From 49818943027b3c586f02b33d79b15ce6ef998242 Mon Sep 17 00:00:00 2001 From: 0x45f <23097963+0x45f@users.noreply.github.com> Date: Mon, 16 Aug 2021 19:14:34 +0800 Subject: [PATCH] [NPU] Add size npu op (#34636) * add size npu op * modify support data type * no longer use NPU size OP * remove useless comments, add test case * fix copyright, remove useless include --- paddle/fluid/operators/size_op_npu.cc | 51 +++++++ .../tests/unittests/npu/test_size_op_npu.py | 141 ++++++++++++++++++ 2 files changed, 192 insertions(+) create mode 100644 paddle/fluid/operators/size_op_npu.cc create mode 100755 python/paddle/fluid/tests/unittests/npu/test_size_op_npu.py diff --git a/paddle/fluid/operators/size_op_npu.cc b/paddle/fluid/operators/size_op_npu.cc new file mode 100644 index 00000000000..4e9c2ec482e --- /dev/null +++ b/paddle/fluid/operators/size_op_npu.cc @@ -0,0 +1,51 @@ +// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/operators/mul_op.h" +#include "paddle/fluid/operators/npu_op_runner.h" + +namespace paddle { +namespace operators { + +template +class SizeNPUKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto* x = ctx.Input("Input"); + auto* out = ctx.Output("Out"); + out->mutable_data(ctx.GetPlace()); + + Tensor cpu_tensor; + auto cpu_data = + cpu_tensor.mutable_data(out->dims(), platform::CPUPlace()); + cpu_data[0] = x->numel(); + TensorCopy(cpu_tensor, ctx.GetPlace(), + ctx.template device_context(), out); + ctx.template device_context().Wait(); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; + +REGISTER_OP_NPU_KERNEL( + size, ops::SizeNPUKernel, + ops::SizeNPUKernel, + ops::SizeNPUKernel, + ops::SizeNPUKernel, + ops::SizeNPUKernel, + ops::SizeNPUKernel); diff --git a/python/paddle/fluid/tests/unittests/npu/test_size_op_npu.py b/python/paddle/fluid/tests/unittests/npu/test_size_op_npu.py new file mode 100755 index 00000000000..80721cbd66a --- /dev/null +++ b/python/paddle/fluid/tests/unittests/npu/test_size_op_npu.py @@ -0,0 +1,141 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import unittest +import numpy as np +import sys +sys.path.append("..") +import paddle +import paddle.fluid as fluid +from op_test import OpTest + +paddle.enable_static() + + +class TestSizeOp(OpTest): + def setUp(self): + self.set_npu() + self.place = paddle.NPUPlace(0) + self.op_type = "size" + + self.config() + input = np.zeros(self.shape, dtype=self.dtype) + self.inputs = {'Input': input} + self.outputs = {'Out': np.array([np.size(input)], dtype=np.int64)} + + def config(self): + self.shape = [1, 2] + self.dtype = np.int32 + + def test_check_output(self): + self.check_output_with_place(self.place) + + def set_npu(self): + self.__class__.use_npu = True + + +class TestSizeOp1(TestSizeOp): + def config(self): + self.shape = [2] + self.dtype = np.float64 + + +class TestSizeOp2(TestSizeOp): + def config(self): + self.shape = [2, 3] + self.dtype = np.float32 + + +class TestSizeOp3(TestSizeOp): + def config(self): + self.shape = [2, 3, 100] + self.dtype = np.float16 + + +class TestSizeOp4(TestSizeOp): + def config(self): + self.shape = [2**10] + self.dtype = np.bool + + +class TestSizeOp5(TestSizeOp): + def config(self): + self.shape = [7, 8, 9, 10] + self.dtype = np.int64 + + +class TestSizeOp6(TestSizeOp): + def config(self): + self.shape = [] + self.dtype = np.int64 + + +class TestSizeAPI(unittest.TestCase): + def setUp(self): + self.set_npu() + self.place = paddle.NPUPlace(0) + + def set_npu(self): + self.__class__.use_npu = True + + def test_size_static(self): + main_program = fluid.Program() + startup_program = fluid.Program() + with fluid.program_guard(main_program, startup_program): + shape1 = [2, 1, 4, 5] + shape2 = [1, 4, 5] + x_1 = paddle.fluid.data(shape=shape1, dtype='int32', name='x_1') + x_2 = paddle.fluid.data(shape=shape2, dtype='int32', name='x_2') + input_1 = np.random.random(shape1).astype("int32") + input_2 = np.random.random(shape2).astype("int32") + out_1 = paddle.fluid.layers.size(x_1) + out_2 = paddle.fluid.layers.size(x_2) + exe = paddle.static.Executor(place=self.place) + res_1, res_2 = exe.run(feed={ + "x_1": input_1, + "x_2": input_2, + }, + fetch_list=[out_1, out_2]) + assert (np.array_equal( + res_1, np.array([np.size(input_1)]).astype("int64"))) + assert (np.array_equal( + res_2, np.array([np.size(input_2)]).astype("int64"))) + + def test_size_imperative(self): + paddle.disable_static(self.place) + input_1 = np.random.random([2, 1, 4, 5]).astype("int32") + input_2 = np.random.random([1, 4, 5]).astype("int32") + x_1 = paddle.to_tensor(input_1) + x_2 = paddle.to_tensor(input_2) + out_1 = paddle.fluid.layers.size(x_1) + out_2 = paddle.fluid.layers.size(x_2) + assert (np.array_equal(out_1.numpy().item(0), np.size(input_1))) + assert (np.array_equal(out_2.numpy().item(0), np.size(input_2))) + paddle.enable_static() + + def test_error(self): + main_program = fluid.Program() + startup_program = fluid.Program() + with fluid.program_guard(main_program, startup_program): + + def test_x_type(): + shape = [1, 4, 5] + input_1 = np.random.random(shape).astype("int32") + out_1 = paddle.fluid.layers.size(input_1) + + self.assertRaises(TypeError, test_x_type) + + +if __name__ == '__main__': + unittest.main() -- GitLab