = ctx.template Input<Tensor>("X");
const auto *src_data = src->template data<T>();
auto *dst = ctx.template Output<Tensor>("Out");
const T *dst_data = dst->template mutable_data<T>(ctx.GetPlace());
// get memory dim
PADDLE_ENFORCE(src->dims().size() == 4,
"Input dim must be with 4, i.e. NCHW");
std::vector<int> src_tz = framework::vectorize2int(src->dims());
// create memory description
// TODO(kbinias-intel): support more formats
auto data_md = platform::MKLDNNMemDesc(src_tz, mkldnn::memory::f32,
mkldnn::memory::format::nchw);
// create memory primitives
auto src_memory = mkldnn::memory({data_md, mkldnn_engine}, (void *)src_data);
auto dst_memory = mkldnn::memory({data_md, mkldnn_engine}, (void *)dst_data);
auto forward_desc = mkldnn::eltwise_forward::desc(
mkldnn::prop_kind::forward_training, algorithm, data_md, alpha, beta);
// save prim desc into global device context to be referred in backward path
const std::string key = ctx.op().Output("Out");
const std::string key_eltwise_pd = key + "@eltwise_pd";
auto forward_pd = std::make_shared<mkldnn::eltwise_forward::primitive_desc>(
forward_desc, mkldnn_engine);
dev_ctx.SetBlob(key_eltwise_pd, forward_pd);
auto eltwise = mkldnn::eltwise_forward(*forward_pd, src_memory, dst_memory);
// push primitive to stream and wait until it's executed
std::vector<mkldnn::primitive> pipeline = {eltwise};
mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
}
template <typename T, typename ExecContext>
void eltwise_grad(const ExecContext &ctx, mkldnn::algorithm algorithm,
const T alpha = 0, const T beta = 0) {
auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
const auto &mkldnn_engine = dev_ctx.GetEngine();
// get buffers
const auto *x = ctx.template Input<Tensor>("X");
const auto *src = x->template data<T>();
auto *dout = ctx.template Input<Tensor>(framework::GradVarName("Out"));
const auto *diff_dst = dout->template data<T>();
auto *dx =
ctx.template Output<framework::Tensor>(framework::GradVarName("X"));
const T *diff_src = dx->template mutable_data<T>(ctx.GetPlace());
// get memory dim
std::vector<int> src_tz = framework::vectorize2int(x->dims());
// create memory description
auto data_md = platform::MKLDNNMemDesc(src_tz, mkldnn::memory::f32,
mkldnn::memory::format::nchw);
// create memory primitives
auto src_memory = mkldnn::memory({data_md, mkldnn_engine}, (void *)src);
auto diff_src_memory =
mkldnn::memory({data_md, mkldnn_engine}, (void *)diff_src);
auto diff_dst_memory =
mkldnn::memory({data_md, mkldnn_engine}, (void *)diff_dst);
auto backward_desc =
mkldnn::eltwise_backward::desc(algorithm, data_md, data_md, alpha, beta);
// retrieve eltwise primitive desc from device context
const std::string key = ctx.op().Input("Out");
const std::string key_eltwise_pd = key + "@eltwise_pd";
const std::shared_ptr<void> forward_pd = dev_ctx.GetBlob(key_eltwise_pd);
PADDLE_ENFORCE(forward_pd != nullptr,
"Fail to find eltwise_pd in device context");
auto *p_forward_pd =
static_cast<mkldnn::eltwise_forward::primitive_desc *>(forward_pd.get());
auto eltwise_bwd_prim_desc = mkldnn::eltwise_backward::primitive_desc(
backward_desc, mkldnn_engine, *p_forward_pd);
auto eltwise_bwd = mkldnn::eltwise_backward(eltwise_bwd_prim_desc, src_memory,
diff_dst_memory, diff_src_memory);
// push primitive to stream and wait until it's executed
std::vector<mkldnn::primitive> pipeline = {eltwise_bwd};
mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
}
} // anonymous namespace
template <typename T, mkldnn::algorithm algorithm>
struct MKLDNNActivationFunc : public BaseActivationFunctor<T> {
template <typename ExecContext>
void operator()(const ExecContext &ctx) const {
eltwise_forward<T>(ctx, algorithm);
}
};
template <typename T, mkldnn::algorithm algorithm>
struct MKLDNNActivationGradFunc : public BaseActivationFunctor<T> {
template <typename ExecContext>
void operator()(const ExecContext &ctx) const {
eltwise_grad<T>(ctx, algorithm);
}
};
template <typename T>
using ReluMkldnnFunctor =
MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_relu>;
template <typename T>
using TanhMkldnnFunctor =
MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_tanh>;
template <typename T>
using SqrtMkldnnFunctor =
MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_sqrt>;
template <typename T>
using AbsMkldnnFunctor =
MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_abs>;
template <typename T>
using ReluMkldnnGradFunctor =
MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_relu>;
template <typename T>
using TanhMkldnnGradFunctor =
MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_tanh>;
template <typename T>
using SqrtMkldnnGradFunctor =
MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_sqrt>;
template <typename T>
using AbsMkldnnGradFunctor =
MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_abs>;
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
#define REGISTER_ACTIVATION_MKLDNN_KERNEL(act_type, functor, grad_functor) \
REGISTER_OP_KERNEL(act_type, MKLDNN, ::paddle::platform::CPUPlace, \
ops::MKLDNNActivationKernel<ops::functor<float>>); \
REGISTER_OP_KERNEL( \
act_type##_grad, MKLDNN, ::paddle::platform::CPUPlace, \
ops::MKLDNNActivationGradKernel<ops::grad_functor<float>>);
#define FOR_EACH_MKLDNN_KERNEL_FUNCTOR(__macro) \
__macro(relu, ReluMkldnnFunctor, ReluMkldnnGradFunctor); \
__macro(tanh, TanhMkldnnFunctor, TanhMkldnnGradFunctor); \
__macro(sqrt, SqrtMkldnnFunctor, SqrtMkldnnGradFunctor); \
__macro(abs, AbsMkldnnFunctor, AbsMkldnnGradFunctor);
FOR_EACH_MKLDNN_KERNEL_FUNCTOR(REGISTER_ACTIVATION_MKLDNN_KERNEL);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
......@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/operators/mkldnn_activation_op.h"
namespace paddle {
namespace operators {
......@@ -87,6 +88,9 @@ class ReluOpMaker : public framework::OpProtoAndCheckerMaker {
: framework::OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "Input of Relu operator");
AddOutput("Out", "Output of Relu operator");
AddAttr<bool>("use_mkldnn",
"(bool, default false) Only used in mkldnn kernel")
.SetDefault(false);
AddComment(R"DOC(
Relu Activation Operator.
......@@ -140,6 +144,9 @@ class TanhOpMaker : public framework::OpProtoAndCheckerMaker {
: framework::OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "Input of Tanh operator");
AddOutput("Out", "Output of Tanh operator");
AddAttr<bool>("use_mkldnn",
"(bool, default false) Only used in mkldnn kernel")
.SetDefault(false);
AddComment(R"DOC(
Tanh Activation Operator.
......@@ -193,6 +200,9 @@ class SqrtOpMaker : public framework::OpProtoAndCheckerMaker {
: framework::OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "Input of Sqrt operator");
AddOutput("Out", "Output of Sqrt operator");
AddAttr<bool>("use_mkldnn",
"(bool, default false) Only used in mkldnn kernel")
.SetDefault(false);
AddComment(R"DOC(
Sqrt Activation Operator.
......@@ -208,6 +218,9 @@ class AbsOpMaker : public framework::OpProtoAndCheckerMaker {
: framework::OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "Input of Abs operator");
AddOutput("Out", "Output of Abs operator");
AddAttr<bool>("use_mkldnn",
"(bool, default false) Only used in mkldnn kernel")
.SetDefault(false);
AddComment(R"DOC(
Abs Activation Operator.
......@@ -524,11 +537,11 @@ REGISTER_OP(logsigmoid, ops::ActivationOp, ops::LogSigmoidOpMaker,
REGISTER_OP(exp, ops::ActivationOp, ops::ExpOpMaker, exp_grad,
ops::ActivationOpGrad);
REGISTER_OP(relu, ops::ActivationOp, ops::ReluOpMaker, relu_grad,
ops::ActivationOpGrad);
REGISTER_OP(relu, ops::ActivationWithMKLDNNOp, ops::ReluOpMaker, relu_grad,
ops::ActivationWithMKLDNNOpGrad);
REGISTER_OP(tanh, ops::ActivationOp, ops::TanhOpMaker, tanh_grad,
ops::ActivationOpGrad);
REGISTER_OP(tanh, ops::ActivationWithMKLDNNOp, ops::TanhOpMaker, tanh_grad,
ops::ActivationWithMKLDNNOpGrad);
REGISTER_OP(tanh_shrink, ops::ActivationOp, ops::TanhShrinkOpMaker,
tanh_shrink_grad, ops::ActivationOpGrad);
......@@ -536,11 +549,11 @@ REGISTER_OP(tanh_shrink, ops::ActivationOp, ops::TanhShrinkOpMaker,
REGISTER_OP(softshrink, ops::ActivationOp, ops::SoftShrinkOpMaker,
softshrink_grad, ops::ActivationOpGrad);
REGISTER_OP(sqrt, ops::ActivationOp, ops::SqrtOpMaker, sqrt_grad,
ops::ActivationOpGrad);
REGISTER_OP(sqrt, ops::ActivationWithMKLDNNOp, ops::SqrtOpMaker, sqrt_grad,
ops::ActivationWithMKLDNNOpGrad);
REGISTER_OP(abs, ops::ActivationOp, ops::AbsOpMaker, abs_grad,
ops::ActivationOpGrad);
REGISTER_OP(abs, ops::ActivationWithMKLDNNOp, ops::AbsOpMaker, abs_grad,
ops::ActivationWithMKLDNNOpGrad);
REGISTER_OP(ceil, ops::ActivationOp, ops::CeilOpMaker, ceil_grad,
ops::ActivationOpGrad);
......@@ -613,3 +626,14 @@ REGISTER_OP(swish, ops::ActivationOp, ops::SwishOpMaker, swish_grad,
ops::grad_functor<double>>);
FOR_EACH_KERNEL_FUNCTOR(REGISTER_ACTIVATION_CPU_KERNEL);
REGISTER_OP_CPU_KERNEL(relu,
ops::ActivationKernel<paddle::platform::CPUDeviceContext,
ops::ReluFunctor<float>>,
ops::ActivationKernel<paddle::platform::CPUDeviceContext,
ops::ReluFunctor<double>>);
REGISTER_OP_CPU_KERNEL(
relu_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
ops::ReluGradFunctor<float>>,
ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
ops::ReluGradFunctor<double>>);
......@@ -14,6 +14,7 @@ limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/platform/float16.h"
namespace ops = paddle::operators;
......@@ -31,3 +32,16 @@ namespace ops = paddle::operators;
ops::grad_functor<double>>);
FOR_EACH_KERNEL_FUNCTOR(REGISTER_ACTIVATION_CUDA_KERNEL);
REGISTER_OP_CUDA_KERNEL(
relu, ops::ActivationKernel<paddle::platform::CUDADeviceContext,
ops::ReluFunctor<float>>,
ops::ActivationKernel<paddle::platform::CUDADeviceContext,
ops::ReluFunctor<double>>,
ops::ActivationKernel<paddle::platform::CUDADeviceContext,
ops::ReluFunctor<paddle::platform::float16>>);
REGISTER_OP_CUDA_KERNEL(
relu_grad, ops::ActivationGradKernel<paddle::platform::CUDADeviceContext,
ops::ReluGradFunctor<float>>,
ops::ActivationGradKernel<paddle::platform::CUDADeviceContext,
ops::ReluGradFunctor<double>>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
......@@ -17,6 +17,10 @@ limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
namespace paddle {
namespace operators {
......@@ -772,7 +776,6 @@ struct SwishGradFunctor : public BaseActivationFunctor<T> {
__macro(sigmoid, SigmoidFunctor, SigmoidGradFunctor); \
__macro(logsigmoid, LogSigmoidFunctor, LogSigmoidGradFunctor); \
__macro(exp, ExpFunctor, ExpGradFunctor); \
__macro(relu, ReluFunctor, ReluGradFunctor); \
__macro(tanh, TanhFunctor, TanhGradFunctor); \
__macro(softshrink, SoftShrinkFunctor, SoftShrinkGradFunctor); \
__macro(sqrt, SqrtFunctor, SqrtGradFunctor); \
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/average_accumulates_op.h"
namespace paddle {
namespace operators {
template <>
void GetAccumulators<paddle::platform::CPUDeviceContext>(
const framework::ExecutionContext& ctx, int64_t& num_updates_,
int64_t& num_accumulates_, int64_t& old_num_accumulates_) {
auto* in_old_num_accumulates = ctx.Input<Tensor>("in_old_num_accumulates");
auto* in_num_accumulates = ctx.Input<Tensor>("in_num_accumulates");
auto* in_num_updates = ctx.Input<Tensor>("in_num_updates");
old_num_accumulates_ = in_old_num_accumulates->data<int64_t>()[0];
num_accumulates_ = in_num_accumulates->data<int64_t>()[0];
num_updates_ = in_num_updates->data<int64_t>()[0];
}
template <>
void SetAccumulators<paddle::platform::CPUDeviceContext>(
const framework::ExecutionContext& ctx, int64_t num_updates_,
int64_t num_accumulates_, int64_t old_num_accumulates_) {
auto* out_old_num_accumulates = ctx.Output<Tensor>("out_old_num_accumulates");
auto* out_num_accumulates = ctx.Output<Tensor>("out_num_accumulates");
auto* out_num_updates = ctx.Output<Tensor>("out_num_updates");
out_old_num_accumulates->data<int64_t>()[0] = old_num_accumulates_;
out_num_accumulates->data<int64_t>()[0] = num_accumulates_;
out_num_updates->data<int64_t>()[0] = num_updates_;
}
class AverageAccumulatesOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(
ctx->HasInput("param"),
"Input (param) of average_accumulates op should not be null.");
PADDLE_ENFORCE(
ctx->HasInput("in_sum_1"),
"Input (sum_1) of average_accumulates op should not be null.");
PADDLE_ENFORCE(
ctx->HasInput("in_sum_2"),
"Input (sum_2) of average_accumulates op should not be null.");
PADDLE_ENFORCE(
ctx->HasInput("in_sum_3"),
"Input (sum_3) of average_accumulates op should not be null.");
PADDLE_ENFORCE(
ctx->HasInput("in_num_accumulates"),
"Input (in_num_accumulates) of average_accumulates op should "
"not be null.");
PADDLE_ENFORCE(ctx->HasInput("in_old_num_accumulates"),
"Input (old_num_accumulates) of average_accumulates op "
"should not be null.");
PADDLE_ENFORCE(
ctx->HasInput("in_num_updates"),
"Input (num_updates) of average_accumulates op should not be null.");
PADDLE_ENFORCE(
ctx->HasOutput("out_sum_1"),
"Output (sum_1) of average_accumulates op should not be null.");
PADDLE_ENFORCE(
ctx->HasOutput("out_sum_2"),
"Output (sum_2) of average_accumulates op should not be null.");
PADDLE_ENFORCE(
ctx->HasOutput("out_sum_3"),
"Output (sum_3) of average_accumulates op should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("out_num_accumulates"),
"Output (num_accumulates) of average_accumulates op should "
"not be null.");
PADDLE_ENFORCE(ctx->HasOutput("out_old_num_accumulates"),
"Output (old_num_accumulates) of average_accumulates op "
"should not be null.");
PADDLE_ENFORCE(
ctx->HasOutput("out_num_updates"),
"Output (num_updates) of average_accumulates op should not be null.");
auto in_dim = ctx->GetInputDim("param");
ctx->SetOutputDim("out_sum_1", in_dim);
ctx->SetOutputDim("out_sum_2", in_dim);
ctx->SetOutputDim("out_sum_3", in_dim);
ctx->SetOutputDim("out_num_accumulates", {1});
ctx->SetOutputDim("out_old_num_accumulates", {1});
ctx->SetOutputDim("out_num_updates", {1});
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("param")->type()),
ctx.GetPlace());
}
};
class AverageAccumulatesOpMaker : public framework::OpProtoAndCheckerMaker {
public:
AverageAccumulatesOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("param", "(Tensor), The parameter to be accumulated.");
AddInput("in_sum_1",
"(Tensor), A tensor used to store the parameter "
"sums with the same shape as input(param).");
AddInput("in_sum_2",
"(Tensor), A auxiliary tensor to help "
"accumulating sums of parameter values with the same shape as "
"input(param). It is used to avoid loss of precision due to too "
"many sums.");
AddInput("in_sum_3",
"(Tensor), A auxiliary tensor to help "
"accumulating sums of parameter values with the same shape as "
"input(param).");
AddInput("in_num_accumulates",
"(Tensor<int64_t>), The accumulating times of current window with "
"shape [1].");
AddInput(
"in_old_num_accumulates",
"(Tensor<int64_t>), The accumulating times of previous window with "
"shape [1].");
AddInput("in_num_updates",
"(Tensor<int64_t>), The total number of batches used by trainning "
"before this batch with shape [1].");
AddOutput("out_sum_1",
"(Tensor), A tensor used to store the "
"parameter sums with the same shape as input(param).");
AddOutput("out_sum_2",
"(Tensor), A auxiliary tensor to help "
"accumulating sums of parameter values with the same shape as "
"input(param). It is used to avoid loss of precision due to too "
"many sums.");
AddOutput("out_sum_3",
"(Tensor), A auxiliary tensor to help "
"accumulating sums of parameter values with the same shape as "
"input(param).");
AddOutput(
"out_num_accumulates",
"(Tensor<int64_t>), The accumulating times of current window with "
"shape [1].");
AddOutput(
"out_old_num_accumulates",
"(Tensor<int64_t>) The accumulating times of previous window with "
"shape [1].");
AddOutput(
"out_num_updates",
"(Tensor<int64_t>), The total number of batches used by trainning "
"before this batch with shape [1].");
AddAttr<float>("average_window",
"(float, default 0) "
"The rate of average window size relative to num_updates.")
.SetDefault(0);
AddAttr<int64_t>("max_average_window",
"(int64_t) "
"Maximum size of average window. It suggests that the "
"number of mini-batches "
"in one pass is appropriate value to set.");
AddAttr<int64_t>("min_average_window",
"(int64_t, default 10000L) "
"Minimu size of average window.")
.SetDefault(10000L);
AddComment(R"DOC(
AverageAccumulates Operator.
Accumulate the sum of parameter whtin sliding window. The size of sliding window is
determined by 'average_window', 'max_average_window' and 'min_average_window'.
Memory was shared by Input(in_sum_1) and Output(out_sum_1) which acts as an accumulator 'sum_1'.
'sum_2', 'sum_3', 'num_accumulates', 'old_num_accumulates' and 'num_updates' were the same as 'sum_1'.
All the accumulators were inited to zero before training.
And for a mini-batch in training, accumulators were computed as below steps:
num_updates += 1
num_accumulates += 1
sum_1 += param
if num_updates % kMaxNumAccumulates == 0:
sum_2 += sum_1
sum_1 = 0
if num_accumulates >= min_average_window && num_accumulates >= min(max_average_window, num_updates * average_window):
sum_3 = sum_1 + sum_2
sum_1 = 0
sum_2 = 0
old_num_accumulates = num_accumulates
num_accumulates = 0
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(average_accumulates, ops::AverageAccumulatesOp,
ops::AverageAccumulatesOpMaker,
paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(
average_accumulates,
ops::AverageAccumulatesKernel<paddle::platform::CPUDeviceContext, float>,
ops::AverageAccumulatesKernel<paddle::platform::CPUDeviceContext, double>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/average_accumulates_op.h"
#include "paddle/fluid/platform/gpu_info.h"
namespace paddle {
namespace operators {
template <>
void GetAccumulators<paddle::platform::CUDADeviceContext>(
const framework::ExecutionContext& ctx, int64_t& num_updates_,
int64_t& num_accumulates_, int64_t& old_num_accumulates_) {
auto* in_old_num_accumulates = ctx.Input<Tensor>("in_old_num_accumulates");
auto* in_num_accumulates = ctx.Input<Tensor>("in_num_accumulates");
auto* in_num_updates = ctx.Input<Tensor>("in_num_updates");
auto stream = ctx.cuda_device_context().stream();
memory::Copy(platform::CPUPlace(), &old_num_accumulates_,
platform::CUDAPlace(), in_old_num_accumulates->data<int64_t>(),
sizeof(int64_t), stream);
memory::Copy(platform::CPUPlace(), &num_accumulates_, platform::CUDAPlace(),
in_num_accumulates->data<int64_t>(), sizeof(int64_t), stream);
memory::Copy(platform::CPUPlace(), &num_updates_, platform::CUDAPlace(),
in_num_updates->data<int64_t>(), sizeof(int64_t), stream);
}
template <>
void SetAccumulators<paddle::platform::CUDADeviceContext>(
const framework::ExecutionContext& ctx, int64_t num_updates_,
int64_t num_accumulates_, int64_t old_num_accumulates_) {
auto stream = ctx.cuda_device_context().stream();
auto* out_old_num_accumulates = ctx.Output<Tensor>("out_old_num_accumulates");
auto* out_num_accumulates = ctx.Output<Tensor>("out_num_accumulates");
auto* out_num_updates = ctx.Output<Tensor>("out_num_updates");
memory::Copy(platform::CUDAPlace(), out_old_num_accumulates->data<int64_t>(),
platform::CPUPlace(), &old_num_accumulates_, sizeof(int64_t),
stream);
memory::Copy(platform::CUDAPlace(), out_num_accumulates->data<int64_t>(),
platform::CPUPlace(), &num_accumulates_, sizeof(int64_t),
stream);
memory::Copy(platform::CUDAPlace(), out_num_updates->data<int64_t>(),
platform::CPUPlace(), &num_updates_, sizeof(int64_t), stream);
}
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
average_accumulates,
ops::AverageAccumulatesKernel<paddle::platform::CUDADeviceContext, float>,
ops::AverageAccumulatesKernel<paddle::platform::CUDADeviceContext, double>);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename DeviceContext>
void GetAccumulators(const framework::ExecutionContext& ctx,
int64_t& num_updates, int64_t& num_accumulates,
int64_t& old_num_accumulates);
template <typename DeviceContext>
void SetAccumulators(const framework::ExecutionContext& ctx,
int64_t num_updates, int64_t num_accumulates,
int64_t old_num_accumulates);
template <typename DeviceContext, typename T>
class AverageAccumulatesKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
// It is used to avoid loss of precision
static const int64_t kMaxNumAccumulates = 16384;
// Get accumulators from input
int64_t num_updates = 0;
int64_t num_accumulates = 0;
int64_t old_num_accumulates = 0;
GetAccumulators<DeviceContext>(ctx, num_updates, num_accumulates,
old_num_accumulates);
// Get attrs
float average_window = ctx.Attr<float>("average_window");
int64_t max_average_window = ctx.Attr<int64_t>("max_average_window");
int64_t min_average_window = ctx.Attr<int64_t>("min_average_window");
min_average_window =
std::min<int64_t>(min_average_window, max_average_window);
// Get inputs
auto* param = ctx.Input<Tensor>("param");
auto* in_sum_1 = ctx.Input<Tensor>("in_sum_1");
auto* in_sum_2 = ctx.Input<Tensor>("in_sum_2");
auto* in_sum_3 = ctx.Input<Tensor>("in_sum_3");
auto param_tensor = EigenVector<T>::Flatten(*param);
auto in_sum_1_tensor = EigenVector<T>::Flatten(*in_sum_1);
auto in_sum_2_tensor = EigenVector<T>::Flatten(*in_sum_2);
auto in_sum_3_tensor = EigenVector<T>::Flatten(*in_sum_3);
// Get outputs
auto* out_sum_1 = ctx.Output<Tensor>("out_sum_1");
auto* out_sum_2 = ctx.Output<Tensor>("out_sum_2");
auto* out_sum_3 = ctx.Output<Tensor>("out_sum_3");
auto out_sum_1_tensor = EigenVector<T>::Flatten(*out_sum_1);
auto out_sum_2_tensor = EigenVector<T>::Flatten(*out_sum_2);
auto out_sum_3_tensor = EigenVector<T>::Flatten(*out_sum_3);
// Compute
auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
math::SetConstant<DeviceContext, T> constant_functor;
++num_updates;
++num_accumulates;
out_sum_1_tensor.device(place) = in_sum_1_tensor + param_tensor;
out_sum_2_tensor.device(place) = in_sum_2_tensor;
out_sum_3_tensor.device(place) = in_sum_3_tensor;
if (num_updates % kMaxNumAccumulates == 0) {
// Move the sum to a different buffer to avoid loss of precision due to
// too many sums.
out_sum_2_tensor.device(place) = in_sum_2_tensor + in_sum_1_tensor;
constant_functor(ctx.template device_context<DeviceContext>(), out_sum_1,
0.0);
}
if (num_accumulates >= min_average_window &&
num_accumulates >= std::min<int64_t>(max_average_window,
num_updates * average_window)) {
// Now the average window is too long, discard the old sum.
out_sum_3_tensor.device(place) = in_sum_1_tensor + in_sum_2_tensor;
constant_functor(ctx.template device_context<DeviceContext>(), out_sum_1,
0.0);
constant_functor(ctx.template device_context<DeviceContext>(), out_sum_2,
0.0);
old_num_accumulates = num_accumulates;
num_accumulates = 0;
}
// Set accumulators to output
SetAccumulators<DeviceContext>(ctx, num_updates, num_accumulates,
old_num_accumulates);
}
};
} // namespace operators
} // namespace paddle
......@@ -80,6 +80,29 @@ class BatchNormOp : public framework::OperatorWithKernel {
ctx->SetOutputDim("SavedVariance", {C});
ctx->ShareLoD("X", "Y");
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
auto input_data_type =
framework::ToDataType(ctx.Input<Tensor>("X")->type());
// For float or float16 input tensor, the type of the scale, bias, mean,
// and var tensors should both be float.
auto bn_param_type = framework::proto::VarType::FP32;
PADDLE_ENFORCE_EQ(bn_param_type,
framework::ToDataType(ctx.Input<Tensor>("Scale")->type()),
"Scale input should be of float type");
PADDLE_ENFORCE_EQ(bn_param_type,
framework::ToDataType(ctx.Input<Tensor>("Bias")->type()),
"Bias input should be of float type");
PADDLE_ENFORCE_EQ(bn_param_type,
framework::ToDataType(ctx.Input<Tensor>("Mean")->type()),
"Mean input should be of float type");
PADDLE_ENFORCE_EQ(bn_param_type, framework::ToDataType(
ctx.Input<Tensor>("Variance")->type()),
"Variance input should be of float type");
return framework::OpKernelType(input_data_type, ctx.GetPlace());
}
};
class BatchNormOpMaker : public framework::OpProtoAndCheckerMaker {
......@@ -434,12 +457,39 @@ class BatchNormGradKernel<platform::CPUDeviceContext, T>
}
};
class BatchNormGradMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
auto *op = new framework::OpDesc();
op->SetType("batch_norm_grad");
op->SetInput("X", Input("X"));
op->SetInput(framework::GradVarName("Y"), OutputGrad("Y"));
op->SetInput("Scale", Input("Scale"));
op->SetInput("SavedMean", Output("SavedMean"));
op->SetInput("SavedVariance", Output("SavedVariance"));
op->SetAttrMap(Attrs());
op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
op->SetOutput(framework::GradVarName("Scale"), InputGrad("Scale"));
op->SetOutput(framework::GradVarName("Bias"), InputGrad("Bias"));
return std::unique_ptr<framework::OpDesc>(op);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(batch_norm, ops::BatchNormOp, ops::BatchNormOpMaker,
batch_norm_grad, ops::BatchNormGradOp);
REGISTER_OPERATOR(batch_norm, ops::BatchNormOp, ops::BatchNormOpMaker,
ops::BatchNormGradMaker);
REGISTER_OPERATOR(batch_norm_grad, ops::BatchNormGradOp);
REGISTER_OP_CPU_KERNEL(
batch_norm,
ops::BatchNormKernel<paddle::platform::CPUDeviceContext, float>);
......
......@@ -18,6 +18,7 @@ limitations under the License. */
#include <cfloat>
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/cudnn_helper.h"
#include "paddle/fluid/platform/float16.h"
namespace paddle {
namespace operators {
......@@ -26,6 +27,8 @@ using Tensor = framework::Tensor;
using DataLayout = framework::DataLayout;
template <typename T>
using CudnnDataType = platform::CudnnDataType<T>;
template <typename T>
using BatchNormParamType = typename CudnnDataType<T>::BatchNormParamType;
void ExtractNCWHD(const framework::DDim &dims, const DataLayout &data_layout,
int *N, int *C, int *H, int *W, int *D) {
......@@ -104,8 +107,9 @@ class BatchNormKernel<platform::CUDADeviceContext, T>
CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
data_desc_, CudnnDataType<T>::type,
x_dims.size() > 3 ? x_dims.size() : 4, dims.data(), strides.data()));
// Note: PERSISTENT not implemented for inference
CUDNN_ENFORCE(platform::dynload::cudnnDeriveBNTensorDescriptor(
bn_param_desc_, data_desc_, mode_));
bn_param_desc_, data_desc_, is_test ? CUDNN_BATCHNORM_SPATIAL : mode_));
const auto *scale = ctx.Input<Tensor>("Scale");
const auto *bias = ctx.Input<Tensor>("Bias");
......@@ -118,15 +122,16 @@ class BatchNormKernel<platform::CUDADeviceContext, T>
// alloc memory
y->mutable_data<T>(ctx.GetPlace());
mean_out->mutable_data<T>(ctx.GetPlace());
variance_out->mutable_data<T>(ctx.GetPlace());
saved_mean->mutable_data<T>(ctx.GetPlace());
saved_variance->mutable_data<T>(ctx.GetPlace());
mean_out->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
variance_out->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
saved_mean->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
saved_variance->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
math::SetConstant<platform::CUDADeviceContext, T> functor;
functor(dev_ctx, saved_mean, 0);
functor(dev_ctx, saved_variance, 0);
math::SetConstant<platform::CUDADeviceContext, BatchNormParamType<T>>
functor;
functor(dev_ctx, saved_mean, static_cast<BatchNormParamType<T>>(0));
functor(dev_ctx, saved_variance, static_cast<BatchNormParamType<T>>(0));
auto handle = dev_ctx.cudnn_handle();
......@@ -147,8 +152,10 @@ class BatchNormKernel<platform::CUDADeviceContext, T>
CUDNN_BATCHNORM_SPATIAL, CudnnDataType<T>::kOne(),
CudnnDataType<T>::kZero(), data_desc_, x->template data<T>(),
data_desc_, y->template mutable_data<T>(ctx.GetPlace()),
bn_param_desc_, scale->template data<T>(), bias->template data<T>(),
est_mean->template data<T>(), est_var->template data<T>(), epsilon));
bn_param_desc_, scale->template data<BatchNormParamType<T>>(),
bias->template data<BatchNormParamType<T>>(),
est_mean->template data<BatchNormParamType<T>>(),
est_var->template data<BatchNormParamType<T>>(), epsilon));
} else {
// Run training mode.
// obtain running mean and running inv var, and see if we need to
......@@ -159,11 +166,16 @@ class BatchNormKernel<platform::CUDADeviceContext, T>
handle, mode_, CudnnDataType<T>::kOne(), CudnnDataType<T>::kZero(),
data_desc_, x->template data<T>(), data_desc_,
y->template mutable_data<T>(ctx.GetPlace()), bn_param_desc_,
scale->template data<T>(), bias->template data<T>(), this_factor,
mean_out->template mutable_data<T>(ctx.GetPlace()),
variance_out->template mutable_data<T>(ctx.GetPlace()), epsilon,
saved_mean->template mutable_data<T>(ctx.GetPlace()),
saved_variance->template mutable_data<T>(ctx.GetPlace())));
scale->template data<BatchNormParamType<T>>(),
bias->template data<BatchNormParamType<T>>(), this_factor,
mean_out->template mutable_data<BatchNormParamType<T>>(
ctx.GetPlace()),
variance_out->template mutable_data<BatchNormParamType<T>>(
ctx.GetPlace()),
epsilon, saved_mean->template mutable_data<BatchNormParamType<T>>(
ctx.GetPlace()),
saved_variance->template mutable_data<BatchNormParamType<T>>(
ctx.GetPlace())));
}
// clean when exit.
......@@ -270,9 +282,9 @@ class BatchNormGradKernel<platform::CUDADeviceContext, T>
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_CUDA_KERNEL(
batch_norm,
ops::BatchNormKernel<paddle::platform::CUDADeviceContext, float>);
batch_norm, ops::BatchNormKernel<plat::CUDADeviceContext, float>,
ops::BatchNormKernel<plat::CUDADeviceContext, plat::float16>);
REGISTER_OP_CUDA_KERNEL(
batch_norm_grad,
ops::BatchNormGradKernel<paddle::platform::CUDADeviceContext, float>);
batch_norm_grad, ops::BatchNormGradKernel<plat::CUDADeviceContext, float>);
......@@ -126,6 +126,7 @@ width and height.
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(box_coder, ops::BoxCoderOp, ops::BoxCoderOpMaker);
REGISTER_OPERATOR(box_coder, ops::BoxCoderOp, ops::BoxCoderOpMaker,
paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(box_coder, ops::BoxCoderKernel<float>,
ops::BoxCoderKernel<double>);
......@@ -23,21 +23,10 @@ limitations under the License. */
static constexpr char Channel[] = "Channel";
static constexpr char X[] = "X";
static constexpr char Status[] = "Status";
static constexpr char copy[] = "copy";
namespace paddle {
namespace operators {
void SetSendStatus(const platform::Place &dev_place,
framework::Variable &status_var, bool status) {
auto cpu = platform::CPUPlace();
auto status_tensor =
status_var.GetMutable<framework::LoDTensor>()->mutable_data<bool>({1},
cpu);
status_tensor[0] = status;
}
class ChannelSendOp : public framework::OperatorBase {
public:
ChannelSendOp(const std::string &type,
......@@ -51,9 +40,6 @@ class ChannelSendOp : public framework::OperatorBase {
"Input(Channel) of ChannelSendOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput(X),
"Input(X) of ChannelSendOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput(Status),
"Output(Status) of ChannelSendOp should not be null.");
ctx->SetOutputDim("Status", {1});
}
private:
......@@ -65,10 +51,7 @@ class ChannelSendOp : public framework::OperatorBase {
auto input_var = scope.FindVar(Input(X));
// Send the input data through the channel.
bool ok = concurrency::ChannelSend(ch, input_var);
// Set the status output of the `ChannelSend` call.
SetSendStatus(dev_place, *scope.FindVar(Output(Status)), ok);
concurrency::ChannelSend(ch, input_var);
}
};
......@@ -82,12 +65,6 @@ class ChannelSendOpMaker : public framework::OpProtoAndCheckerMaker {
.AsDuplicable();
AddInput(X, "(Variable) The value which gets sent by the channel.")
.AsDuplicable();
AddOutput(Status,
"(Tensor) An LoD Tensor that returns a boolean status of the"
"result of the send operation.")
.AsDuplicable();
AddAttr<bool>(copy, "(bool, default false) Should copy before send")
.SetDefault(false);
AddComment(R"DOC(
)DOC");
}
......
......@@ -17,20 +17,20 @@ limitations under the License. */
namespace poc = paddle::operators::concurrency;
bool poc::ChannelSend(framework::ChannelHolder *ch, framework::Variable *var) {
void poc::ChannelSend(framework::ChannelHolder *ch, framework::Variable *var) {
auto type = framework::ToVarType(var->Type());
if (type == framework::proto::VarType_Type_LOD_TENSOR)
return ch->Send(var->GetMutable<framework::LoDTensor>());
ch->Send(var->GetMutable<framework::LoDTensor>());
else if (type == framework::proto::VarType_Type_LOD_RANK_TABLE)
return ch->Send(var->GetMutable<framework::LoDRankTable>());
ch->Send(var->GetMutable<framework::LoDRankTable>());
else if (type == framework::proto::VarType_Type_LOD_TENSOR_ARRAY)
return ch->Send(var->GetMutable<framework::LoDTensorArray>());
ch->Send(var->GetMutable<framework::LoDTensorArray>());
else if (type == framework::proto::VarType_Type_SELECTED_ROWS)
return ch->Send(var->GetMutable<framework::SelectedRows>());
ch->Send(var->GetMutable<framework::SelectedRows>());
else if (type == framework::proto::VarType_Type_READER)
return ch->Send(var->GetMutable<framework::ReaderHolder>());
ch->Send(var->GetMutable<framework::ReaderHolder>());
else if (type == framework::proto::VarType_Type_CHANNEL)
return ch->Send(var->GetMutable<framework::ChannelHolder>());
ch->Send(var->GetMutable<framework::ChannelHolder>());
else
PADDLE_THROW("ChannelSend:Unsupported type");
}
......
......@@ -21,7 +21,7 @@ namespace paddle {
namespace operators {
namespace concurrency {
bool ChannelSend(framework::ChannelHolder *ch, framework::Variable *var);
void ChannelSend(framework::ChannelHolder *ch, framework::Variable *var);
bool ChannelReceive(framework::ChannelHolder *ch, framework::Variable *var);
void ChannelAddToSendQ(framework::ChannelHolder *ch, const void *referrer,
......
......@@ -78,7 +78,7 @@ class CrossEntropyGradientOpKernel : public framework::OpKernel<T> {
for (int64_t i = 0; i < batch_size; ++i) {
PADDLE_ASSERT(label_data[i] >= 0 || label_data[i] < class_num);
int64_t index = i * class_num + label_data[i];
dx_data[index] = -dy_data[i] / x_data[index];
dx_data[index] = math::TolerableValue<T>()(-dy_data[i] / x_data[index]);
}
}
}
......
if(WITH_DISTRIBUTE)
grpc_library(sendrecvop_grpc SRCS bytebuffer_stream.cc sendrecvop_utils.cc grpc_client.cc grpc_server.cc PROTO send_recv.proto DEPS lod_tensor selected_rows)
grpc_library(sendrecvop_grpc SRCS bytebuffer_stream.cc sendrecvop_utils.cc grpc_client.cc
grpc_server.cc variable_response.cc PROTO send_recv.proto DEPS lod_tensor selected_rows)
set(DISTRIBUTE_COMPILE_FLAGS "-Wno-non-virtual-dtor -Wno-error=non-virtual-dtor -Wno-error=delete-non-virtual-dtor")
set_source_files_properties(test_serde.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS})
cc_test(serde_test SRCS test_serde.cc DEPS grpc++_unsecure grpc_unsecure gpr cares zlib protobuf sendrecvop_grpc)
cc_test(serde_test SRCS test_serde.cc variable_response.cc DEPS grpc++_unsecure grpc_unsecure gpr
cares zlib protobuf sendrecvop_grpc)
endif()
......@@ -23,9 +23,107 @@ limitations under the License. */
#include "google/protobuf/io/coded_stream.h"
#include "google/protobuf/io/zero_copy_stream.h"
namespace grpc {
// A ZeroCopyInputStream that reads from grpc_byte_buffer
class GrpcBufferReader final
: public ::google::protobuf::io::ZeroCopyInputStream {
typedef void (CoreCodegenInterface::*OldReaderInitAPI)(
grpc_byte_buffer_reader* reader, grpc_byte_buffer* buffer);
typedef int (CoreCodegenInterface::*NewReaderInitAPI)(
grpc_byte_buffer_reader* reader, grpc_byte_buffer* buffer);
void ReaderInit(OldReaderInitAPI ptr, grpc_byte_buffer_reader* reader,
grpc_byte_buffer* buffer) {
(g_core_codegen_interface->*ptr)(reader, buffer);
}
void ReaderInit(NewReaderInitAPI ptr, grpc_byte_buffer_reader* reader,
grpc_byte_buffer* buffer) {
int result = (g_core_codegen_interface->*ptr)(reader, buffer);
(void)result;
}
public:
explicit GrpcBufferReader(grpc_byte_buffer* buffer)
: byte_count_(0), backup_count_(0) {
ReaderInit(&CoreCodegenInterface::grpc_byte_buffer_reader_init, &reader_,
buffer);
}
~GrpcBufferReader() override {
g_core_codegen_interface->grpc_byte_buffer_reader_destroy(&reader_);
}
bool Next(const void** data, int* size) override {
if (backup_count_ > 0) {
*data = GRPC_SLICE_START_PTR(slice_) + GRPC_SLICE_LENGTH(slice_) -
backup_count_;
GPR_CODEGEN_ASSERT(backup_count_ <= INT_MAX);
*size = (int)backup_count_;
backup_count_ = 0;
return true;
}
if (!g_core_codegen_interface->grpc_byte_buffer_reader_next(&reader_,
&slice_)) {
return false;
}
g_core_codegen_interface->grpc_slice_unref(slice_);
*data = GRPC_SLICE_START_PTR(slice_);
// On win x64, int is only 32bit
GPR_CODEGEN_ASSERT(GRPC_SLICE_LENGTH(slice_) <= INT_MAX);
byte_count_ += * size = (int)GRPC_SLICE_LENGTH(slice_);
return true;
}
void BackUp(int count) override { backup_count_ = count; }
bool Skip(int count) override {
const void* data;
int size;
while (Next(&data, &size)) {
if (size >= count) {
BackUp(size - count);
return true;
}
// size < count;
count -= size;
}
// error or we have too large count;
return false;
}
::google::protobuf::int64 ByteCount() const override {
return byte_count_ - backup_count_;
}
private:
int64_t byte_count_;
int64_t backup_count_;
grpc_byte_buffer_reader reader_;
grpc_slice slice_;
};
}; // namespace grpc
namespace paddle {
namespace operators {
namespace detail {
// Source provides a way for a particular RPC implementation to provide
// received data to ParseFrom.
class Source {
public:
virtual ~Source() {}
// Return the stream that contains the data to be parsed.
// Note that this method might be invoked more than once if
// ParseFrom needs to fall back to a more expensive parsing method.
// Every call must return a stream pointing at the beginning of
// the serialized RecvTensorResponse.
//
// Note that a subsequent call to contents() invalidates previous
// results of contents().
//
// Ownership of the returned stream is retained by the Source and
// should not be deleted by the caller.
virtual ::google::protobuf::io::ZeroCopyInputStream* contents() = 0;
};
// A ZeroCopyInputStream that reads from a grpc::ByteBuffer.
class GrpcByteBufferSource
......@@ -46,6 +144,43 @@ class GrpcByteBufferSource
::google::protobuf::int64 byte_count_;
};
class GrpcByteBufferSourceWrapper : public Source {
public:
explicit GrpcByteBufferSourceWrapper(GrpcByteBufferSource* source)
: source_(source) {}
::google::protobuf::io::ZeroCopyInputStream* contents() override {
return source_;
}
private:
GrpcByteBufferSource* source_;
};
class GrpcByteSource : public Source {
public:
explicit GrpcByteSource(grpc_byte_buffer* buffer) : buffer_(buffer) {}
~GrpcByteSource() override { DeleteStream(); }
typedef ::grpc::GrpcBufferReader Reader;
::google::protobuf::io::ZeroCopyInputStream* contents() override {
DeleteStream();
stream_ = new (&space_) Reader(buffer_);
return stream_;
}
private:
void DeleteStream() {
if (stream_) {
stream_->~Reader();
}
}
grpc_byte_buffer* buffer_; // Not owned
Reader* stream_ = nullptr; // Points into space_ if non-nullptr
char space_[sizeof(Reader)];
};
} // namespace detail
} // namespace operators
} // namespace paddle
......@@ -13,7 +13,9 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "grpc_client.h"
#include <sys/time.h>
#include "paddle/fluid/framework/threadpool.h"
namespace paddle {
namespace operators {
namespace detail {
......@@ -31,8 +33,9 @@ bool RPCClient::AsyncSendVariable(const std::string& ep,
framework::Async([var_name_val, p_ctx, ep_val, p_scope, time_out, ch, this] {
auto* var = p_scope->FindVar(var_name_val);
sendrecv::VariableMessage req;
SerializeToMessage(var_name_val, var, *p_ctx, &req);
::grpc::ByteBuffer req;
SerializeToByteBuffer(var_name_val, var, *p_ctx, &req);
// varhandle
VarHandle var_h;
......@@ -46,8 +49,10 @@ bool RPCClient::AsyncSendVariable(const std::string& ep,
s->Prepare(var_h, time_out);
s->response_call_back_ = NULL;
auto rpc = s->stub_->AsyncSendVariable(s->context_.get(), req, &cq_);
rpc->Finish(&s->reply_, &s->status_, (void*)s);
auto call = s->stub_g_.PrepareUnaryCall(
s->context_.get(), "/sendrecv.SendRecvService/SendVariable", req, &cq_);
call->StartCall();
call->Finish(&s->reply_, &s->status_, (void*)s);
});
req_count_++;
......@@ -56,9 +61,19 @@ bool RPCClient::AsyncSendVariable(const std::string& ep,
}
void ProcGetResponse(const VarHandle& var_h,
const sendrecv::VariableMessage& ret_msg) {
auto* outvar = var_h.scope->FindVar(var_h.name);
DeserializeFromMessage(ret_msg, *var_h.ctx, outvar);
// const sendrecv::VariableMessage& ret_msg) {
const ::grpc::ByteBuffer& ret_msg) {
framework::Variable* outvar = NULL;
DeserializeFromByteBuffer(ret_msg, *var_h.ctx, var_h.scope, outvar);
}
template <typename T>
void RequestToByteBuffer(const T& proto, ::grpc::ByteBuffer* result) {
::grpc::Slice slice(proto.ByteSizeLong());
proto.SerializeWithCachedSizesToArray(
const_cast<uint8_t*>(reinterpret_cast<const uint8_t*>(slice.begin())));
::grpc::ByteBuffer tmp(&slice, 1);
result->Swap(&tmp);
}
bool RPCClient::AsyncGetVariable(const std::string& ep,
......@@ -88,8 +103,13 @@ bool RPCClient::AsyncGetVariable(const std::string& ep,
s->Prepare(var_h, time_out);
s->response_call_back_ = ProcGetResponse;
auto rpc = s->stub_->AsyncGetVariable(s->context_.get(), req, &cq_);
rpc->Finish(&s->reply_, &s->status_, (void*)s);
::grpc::ByteBuffer buf;
RequestToByteBuffer<sendrecv::VariableMessage>(req, &buf);
auto call = s->stub_g_.PrepareUnaryCall(
s->context_.get(), "/sendrecv.SendRecvService/GetVariable", buf, &cq_);
call->StartCall();
call->Finish(&s->reply_, &s->status_, (void*)s);
});
req_count_++;
......
......@@ -25,6 +25,11 @@ limitations under the License. */
#include <string>
#include <vector>
#include <grpc++/generic/generic_stub.h>
#include <grpc++/grpc++.h>
#include <grpc++/support/byte_buffer.h>
#include <grpc++/support/slice.h>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
......@@ -49,15 +54,11 @@ struct VarHandle {
}
};
void ProcGetResponse(const VarHandle& var_h,
const sendrecv::VariableMessage& msg);
void ProcGetResponse(const VarHandle& var_h, const grpc::ByteBuffer& msg);
class BaseProcessor {
public:
explicit BaseProcessor(std::shared_ptr<grpc::Channel> ch) {
stub_ = sendrecv::SendRecvService::NewStub(ch);
context_ = NULL;
}
explicit BaseProcessor(std::shared_ptr<grpc::Channel> ch) { context_ = NULL; }
virtual ~BaseProcessor() {}
......@@ -82,19 +83,18 @@ class BaseProcessor {
virtual void Process() = 0;
std::unique_ptr<sendrecv::SendRecvService::Stub> stub_;
std::unique_ptr<grpc::ClientContext> context_;
grpc::Status status_;
VarHandle var_h_;
};
typedef std::function<void(const VarHandle&, const sendrecv::VoidMessage&)>
typedef std::function<void(const VarHandle&, const ::grpc::ByteBuffer&)>
RequestSendCallBack;
class SendProcessor : public BaseProcessor {
public:
explicit SendProcessor(std::shared_ptr<grpc::Channel> ch)
: BaseProcessor(ch) {}
: BaseProcessor(ch), stub_g_(ch) {}
virtual ~SendProcessor() {}
......@@ -104,17 +104,18 @@ class SendProcessor : public BaseProcessor {
}
}
sendrecv::VoidMessage reply_;
::grpc::GenericStub stub_g_;
::grpc::ByteBuffer reply_;
RequestSendCallBack response_call_back_ = NULL;
};
typedef std::function<void(const VarHandle&, const sendrecv::VariableMessage&)>
typedef std::function<void(const VarHandle&, const ::grpc::ByteBuffer&)>
RequestGetCallBack;
class GetProcessor : public BaseProcessor {
public:
explicit GetProcessor(std::shared_ptr<grpc::Channel> ch)
: BaseProcessor(ch) {}
: BaseProcessor(ch), stub_g_(ch) {}
virtual ~GetProcessor() {}
......@@ -124,30 +125,37 @@ class GetProcessor : public BaseProcessor {
}
}
sendrecv::VariableMessage reply_;
::grpc::ByteBuffer reply_;
::grpc::GenericStub stub_g_;
RequestGetCallBack response_call_back_ = ProcGetResponse;
};
class BatchBarrierProcessor : public BaseProcessor {
public:
explicit BatchBarrierProcessor(std::shared_ptr<grpc::Channel> ch)
: BaseProcessor(ch) {}
: BaseProcessor(ch) {
stub_ = sendrecv::SendRecvService::NewStub(ch);
}
virtual ~BatchBarrierProcessor() {}
virtual void Process() {}
sendrecv::VoidMessage reply_;
std::unique_ptr<sendrecv::SendRecvService::Stub> stub_;
};
class FetchBarrierProcessor : public BaseProcessor {
public:
explicit FetchBarrierProcessor(std::shared_ptr<grpc::Channel> ch)
: BaseProcessor(ch) {}
: BaseProcessor(ch) {
stub_ = sendrecv::SendRecvService::NewStub(ch);
}
virtual ~FetchBarrierProcessor() {}
virtual void Process() {}
sendrecv::VariableMessage reply_;
std::unique_ptr<sendrecv::SendRecvService::Stub> stub_;
};
class RPCClient {
......
......@@ -14,7 +14,7 @@ limitations under the License. */
#include "paddle/fluid/operators/detail/grpc_server.h"
using grpc::ServerAsyncResponseWriter;
using ::grpc::ServerAsyncResponseWriter;
namespace paddle {
namespace operators {
......@@ -26,9 +26,10 @@ enum CallStatus { PROCESS = 0, FINISH };
// https://stackoverflow.com/questions/41732884/grpc-multiple-services-in-cpp-async-server
class RequestBase {
public:
explicit RequestBase(sendrecv::SendRecvService::AsyncService* service,
grpc::ServerCompletionQueue* cq)
: service_(service), cq_(cq), status_(PROCESS) {
explicit RequestBase(GrpcService::AsyncService* service,
::grpc::ServerCompletionQueue* cq,
const platform::DeviceContext* dev_ctx)
: service_(service), cq_(cq), status_(PROCESS), dev_ctx_(dev_ctx) {
PADDLE_ENFORCE(cq_);
}
virtual ~RequestBase() {}
......@@ -42,55 +43,58 @@ class RequestBase {
}
protected:
grpc::ServerContext ctx_;
sendrecv::SendRecvService::AsyncService* service_;
grpc::ServerCompletionQueue* cq_;
::grpc::ServerContext ctx_;
GrpcService::AsyncService* service_;
::grpc::ServerCompletionQueue* cq_;
CallStatus status_;
const platform::DeviceContext* dev_ctx_;
};
typedef std::pair<std::string, sendrecv::VariableMessage> MessageWithName;
class RequestSend final : public RequestBase {
public:
explicit RequestSend(sendrecv::SendRecvService::AsyncService* service,
grpc::ServerCompletionQueue* cq,
SimpleBlockQueue<MessageWithName>* queue)
: RequestBase(service, cq), queue_(queue), responder_(&ctx_) {
service_->RequestSendVariable(&ctx_, &request_, &responder_, cq_, cq_,
this);
explicit RequestSend(GrpcService::AsyncService* service,
::grpc::ServerCompletionQueue* cq,
framework::Scope* scope, ReceivedQueue* queue,
const platform::DeviceContext* dev_ctx)
: RequestBase(service, cq, dev_ctx), queue_(queue), responder_(&ctx_) {
request_.reset(new VariableResponse(scope, dev_ctx_));
int method_id = static_cast<int>(detail::GrpcMethod::kSendVariable);
service_->RequestAsyncUnary(method_id, &ctx_, request_.get(), &responder_,
cq_, cq_, this);
}
virtual ~RequestSend() {}
virtual std::string GetReqName() { return request_.varname(); }
virtual std::string GetReqName() { return request_->Varname(); }
virtual void Process() {
MessageWithName msg_with_name =
std::make_pair(request_.varname(), std::move(request_));
queue_->Push(std::move(msg_with_name));
responder_.Finish(reply_, grpc::Status::OK, this);
queue_->Push(std::make_pair(request_->Varname(), request_));
sendrecv::VoidMessage reply;
responder_.Finish(reply, ::grpc::Status::OK, this);
status_ = FINISH;
}
protected:
sendrecv::VariableMessage request_;
sendrecv::VoidMessage reply_;
SimpleBlockQueue<MessageWithName>* queue_;
std::shared_ptr<VariableResponse> request_;
ReceivedQueue* queue_;
ServerAsyncResponseWriter<sendrecv::VoidMessage> responder_;
};
class RequestGet final : public RequestBase {
public:
explicit RequestGet(sendrecv::SendRecvService::AsyncService* service,
grpc::ServerCompletionQueue* cq, framework::Scope* scope,
explicit RequestGet(GrpcService::AsyncService* service,
::grpc::ServerCompletionQueue* cq,
framework::Scope* scope,
const platform::DeviceContext* dev_ctx,
SimpleBlockQueue<MessageWithName>* queue)
: RequestBase(service, cq),
: RequestBase(service, cq, dev_ctx),
responder_(&ctx_),
scope_(scope),
dev_ctx_(dev_ctx),
queue_(queue) {
service_->RequestGetVariable(&ctx_, &request_, &responder_, cq_, cq_, this);
int method_id = static_cast<int>(detail::GrpcMethod::kGetVariable);
service_->RequestAsyncUnary(method_id, &ctx_, &request_, &responder_, cq_,
cq_, this);
}
virtual ~RequestGet() {}
......@@ -101,24 +105,26 @@ class RequestGet final : public RequestBase {
// proc request.
std::string var_name = request_.varname();
auto* var = scope_->FindVar(var_name);
::grpc::ByteBuffer reply;
if (var_name != FETCH_BARRIER_MESSAGE) {
SerializeToMessage(var_name, var, *dev_ctx_, &reply_);
SerializeToByteBuffer(var_name, var, *dev_ctx_, &reply);
}
// TODO(gongwb): check var's info.
responder_.Finish(reply_, grpc::Status::OK, this);
responder_.Finish(reply, ::grpc::Status::OK, this);
status_ = FINISH;
MessageWithName msg_with_name =
// request name reply
std::make_pair(var_name, std::move(reply_));
if (var_name == FETCH_BARRIER_MESSAGE) {
sendrecv::VariableMessage msg;
MessageWithName msg_with_name = std::make_pair(var_name, msg);
queue_->Push(msg_with_name);
}
}
protected:
sendrecv::VariableMessage request_;
sendrecv::VariableMessage reply_;
ServerAsyncResponseWriter<sendrecv::VariableMessage> responder_;
ServerAsyncResponseWriter<::grpc::ByteBuffer> responder_;
framework::Scope* scope_;
const platform::DeviceContext* dev_ctx_;
SimpleBlockQueue<MessageWithName>* queue_;
};
......@@ -133,8 +139,8 @@ void AsyncGRPCServer::WaitClientGet(int count) {
}
void AsyncGRPCServer::RunSyncUpdate() {
grpc::ServerBuilder builder;
builder.AddListeningPort(address_, grpc::InsecureServerCredentials());
::grpc::ServerBuilder builder;
builder.AddListeningPort(address_, ::grpc::InsecureServerCredentials());
builder.SetMaxSendMessageSize(std::numeric_limits<int>::max());
builder.SetMaxReceiveMessageSize(std::numeric_limits<int>::max());
builder.RegisterService(&service_);
......@@ -182,8 +188,8 @@ void AsyncGRPCServer::TryToRegisterNewSendOne() {
if (is_shut_down_) {
return;
}
RequestSend* send =
new RequestSend(&service_, cq_send_.get(), &var_recv_queue_);
RequestSend* send = new RequestSend(&service_, cq_send_.get(), scope_,
&var_recv_queue_, dev_ctx_);
VLOG(4) << "Create RequestSend status:" << send->Status();
}
......@@ -198,7 +204,7 @@ void AsyncGRPCServer::TryToRegisterNewGetOne() {
}
// FIXME(typhoonzero): change cq_name to enum.
void AsyncGRPCServer::HandleRequest(grpc::ServerCompletionQueue* cq,
void AsyncGRPCServer::HandleRequest(::grpc::ServerCompletionQueue* cq,
std::string cq_name,
std::function<void()> TryToRegisterNewOne) {
TryToRegisterNewOne();
......
......@@ -14,28 +14,31 @@ limitations under the License. */
#pragma once
#include <grpc++/grpc++.h>
#include <thread>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/operators/detail/simple_block_queue.h"
#include "paddle/fluid/operators/detail/grpc_service.h"
#include "paddle/fluid/operators/detail/send_recv.grpc.pb.h"
#include "paddle/fluid/operators/detail/send_recv.pb.h"
#include <grpc++/grpc++.h>
#include <grpc/support/log.h>
#include <thread>
#include "paddle/fluid/operators/detail/sendrecvop_utils.h"
#include "paddle/fluid/operators/detail/simple_block_queue.h"
namespace paddle {
namespace operators {
namespace detail {
typedef std::pair<std::string, std::shared_ptr<VariableResponse>>
ReceivedMessage;
typedef SimpleBlockQueue<ReceivedMessage> ReceivedQueue;
typedef std::pair<std::string, sendrecv::VariableMessage> MessageWithName;
class RequestBase;
class AsyncGRPCServer final : public sendrecv::SendRecvService::Service {
class AsyncGRPCServer final {
public:
explicit AsyncGRPCServer(const std::string &address) : address_(address) {}
......@@ -50,14 +53,16 @@ class AsyncGRPCServer final : public sendrecv::SendRecvService::Service {
void SetDevCtx(const platform::DeviceContext *dev_ctx) { dev_ctx_ = dev_ctx; }
const MessageWithName Get() { return this->var_recv_queue_.Pop(); }
const ReceivedMessage Get() { return this->var_recv_queue_.Pop(); }
void Push(const MessageWithName &msg) { this->var_recv_queue_.Push(msg); }
void Push(const std::string &msg_name) {
this->var_recv_queue_.Push(std::make_pair(msg_name, nullptr));
}
void ShutDown();
protected:
void HandleRequest(grpc::ServerCompletionQueue *cq, std::string cq_name,
void HandleRequest(::grpc::ServerCompletionQueue *cq, std::string cq_name,
std::function<void()> TryToRegisterNewOne);
void TryToRegisterNewSendOne();
void TryToRegisterNewGetOne();
......@@ -66,18 +71,19 @@ class AsyncGRPCServer final : public sendrecv::SendRecvService::Service {
private:
std::mutex cq_mutex_;
volatile bool is_shut_down_ = false;
std::unique_ptr<grpc::ServerCompletionQueue> cq_send_;
std::unique_ptr<grpc::ServerCompletionQueue> cq_get_;
std::unique_ptr<::grpc::ServerCompletionQueue> cq_send_;
std::unique_ptr<::grpc::ServerCompletionQueue> cq_get_;
sendrecv::SendRecvService::AsyncService service_;
std::unique_ptr<grpc::Server> server_;
GrpcService::AsyncService service_;
std::unique_ptr<::grpc::Server> server_;
std::string address_;
framework::Scope *scope_;
const platform::DeviceContext *dev_ctx_;
// received variable from RPC, operators fetch variable from this queue.
SimpleBlockQueue<MessageWithName> var_recv_queue_;
SimpleBlockQueue<MessageWithName> var_get_queue_;
ReceivedQueue var_recv_queue_;
// condition of the sub program
std::mutex barrier_mutex_;
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <grpc++/impl/codegen/async_stream.h>
#include <grpc++/impl/codegen/async_unary_call.h>
#include <grpc++/impl/codegen/proto_utils.h>
#include <grpc++/impl/codegen/rpc_method.h>
#include <grpc++/impl/codegen/service_type.h>
#include <grpc++/impl/codegen/status.h>
#include <grpc++/impl/codegen/stub_options.h>
#include <grpc++/impl/codegen/sync_stream.h>
#include <grpc++/support/byte_buffer.h>
#include "paddle/fluid/operators/detail/variable_response.h"
// NOTE: This method was originally created by tensorflow
// (https://github.com/tensorflow/tensorflow/) we borrow this
// method and did some modifications so that we can parse gRPC
// requests without too much copying of the tensor data.
namespace grpc {
class CompletionQueue;
class Channel;
class RpcService;
class ServerCompletionQueue;
class ServerContext;
// Support parsing/unparsing of tensorflow::VariableResponse.
// Wire-format is identical to RecvVariableResponse.
template <>
class SerializationTraits<paddle::operators::detail::VariableResponse> {
public:
static Status Serialize(
const paddle::operators::detail::VariableResponse& msg,
grpc_byte_buffer** bp, bool* own_buffer) {
PADDLE_ENFORCE(false, "SerializationTraits::Serialize not implemented!");
return Status();
}
static Status Deserialize(grpc_byte_buffer* buffer,
paddle::operators::detail::VariableResponse* msg,
int max_message_size = INT_MAX) {
if (buffer == nullptr) {
return Status(StatusCode::INTERNAL, "No payload");
}
Status result = g_core_codegen_interface->ok();
if (result.ok()) {
paddle::operators::detail::GrpcByteSource source(buffer);
int ret = msg->Parse(&source);
if (ret != 0) {
result = Status(StatusCode::INTERNAL, "VariableResponse parse error");
}
}
g_core_codegen_interface->grpc_byte_buffer_destroy(buffer);
return result;
}
};
} // namespace grpc
namespace paddle {
namespace operators {
namespace detail {
enum class GrpcMethod {
kSendVariable,
kGetVariable,
};
static const int kGrpcNumMethods =
static_cast<int>(GrpcMethod::kGetVariable) + 1;
inline const char* GrpcMethodName(GrpcMethod id) {
switch (id) {
case GrpcMethod::kSendVariable:
return "/sendrecv.SendRecvService/SendVariable";
case GrpcMethod::kGetVariable:
return "/sendrecv.SendRecvService/GetVariable";
}
// Shouldn't be reached.
PADDLE_ENFORCE(false, "Invalid id: not found valid method name");
return nullptr;
}
class GrpcService final {
public:
class AsyncService : public ::grpc::Service {
public:
AsyncService() {
for (int i = 0; i < kGrpcNumMethods; ++i) {
AddMethod(new ::grpc::internal::RpcServiceMethod(
GrpcMethodName(static_cast<GrpcMethod>(i)),
::grpc::internal::RpcMethod::NORMAL_RPC, nullptr));
::grpc::Service::MarkMethodAsync(i);
}
}
virtual ~AsyncService() {}
// Make RequestAsyncUnary public for grpc_call.h
using ::grpc::Service::RequestAsyncUnary;
};
};
} // namespace detail
} // namespace operator
} // namespace paddle
......@@ -32,6 +32,9 @@ enum VarType {
SELECTED_ROWS = 1;
}
// NOTICE(gongwb):don't modify this proto if you are not
// not familar with how we serialize in sendrecvop_utils.h
// and deserilize it in variable_response.h.
message VariableMessage {
enum Type {
// Pod Types
......@@ -45,7 +48,6 @@ message VariableMessage {
}
message LodData { repeated int64 lod_data = 1; }
string varname = 1;
// TODO(Yancey1989): reference framework::proto::VarDesc::VarType
VarType type = 2;
......@@ -64,3 +66,5 @@ message VariableMessage {
}
message VoidMessage {}
message TestMessage { int64 test_1 = 1; }
......@@ -13,61 +13,19 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/detail/sendrecvop_utils.h"
#include <sys/time.h>
#include <thread>
#include "google/protobuf/io/coded_stream.h"
#include "google/protobuf/io/zero_copy_stream.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/operators/detail/bytebuffer_stream.h"
#include "paddle/fluid/operators/detail/proto_encoder_helper.h"
#include "paddle/fluid/operators/detail/variable_response.h"
namespace paddle {
namespace operators {
namespace detail {
void SerializeToMessage(const std::string& name, const framework::Variable* var,
const platform::DeviceContext& ctx,
sendrecv::VariableMessage* msg) {
msg->set_varname(name);
std::ostringstream oss;
switch (framework::ToVarType(var->Type())) {
case framework::proto::VarType_Type_LOD_TENSOR:
msg->set_type(sendrecv::VarType::LOD_TENSOR);
framework::SerializeToStream(oss, var->Get<framework::LoDTensor>(), ctx);
break;
case framework::proto::VarType_Type_SELECTED_ROWS:
msg->set_type(sendrecv::VarType::SELECTED_ROWS);
framework::SerializeToStream(oss, var->Get<framework::SelectedRows>(),
ctx);
break;
default: {
PADDLE_THROW("Serialize does not support type: %s",
typeid(var->Type()).name());
break;
}
}
msg->set_serialized(oss.str());
}
void DeserializeFromMessage(const sendrecv::VariableMessage& msg,
const platform::DeviceContext& ctx,
framework::Variable* var) {
std::istringstream iss(msg.serialized());
switch (msg.type()) {
case sendrecv::VarType::LOD_TENSOR:
DeserializeFromStream(iss, var->GetMutable<framework::LoDTensor>(), ctx);
break;
case sendrecv::VarType::SELECTED_ROWS: {
DeserializeFromStream(iss, var->GetMutable<framework::SelectedRows>(),
ctx);
break;
}
default: {
PADDLE_THROW("Deserialize does not support type: %s",
typeid(var->Type()).name());
break;
}
}
}
void SerializeToByteBuffer(const std::string& name, framework::Variable* var,
const platform::DeviceContext& ctx,
::grpc::ByteBuffer* msg) {
......@@ -123,6 +81,7 @@ void SerializeToByteBuffer(const std::string& name, framework::Variable* var,
static_cast<const platform::CUDADeviceContext&>(ctx);
auto copy_size = tensor.memory_size();
payload = memory::Alloc(cpu, copy_size);
memory::Copy(cpu, payload,
boost::get<platform::CUDAPlace>(tensor.place()),
reinterpret_cast<const void*>(tensor.data<void>()),
......@@ -132,6 +91,7 @@ void SerializeToByteBuffer(const std::string& name, framework::Variable* var,
platform::CPUPlace cpu;
memory::Free(cpu, backing);
};
#endif
} else {
payload = tensor.data<void>();
......@@ -219,80 +179,11 @@ void SerializeToByteBuffer(const std::string& name, framework::Variable* var,
void DeserializeFromByteBuffer(const ::grpc::ByteBuffer& msg,
const platform::DeviceContext& ctx,
framework::Variable* var) {
sendrecv::VariableMessage meta;
GrpcByteBufferSource source;
source.Init(msg);
::google::protobuf::io::CodedInputStream input(&source);
// do zerocopy parsing
PADDLE_ENFORCE(meta.ParseFromCodedStream(&input));
PADDLE_ENFORCE(input.ConsumedEntireMessage());
// dims is needed by both tensor and selectedrows
std::vector<int> vecdims;
for (auto& d : meta.dims()) {
vecdims.push_back(d);
}
framework::DDim dims = framework::make_ddim(vecdims);
if (meta.type() == sendrecv::LOD_TENSOR) {
auto* tensor = var->GetMutable<framework::LoDTensor>();
tensor->Resize(dims);
void* tensor_data = tensor->mutable_data(
ctx.GetPlace(),
paddle::operators::detail::ToTypeIndex(meta.data_type()));
framework::LoD lod;
for (int i = 0; i < meta.lod_level(); ++i) {
framework::Vector<size_t> v;
for (int j = 0; j < meta.lod(i).lod_data_size(); ++j) {
v.push_back(meta.lod(i).lod_data(j));
}
lod.push_back(v);
}
tensor->set_lod(lod);
// How to avoid copying and use the message buffer directly?
// Maybe need to find a way to release all memory except tensor content.
if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef PADDLE_WITH_CUDA
platform::CPUPlace cpu;
auto& gpu_dev_ctx = static_cast<const platform::CUDADeviceContext&>(ctx);
memory::Copy(boost::get<platform::CUDAPlace>(tensor->place()),
tensor_data, cpu,
reinterpret_cast<const void*>(meta.serialized().data()),
meta.serialized().size(), gpu_dev_ctx.stream());
ctx.Wait();
#endif
} else {
memcpy(tensor_data,
reinterpret_cast<const void*>(meta.serialized().data()),
meta.serialized().size());
}
} else if (meta.type() == sendrecv::SELECTED_ROWS) {
auto* slr = var->GetMutable<framework::SelectedRows>();
auto* tensor = slr->mutable_value();
int64_t* rows_data = slr->mutable_rows()->data();
tensor->Resize(dims);
void* tensor_data = tensor->mutable_data(
ctx.GetPlace(),
paddle::operators::detail::ToTypeIndex(meta.data_type()));
if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef PADDLE_WITH_CUDA
platform::CPUPlace cpu;
auto& gpu_dev_ctx = static_cast<const platform::CUDADeviceContext&>(ctx);
memory::Copy(boost::get<platform::CUDAPlace>(tensor->place()),
tensor_data, cpu,
reinterpret_cast<const void*>(meta.serialized().data()),
meta.serialized().size(), gpu_dev_ctx.stream());
ctx.Wait();
#endif
} else {
memcpy(tensor_data,
reinterpret_cast<const void*>(meta.serialized().data()),
meta.serialized().size());
}
// copy rows CPU data, GPU data will be copied lazly
memcpy(rows_data, reinterpret_cast<const void*>(meta.rows().data()),
meta.rows().size());
}
const framework::Scope* scope,
framework::Variable*& var) {
operators::detail::VariableResponse resp(scope, &ctx);
PADDLE_ENFORCE(resp.Parse(msg) == 0, "parse bytebuffer to tensor error!");
var = resp.GetVar();
}
} // namespace detail
......
......@@ -21,6 +21,7 @@ limitations under the License. */
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/operators/detail/send_recv.grpc.pb.h"
......@@ -36,21 +37,14 @@ namespace detail {
typedef void (*DestroyCallback)(void*);
void SerializeToMessage(const std::string& name, const framework::Variable* var,
const platform::DeviceContext& ctx,
sendrecv::VariableMessage* msg);
void DeserializeFromMessage(const sendrecv::VariableMessage& msg,
const platform::DeviceContext& ctx,
framework::Variable* var);
void SerializeToByteBuffer(const std::string& name, framework::Variable* var,
const platform::DeviceContext& ctx,
::grpc::ByteBuffer* msg);
void DeserializeFromByteBuffer(const ::grpc::ByteBuffer& msg,
const platform::DeviceContext& ctx,
framework::Variable* var);
const framework::Scope* scope,
framework::Variable*& var);
inline std::type_index ToTypeIndex(sendrecv::VariableMessage::Type type) {
switch (type) {
......
......@@ -16,11 +16,13 @@ limitations under the License. */
#include <string>
#include <thread>
#include <google/protobuf/text_format.h>
#include "gtest/gtest.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/operators/detail/sendrecvop_utils.h"
#include "paddle/fluid/operators/detail/variable_response.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/string/printf.h"
......@@ -31,19 +33,21 @@ namespace operators = paddle::operators;
namespace math = paddle::operators::math;
namespace memory = paddle::memory;
void RunSerdeTestTensor(platform::Place place) {
// serialize var to ByteBuffer
framework::Variable var;
auto* tensor = var.GetMutable<framework::LoDTensor>();
tensor->Resize(framework::make_ddim({4, 8, 4, 2}));
framework::LoD lod;
lod.push_back(framework::Vector<size_t>({1, 3, 8}));
tensor->set_lod(lod);
int tensor_numel = 4 * 8 * 4 * 2;
void RunSerdeTestSelectedRows(platform::Place place) {
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
auto& ctx = *pool.Get(place);
// serialize var to ByteBuffer
framework::Variable var;
auto* slr = var.GetMutable<framework::SelectedRows>();
auto* tensor = slr->mutable_value();
auto* rows = slr->mutable_rows();
tensor->Resize(framework::make_ddim({2, 10}));
tensor->mutable_data<float>(place);
math::set_constant(ctx, tensor, 31.9);
int tensor_numel = 2 * 10;
math::set_constant(ctx, tensor, 32.7);
rows->push_back(3);
rows->push_back(10);
::grpc::ByteBuffer msg;
operators::detail::SerializeToByteBuffer("myvar", &var, ctx, &msg);
......@@ -56,62 +60,67 @@ void RunSerdeTestTensor(platform::Place place) {
for (const auto& s : slices) {
tmp.append(reinterpret_cast<const char*>(s.begin()), s.size());
}
sendrecv::VariableMessage varmsg;
EXPECT_TRUE(varmsg.ParseFromString(tmp));
EXPECT_EQ(varmsg.varname(), "myvar");
EXPECT_EQ(varmsg.type(), 0);
EXPECT_EQ(varmsg.dims()[0], 4);
EXPECT_EQ(varmsg.dims()[1], 8);
EXPECT_EQ(varmsg.dims()[2], 4);
EXPECT_EQ(varmsg.dims()[3], 2);
EXPECT_EQ(varmsg.lod_level(), 1);
EXPECT_EQ(varmsg.lod(0).lod_data(0), 1);
EXPECT_EQ(varmsg.lod(0).lod_data(1), 3);
EXPECT_EQ(varmsg.lod(0).lod_data(2), 8);
EXPECT_EQ(varmsg.type(), 1);
const float* tensor_data =
reinterpret_cast<const float*>(varmsg.serialized().data());
const int64_t* rows_data =
reinterpret_cast<const int64_t*>(varmsg.rows().data());
for (int i = 0; i < tensor_numel; ++i) {
EXPECT_FLOAT_EQ(tensor_data[i], 31.9);
EXPECT_FLOAT_EQ(tensor_data[i], 32.7);
}
EXPECT_EQ(rows_data[0], 3);
EXPECT_EQ(rows_data[1], 10);
// deserialize zero-copy
framework::Variable var2;
operators::detail::DeserializeFromByteBuffer(msg, ctx, &var2);
auto tensor2 = var2.Get<framework::LoDTensor>();
// framework::Variable var2;
// operators::detail::DeserializeFromByteBuffer(msg, ctx, &var2);
framework::Scope scope;
scope.Var("myvar");
operators::detail::VariableResponse resp(&scope, &ctx);
EXPECT_EQ(resp.Parse(msg), 0);
framework::Variable* var2 = resp.GetVar();
auto* slr2 = var2->GetMutable<framework::SelectedRows>();
auto* tensor2 = slr2->mutable_value();
auto* rows2 = slr2->mutable_rows();
float* tensor_data2 = nullptr;
framework::Tensor tmp_tensor;
if (platform::is_gpu_place(ctx.GetPlace())) {
platform::CPUPlace cpu;
framework::TensorCopy(tensor2, cpu, &tmp_tensor);
framework::TensorCopy(*tensor2, cpu, &tmp_tensor);
tensor_data2 = tmp_tensor.data<float>();
} else {
tensor_data2 = const_cast<float*>(tensor2.data<float>());
tensor_data2 = const_cast<float*>(tensor2->data<float>());
}
const int64_t* rows_data2 = rows2->data();
EXPECT_EQ(varmsg.lod_level(), 1);
EXPECT_EQ(varmsg.lod(0).lod_data(0), 1);
EXPECT_EQ(varmsg.lod(0).lod_data(1), 3);
EXPECT_EQ(varmsg.lod(0).lod_data(2), 8);
for (int i = 0; i < tensor_numel; ++i) EXPECT_FLOAT_EQ(tensor_data2[i], 31.9);
for (int i = 0; i < tensor_numel; ++i) {
EXPECT_FLOAT_EQ(tensor_data2[i], 32.7);
}
EXPECT_EQ(rows_data2[0], 3);
EXPECT_EQ(rows_data2[1], 10);
}
void RunSerdeTestSelectedRows(platform::Place place) {
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
auto& ctx = *pool.Get(place);
void RunTestLodTensor(platform::Place place, int from_type = 0) {
// serialize var to ByteBuffer
framework::Variable var;
auto* slr = var.GetMutable<framework::SelectedRows>();
auto* tensor = slr->mutable_value();
auto* rows = slr->mutable_rows();
tensor->Resize(framework::make_ddim({2, 10}));
auto* tensor = var.GetMutable<framework::LoDTensor>();
tensor->Resize(framework::make_ddim({4, 8, 4, 2}));
framework::LoD lod;
lod.push_back(framework::Vector<size_t>({1, 3, 8}));
tensor->set_lod(lod);
int tensor_numel = 4 * 8 * 4 * 2;
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
auto& ctx = *pool.Get(place);
tensor->mutable_data<float>(place);
int tensor_numel = 2 * 10;
math::set_constant(ctx, tensor, 32.7);
rows->push_back(3);
rows->push_back(10);
math::set_constant(ctx, tensor, 31.9);
::grpc::ByteBuffer msg;
operators::detail::SerializeToByteBuffer("myvar", &var, ctx, &msg);
......@@ -126,61 +135,82 @@ void RunSerdeTestSelectedRows(platform::Place place) {
}
sendrecv::VariableMessage varmsg;
EXPECT_TRUE(varmsg.ParseFromString(tmp));
EXPECT_EQ(varmsg.varname(), "myvar");
EXPECT_EQ(varmsg.type(), 1);
EXPECT_EQ(varmsg.type(), 0);
EXPECT_EQ(varmsg.dims()[0], 4);
EXPECT_EQ(varmsg.dims()[1], 8);
EXPECT_EQ(varmsg.dims()[2], 4);
EXPECT_EQ(varmsg.dims()[3], 2);
EXPECT_EQ(varmsg.lod_level(), 1);
EXPECT_EQ(varmsg.lod(0).lod_data(0), 1);
EXPECT_EQ(varmsg.lod(0).lod_data(1), 3);
EXPECT_EQ(varmsg.lod(0).lod_data(2), 8);
const float* tensor_data =
reinterpret_cast<const float*>(varmsg.serialized().data());
const int64_t* rows_data =
reinterpret_cast<const int64_t*>(varmsg.rows().data());
for (int i = 0; i < tensor_numel; ++i) {
EXPECT_FLOAT_EQ(tensor_data[i], 32.7);
EXPECT_FLOAT_EQ(tensor_data[i], 31.9);
}
EXPECT_EQ(rows_data[0], 3);
EXPECT_EQ(rows_data[1], 10);
// message binary
std::string str;
varmsg.SerializeToString(&str);
// message bytebuffer
::grpc::Slice slices_2[1];
int num_slices = 1;
slices_2[0] = ::grpc::Slice(str.length());
memcpy(const_cast<uint8_t*>(slices_2[0].begin()), str.c_str(), str.length());
::grpc::ByteBuffer bytebuffer2(&slices_2[0], num_slices);
// deserialize zero-copy
framework::Variable var2;
operators::detail::DeserializeFromByteBuffer(msg, ctx, &var2);
framework::Scope scope;
scope.Var("myvar");
operators::detail::VariableResponse resp(&scope, &ctx);
if (from_type == 0) {
EXPECT_EQ(resp.Parse(msg), 0);
} else {
EXPECT_EQ(resp.Parse(bytebuffer2), 0);
}
auto* slr2 = var2.GetMutable<framework::SelectedRows>();
auto* tensor2 = slr2->mutable_value();
auto* rows2 = slr2->mutable_rows();
framework::Variable* var2 = resp.GetVar();
auto tensor2 = var2->Get<framework::LoDTensor>();
float* tensor_data2 = nullptr;
framework::Tensor tmp_tensor;
if (platform::is_gpu_place(ctx.GetPlace())) {
platform::CPUPlace cpu;
framework::TensorCopy(*tensor2, cpu, &tmp_tensor);
framework::TensorCopy(tensor2, cpu, &tmp_tensor);
tensor_data2 = tmp_tensor.data<float>();
} else {
tensor_data2 = const_cast<float*>(tensor2->data<float>());
tensor_data2 = const_cast<float*>(tensor2.data<float>());
}
const int64_t* rows_data2 = rows2->data();
for (int i = 0; i < tensor_numel; ++i) {
EXPECT_FLOAT_EQ(tensor_data2[i], 32.7);
}
EXPECT_EQ(rows_data2[0], 3);
EXPECT_EQ(rows_data2[1], 10);
EXPECT_EQ(varmsg.lod_level(), 1);
EXPECT_EQ(varmsg.lod(0).lod_data(0), 1);
EXPECT_EQ(varmsg.lod(0).lod_data(1), 3);
EXPECT_EQ(varmsg.lod(0).lod_data(2), 8);
for (int i = 0; i < tensor_numel; ++i) EXPECT_FLOAT_EQ(tensor_data2[i], 31.9);
}
TEST(SelectedRows, CPU) {
TEST(LodTensor, Run) {
platform::CPUPlace place;
RunSerdeTestSelectedRows(place);
RunTestLodTensor(place);
RunTestLodTensor(place, 1);
#ifdef PADDLE_WITH_CUDA
platform::CUDAPlace gpu(0);
RunTestLodTensor(gpu);
RunTestLodTensor(gpu, 1);
#endif
}
TEST(SelectedRows, GPU) {
platform::CUDAPlace place;
RunSerdeTestSelectedRows(place);
}
TEST(Tensor, CPU) {
TEST(SelectedRows, Run) {
platform::CPUPlace place;
RunSerdeTestTensor(place);
}
RunSerdeTestSelectedRows(place);
TEST(Tensor, GPU) {
platform::CUDAPlace place;
RunSerdeTestTensor(place);
#ifdef PADDLE_WITH_CUDA
platform::CUDAPlace gpu;
RunSerdeTestSelectedRows(gpu);
#endif
}
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/detail/variable_response.h"
#include <string.h>
#include "paddle/fluid/operators/detail/send_recv.pb.h"
#include "paddle/fluid/operators/detail/sendrecvop_utils.h"
namespace paddle {
namespace operators {
namespace detail {
enum WireType {
WIRETYPE_VARINT = 0,
WIRETYPE_LENGTH_DELIMITED = 2,
};
inline int GetTagFieldNumber(uint32_t tag) { return tag >> 3; }
inline WireType GetTagWireType(uint32_t tag) {
return static_cast<WireType>(tag & 0x7);
}
bool ReadVarintSizeAsInt(::google::protobuf::io::CodedInputStream* input,
int* result) {
uint64_t v;
if (input->ReadVarint64(&v) && v <= static_cast<uint64_t>(INT_MAX)) {
*result = static_cast<int>(v);
return true;
} else {
return false;
}
}
bool ReadRaw(::google::protobuf::io::CodedInputStream* input,
const platform::DeviceContext& dev_ctx, platform::Place place,
void* dest, int size) {
const void* data = NULL;
int size_to_write = 0;
if (platform::is_gpu_place(place)) {
#ifdef PADDLE_WITH_CUDA
auto& gpu_dev_ctx =
static_cast<const platform::CUDADeviceContext&>(dev_ctx);
platform::CPUPlace cpu;
char* p = reinterpret_cast<char*>(dest);
while (size > 0) {
if (!input->GetDirectBufferPointer(&data, &size_to_write)) {
return false;
}
memory::Copy(boost::get<platform::CUDAPlace>(place),
reinterpret_cast<void*>(p), cpu, data, size_to_write,
gpu_dev_ctx.stream());
p += size_to_write;
size -= size_to_write;
input->Skip(size_to_write);
}
gpu_dev_ctx.Wait();
#else
PADDLE_THROW("Unexpected branch");
#endif
return true;
}
char* p = reinterpret_cast<char*>(dest);
while (size > 0) {
if (!input->GetDirectBufferPointer(&data, &size_to_write)) {
return false;
}
// TODO(gongwb): can we avoid copy?
platform::CPUPlace cpu;
memory::Copy(cpu, reinterpret_cast<void*>(p), cpu, data, size_to_write);
p += size_to_write;
size -= size_to_write;
input->Skip(size_to_write);
}
return true;
}
bool VariableResponse::CopyLodTensorData(
::google::protobuf::io::CodedInputStream* input,
const platform::DeviceContext& ctx, framework::DDim& dims, int length) {
auto var = scope_->FindVar(meta_.varname());
auto* tensor = var->GetMutable<framework::LoDTensor>();
tensor->Resize(dims);
framework::LoD lod;
for (int i = 0; i < meta_.lod_level(); ++i) {
framework::Vector<size_t> v;
for (int j = 0; j < meta_.lod(i).lod_data_size(); ++j) {
v.push_back(meta_.lod(i).lod_data(j));
}
lod.push_back(v);
}
tensor->set_lod(lod);
void* tensor_data =
tensor->mutable_data(ctx.GetPlace(), ToTypeIndex(meta_.data_type()));
if (!ReadRaw(input, ctx, tensor->place(), tensor_data, length)) {
return false;
}
return true;
}
inline framework::DDim GetDims(
const ::google::protobuf::RepeatedField<::google::protobuf::int64>& dims) {
std::vector<int> vecdims;
for (auto& d : dims) {
vecdims.push_back(d);
}
return framework::make_ddim(vecdims);
}
bool VariableResponse::CopySelectRowsTensorData(
::google::protobuf::io::CodedInputStream* input,
const platform::DeviceContext& ctx, framework::DDim& dims, int length) {
auto var = scope_->FindVar(meta_.varname());
auto* slr = var->GetMutable<framework::SelectedRows>();
auto* tensor = slr->mutable_value();
tensor->Resize(dims);
void* tensor_data = tensor->mutable_data(
ctx.GetPlace(),
paddle::operators::detail::ToTypeIndex(meta_.data_type()));
if (!ReadRaw(input, ctx, tensor->place(), tensor_data, length)) {
return false;
}
return true;
}
bool VariableResponse::CopySelectRowsData(
::google::protobuf::io::CodedInputStream* input,
const platform::DeviceContext& ctx, int length) {
auto var = scope_->FindVar(meta_.varname());
auto* slr = var->GetMutable<framework::SelectedRows>();
int64_t* rows_data = slr->mutable_rows()->data();
// copy rows CPU data, GPU data will be copied lazily.
platform::CPUPlace cpu;
if (!ReadRaw(input, ctx, cpu, rows_data, length)) {
return false;
}
return true;
}
bool ParseLodData(::google::protobuf::io::CodedInputStream* input,
std::vector<int64_t>* lod) {
while (true) {
auto p = input->ReadTagWithCutoff(127);
int tag = GetTagFieldNumber(p.first);
WireType wt = GetTagWireType(p.first);
if (!p.second) {
return (tag == 0);
}
switch (tag) {
case sendrecv::VariableMessage_LodData::kLodDataFieldNumber: {
uint64_t v;
if (wt == WIRETYPE_VARINT) {
if (!input->ReadVarint64(&v)) {
return false;
}
lod->push_back(v);
break;
}
if (wt == WIRETYPE_LENGTH_DELIMITED) {
int length = 0;
if (!input->ReadVarintSizeAsInt(&length)) {
return tag;
}
for (int i = 0; i < length; i++) {
uint64_t v;
if (!input->ReadVarint64(&v)) {
return false;
}
lod->push_back(v);
}
break;
}
return false;
}
default: { return false; }
}
}
return true;
}
int VariableResponse::Parse(const ::grpc::ByteBuffer& byte_buffer) {
GrpcByteBufferSource source;
source.Init(byte_buffer);
GrpcByteBufferSourceWrapper r(&source);
return Parse(&r);
}
int VariableResponse::Parse(Source* source) {
::google::protobuf::io::ZeroCopyInputStream* input_stream =
source->contents();
::google::protobuf::io::CodedInputStream input(input_stream);
input.SetTotalBytesLimit(INT_MAX, INT_MAX);
while (true) {
auto p = input.ReadTagWithCutoff(127);
int tag = GetTagFieldNumber(p.first);
WireType wt = GetTagWireType(p.first);
if (!p.second) {
if (tag != 0) {
return -1;
}
return 0;
}
switch (tag) {
case sendrecv::VariableMessage::kVarnameFieldNumber: {
uint32_t length;
if ((wt != WIRETYPE_LENGTH_DELIMITED) || !input.ReadVarint32(&length)) {
return tag;
}
std::string temp;
if (!input.ReadString(&temp, length)) {
return tag;
}
meta_.set_varname(temp);
break;
}
case sendrecv::VariableMessage::kTypeFieldNumber: {
uint64_t v;
if ((wt != WIRETYPE_VARINT) || !input.ReadVarint64(&v)) {
return tag;
}
meta_.set_type(static_cast<::sendrecv::VarType>(v));
break;
}
case sendrecv::VariableMessage::kDataTypeFieldNumber: {
uint64_t v = 0;
if ((wt != WIRETYPE_VARINT) || !input.ReadVarint64(&v)) {
return tag;
}
meta_.set_data_type(static_cast<::sendrecv::VariableMessage_Type>(v));
break;
}
case sendrecv::VariableMessage::kDimsFieldNumber: {
// not packed
if (wt == WIRETYPE_VARINT) {
uint64_t v;
if (!input.ReadVarint64(&v)) {
return tag;
}
meta_.add_dims(v);
break;
}
// packed
if (wt == WIRETYPE_LENGTH_DELIMITED) {
int length = 0;
if (!input.ReadVarintSizeAsInt(&length)) {
return tag;
}
for (int i = 0; i < length; i++) {
uint64_t v;
if (!input.ReadVarint64(&v)) {
return tag;
}
meta_.add_dims(v);
}
break;
}
return tag;
}
case sendrecv::VariableMessage::kLodLevelFieldNumber: {
uint64_t v = 0;
if ((wt != WIRETYPE_VARINT) || !input.ReadVarint64(&v)) {
return tag;
}
meta_.set_lod_level(static_cast<int64_t>(v));
break;
}
case sendrecv::VariableMessage::kLodFieldNumber: {
int length = 0;
if (wt != WIRETYPE_LENGTH_DELIMITED ||
!ReadVarintSizeAsInt(&input, &length)) {
return tag;
}
std::pair<::google::protobuf::io::CodedInputStream::Limit, int> p =
input.IncrementRecursionDepthAndPushLimit(length);
std::vector<int64_t> lod_data;
if (p.second < 0 || !ParseLodData(&input, &lod_data)) {
return tag;
}
if (!input.DecrementRecursionDepthAndPopLimit(p.first)) {
return false;
}
if (lod_data.size() == 0) {
break;
}
auto lod = meta_.add_lod();
for (uint32_t i = 0; i < lod_data.size(); i++) {
lod->add_lod_data(lod_data[i]);
}
break;
}
case sendrecv::VariableMessage::kSerializedFieldNumber: {
PADDLE_ENFORCE((meta_.type() == sendrecv::SELECTED_ROWS ||
meta_.type() == sendrecv::LOD_TENSOR) &&
meta_.varname() != "",
"meta info should be got first!");
int length = 0;
if (wt != WIRETYPE_LENGTH_DELIMITED ||
!ReadVarintSizeAsInt(&input, &length)) {
return tag;
}
framework::DDim dims = GetDims(meta_.dims());
if (meta_.type() == sendrecv::LOD_TENSOR) {
PADDLE_ENFORCE(meta_.lod_size() >= 0,
"lod info should be got first!");
if (!CopyLodTensorData(&input, *dev_ctx_, dims, length)) {
return tag;
}
break;
}
if (meta_.type() == sendrecv::SELECTED_ROWS) {
if (!CopySelectRowsTensorData(&input, *dev_ctx_, dims, length)) {
return tag;
}
break;
}
return tag;
}
case sendrecv::VariableMessage::kRowsFieldNumber: {
PADDLE_ENFORCE((meta_.type() == sendrecv::SELECTED_ROWS ||
meta_.type() == sendrecv::LOD_TENSOR) &&
meta_.varname() != "",
"meta info should be got first!");
int length = 0;
if (wt != WIRETYPE_LENGTH_DELIMITED ||
!ReadVarintSizeAsInt(&input, &length)) {
return tag;
}
if (!CopySelectRowsData(&input, *dev_ctx_, length)) {
return tag;
}
break;
}
default: {
// Unknown tag, return unknown error.
return -1;
}
}
}
return 0;
}
}; // namespace detail
}; // namespace operators
}; // namespace paddle
此差异已折叠。
......@@ -188,8 +188,8 @@ The general steps are as follows. First, calculate the true positive and
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(detection_map, ops::DetectionMAPOp,
ops::DetectionMAPOpMaker);
REGISTER_OPERATOR(detection_map, ops::DetectionMAPOp, ops::DetectionMAPOpMaker,
paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(
detection_map, ops::DetectionMAPOpKernel<paddle::platform::CPUPlace, float>,
ops::DetectionMAPOpKernel<paddle::platform::CPUPlace, double>);
......@@ -25,7 +25,7 @@ template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
template <typename DeviceContext, typename T, typename AttrType>
template <typename DeviceContext, typename T>
class CPUDropoutKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
......
此差异已折叠。
......@@ -87,8 +87,9 @@ $$
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(iou_similarity, ops::IOUSimilarityOp,
ops::IOUSimilarityOpMaker);
REGISTER_OPERATOR(iou_similarity, ops::IOUSimilarityOp,
ops::IOUSimilarityOpMaker,
paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(
iou_similarity,
......
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册