Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
532eba99
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
532eba99
编写于
3月 30, 2022
作者:
W
weishengying
提交者:
GitHub
3月 30, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add rewrite pattern form paddle mlir to trt mlir (#41087)
上级
495ca4aa
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
130 addition
and
15 deletion
+130
-15
paddle/infrt/dialect/tensorrt/convert.h
paddle/infrt/dialect/tensorrt/convert.h
+51
-15
paddle/infrt/dialect/tensorrt/pd_lower_to_trt.td
paddle/infrt/dialect/tensorrt/pd_lower_to_trt.td
+6
-0
paddle/infrt/dialect/tensorrt/trt_op_converter_pass.cc
paddle/infrt/dialect/tensorrt/trt_op_converter_pass.cc
+58
-0
paddle/infrt/dialect/tensorrt/trt_ops.td
paddle/infrt/dialect/tensorrt/trt_ops.td
+15
-0
未找到文件。
paddle/infrt/dialect/tensorrt/convert.h
浏览文件 @
532eba99
...
...
@@ -22,65 +22,101 @@ namespace infrt {
namespace
trt
{
static
mlir
::
Value
createTRTConv2dOp
(
mlir
::
PatternRewriter
&
rewriter
,
mlir
::
Operation
*
op
)
{
::
mlir
::
Operation
::
operand_range
Input
(
op
->
getOperands
());
::
mlir
::
Operation
::
operand_range
Filter
(
op
->
getOperands
());
auto
conv_op
=
::
llvm
::
dyn_cast
<
infrt
::
pd
::
Conv2dOp
>
(
op
);
::
mlir
::
SmallVector
<::
mlir
::
Value
,
4
>
operands
;
auto
castedOp0
=
::
llvm
::
dyn_cast
<
infrt
::
pd
::
Conv2dOp
>
(
op
);
(
void
)
castedOp0
;
Input
=
castedOp0
.
getODSOperands
(
0
);
Filter
=
castedOp0
.
getODSOperands
(
1
);
operands
.
push_back
((
*
Input
.
begin
()));
::
mlir
::
Operation
::
operand_range
Input
=
conv_op
.
getODSOperands
(
0
);
::
mlir
::
Operation
::
operand_range
Filter
=
conv_op
.
getODSOperands
(
1
);
operands
.
push_back
((
*
Input
.
begin
()));
operands
.
push_back
((
*
Filter
.
begin
()));
::
mlir
::
SmallVector
<::
mlir
::
Type
,
4
>
resultTypes
;
for
(
auto
v
:
c
astedOp0
.
getODSResults
(
0
))
{
for
(
auto
v
:
c
onv_op
.
getODSResults
(
0
))
{
resultTypes
.
push_back
(
v
.
getType
());
}
::
mlir
::
SmallVector
<::
mlir
::
NamedAttribute
,
8
>
attributes
;
{
// TODO(weishengying) : get out_channel_num for filter shape
auto
tblgen_attr
=
rewriter
.
getSI32IntegerAttr
(
3
);
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"out_channel_num"
),
tblgen_attr
);
}
{
// TODO(weishengying) : get kernel_size for filter shape
auto
tblgen_attr
=
rewriter
.
getI32ArrayAttr
({
3
,
3
});
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"kernel_size"
),
tblgen_attr
);
}
{
auto
tblgen_attr
=
op
->
getAttrOfType
<::
mlir
::
ArrayAttr
>
(
"strides"
);
(
void
)
tblgen_attr
;
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"strides"
),
tblgen_attr
);
}
{
auto
tblgen_attr
=
op
->
getAttrOfType
<::
mlir
::
ArrayAttr
>
(
"paddings"
);
(
void
)
tblgen_attr
;
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"paddings"
),
tblgen_attr
);
}
{
auto
tblgen_attr
=
op
->
getAttrOfType
<::
mlir
::
StringAttr
>
(
"padding_algorithm"
);
(
void
)
tblgen_attr
;
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"padding_mode"
),
tblgen_attr
);
}
{
auto
tblgen_attr
=
op
->
getAttrOfType
<::
mlir
::
IntegerAttr
>
(
"groups"
);
(
void
)
tblgen_attr
;
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"groups"
),
tblgen_attr
);
}
{
auto
tblgen_attr
=
op
->
getAttrOfType
<::
mlir
::
ArrayAttr
>
(
"dilations"
);
(
void
)
tblgen_attr
;
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"dilations"
),
tblgen_attr
);
}
{
auto
tblgen_attr
=
op
->
getAttrOfType
<::
mlir
::
StringAttr
>
(
"data_format"
);
(
void
)
tblgen_attr
;
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"data_format"
),
tblgen_attr
);
}
return
rewriter
.
create
<
trt
::
ConvolutionOp
>
(
op
->
getLoc
(),
resultTypes
,
operands
,
attributes
);
}
static
mlir
::
Value
createTRTShuffledOp
(
mlir
::
PatternRewriter
&
rewriter
,
mlir
::
Operation
*
op
,
const
mlir
::
Value
&
input
,
const
mlir
::
Attribute
&
start
,
const
mlir
::
Attribute
&
stop
)
{
auto
flatten_op
=
::
llvm
::
dyn_cast
<
infrt
::
pd
::
Flatten_contiguous_rangeOp
>
(
op
);
::
mlir
::
SmallVector
<::
mlir
::
Value
,
4
>
operands
;
operands
.
push_back
(
input
);
::
mlir
::
SmallVector
<::
mlir
::
Type
,
4
>
resultTypes
;
for
(
auto
v
:
flatten_op
.
getODSResults
(
0
))
{
resultTypes
.
push_back
(
v
.
getType
());
}
::
mlir
::
SmallVector
<::
mlir
::
NamedAttribute
,
8
>
attributes
;
mlir
::
IntegerAttr
start_attr
=
start
.
dyn_cast
<
mlir
::
IntegerAttr
>
();
mlir
::
IntegerAttr
stop_attr
=
stop
.
dyn_cast
<
mlir
::
IntegerAttr
>
();
int
start_axis
=
start_attr
.
getSInt
();
int
stop_axis
=
stop_attr
.
getSInt
();
// TODO(weishengying) : get dim form DenseTonsor
int
dims
=
4
;
// TODO(weishengying) : get input_dims form DenseTonsor
int
input_dims
[
4
]
=
{
1
,
2048
,
1
,
1
};
int
dim_prod
=
1
;
std
::
vector
<
int
>
flatten_dim
(
dims
-
(
stop_axis
-
start_axis
));
for
(
int
i
=
0
,
j
=
0
;
i
<
dims
;
++
i
)
{
if
(
start_axis
<=
i
+
1
&&
i
+
1
<=
stop_axis
)
{
int
dim_i
=
input_dims
[
i
];
dim_prod
*=
dim_i
;
if
(
i
+
1
==
stop_axis
)
{
flatten_dim
[
j
++
]
=
dim_prod
;
}
}
else
{
flatten_dim
[
j
++
]
=
input_dims
[
i
];
}
}
auto
reshape_arrt
=
rewriter
.
getI32ArrayAttr
(
flatten_dim
);
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"reshape"
),
reshape_arrt
);
return
rewriter
.
create
<
trt
::
ShuffleOp
>
(
op
->
getLoc
(),
resultTypes
,
operands
,
attributes
);
}
}
// namespace trt
}
// namespace infrt
paddle/infrt/dialect/tensorrt/pd_lower_to_trt.td
浏览文件 @
532eba99
...
...
@@ -42,4 +42,10 @@ def PD2TRT_MatrixMultipl_Lower : Pat<
def PD2TRT_SoftMax_Lower : Pat<
(PD_SoftmaxOp $Input, $axis, $_),
(TRT_SoftMaxOp $Input, $axis)>;
def createTRTShuffledOp : NativeCodeCall<"createTRTShuffledOp($_builder, $0.getDefiningOp(), $1, $2, $3)">;
def PD2TRT_Flatten_contiguous_range_Lower : Pat<
(PD_Flatten_contiguous_rangeOp:$out $input, $start_axis, $end_axis),
(createTRTShuffledOp $out, $input, $start_axis, $end_axis)>;
#endif // PD_LOWER_TO_TRT
paddle/infrt/dialect/tensorrt/trt_op_converter_pass.cc
浏览文件 @
532eba99
...
...
@@ -109,6 +109,63 @@ struct PD2TRT_GraphLower : public ::mlir::RewritePattern {
}
};
struct
PD2TRT_Batch_Norm_Lower
:
public
::
mlir
::
RewritePattern
{
explicit
PD2TRT_Batch_Norm_Lower
(
::
mlir
::
MLIRContext
*
context
)
:
::
mlir
::
RewritePattern
(
"pd.batch_norm"
,
1
,
context
,
{
"trt.scaleNd"
})
{}
::
mlir
::
LogicalResult
matchAndRewrite
(
::
mlir
::
Operation
*
op
,
::
mlir
::
PatternRewriter
&
rewriter
)
const
override
{
auto
casted_op
=
::
llvm
::
dyn_cast
<
infrt
::
pd
::
Batch_normOp
>
(
op
);
::
mlir
::
SmallVector
<::
mlir
::
Value
,
4
>
operands
;
::
mlir
::
Operation
::
operand_range
Input
=
casted_op
.
getODSOperands
(
0
);
::
mlir
::
Operation
::
operand_range
Scale
=
casted_op
.
getODSOperands
(
1
);
::
mlir
::
Operation
::
operand_range
Bias
=
casted_op
.
getODSOperands
(
2
);
// TODO(weishengying) : recompute this via params
operands
.
push_back
((
*
Input
.
begin
()));
operands
.
push_back
((
*
Scale
.
begin
()));
operands
.
push_back
((
*
Bias
.
begin
()));
operands
.
push_back
((
*
Bias
.
begin
()));
trt
::
ScaleNdOp
scaleNd_op
;
// inputs
::
mlir
::
SmallVector
<::
mlir
::
Value
,
4
>
trt_inputs
;
for
(
auto
v
:
operands
)
{
trt_inputs
.
push_back
(
v
);
}
// resultTypes
::
mlir
::
SmallVector
<::
mlir
::
Type
,
4
>
resultTypes
;
for
(
auto
v
:
casted_op
.
getODSResults
(
0
))
{
resultTypes
.
push_back
(
v
.
getType
());
}
// attributes
::
mlir
::
SmallVector
<::
mlir
::
NamedAttribute
,
8
>
attributes
;
{
auto
mode_attr
=
rewriter
.
getI32IntegerAttr
(
1
);
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"mode"
),
mode_attr
);
}
{
auto
axis_attr
=
rewriter
.
getI32IntegerAttr
(
-
1
);
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"axis"
),
axis_attr
);
}
auto
result
=
rewriter
.
create
<
trt
::
ScaleNdOp
>
(
op
->
getLoc
(),
resultTypes
,
operands
,
attributes
)
.
getODSResults
(
0
);
::
llvm
::
SmallVector
<::
mlir
::
Value
,
4
>
tblgen_repl_values
;
// TODO(weishengying) : update it
for
(
uint32_t
i
=
0
;
i
<
casted_op
.
getNumResults
();
i
++
)
{
for
(
auto
v
:
::
llvm
::
SmallVector
<::
mlir
::
Value
,
4
>
{
result
})
{
tblgen_repl_values
.
push_back
(
v
);
}
}
rewriter
.
replaceOp
(
op
,
tblgen_repl_values
);
return
::
mlir
::
success
();
}
};
void
TRTOpConverterPass
::
runOnOperation
()
{
// The first thing to define is the conversion target. This will define the
// final target for this lowering.
...
...
@@ -126,6 +183,7 @@ void TRTOpConverterPass::runOnOperation() {
// the set of patterns that will lower the TensorRT operations.
::
mlir
::
RewritePatternSet
patterns
(
&
getContext
());
populateWithGenerated
(
patterns
);
patterns
.
add
<
PD2TRT_Batch_Norm_Lower
>
(
&
getContext
());
patterns
.
add
<
PD2TRT_GraphLower
>
(
&
getContext
());
// With the target and rewrite patterns defined, we can now attempt the
...
...
paddle/infrt/dialect/tensorrt/trt_ops.td
浏览文件 @
532eba99
...
...
@@ -201,4 +201,19 @@ def TRT_ScaleNdOp : TRT_Op<"ScaleNd", [NoSideEffect]> {
let results = (outs DenseTensor:$Out);
}
def TRT_ShuffleOp : TRT_Op<"Shuffle", [NoSideEffect]> {
let summary = "TensorRT IShuffleLayer";
let description = [{
TensorRT IShuffleLayer
}];
let arguments = (ins
DenseTensor:$input_tensor,
I32ArrayAttr:$reshape
);
let results = (outs DenseTensor:$Out);
}
#endif // TRT_OPS
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录