Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
471573ef
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
471573ef
编写于
11月 13, 2017
作者:
X
xzl
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into poolmaxpool_with_mask
上级
69147daa
e602c707
变更
11
显示空白变更内容
内联
并排
Showing
11 changed file
with
201 addition
and
103 deletion
+201
-103
paddle/gserver/layers/MKLDNNAddtoLayer.cpp
paddle/gserver/layers/MKLDNNAddtoLayer.cpp
+0
-1
paddle/gserver/layers/MKLDNNBatchNormLayer.cpp
paddle/gserver/layers/MKLDNNBatchNormLayer.cpp
+0
-1
paddle/gserver/layers/MKLDNNConvLayer.cpp
paddle/gserver/layers/MKLDNNConvLayer.cpp
+0
-2
paddle/gserver/layers/MKLDNNConvLayer.h
paddle/gserver/layers/MKLDNNConvLayer.h
+1
-1
paddle/gserver/layers/MKLDNNFcLayer.cpp
paddle/gserver/layers/MKLDNNFcLayer.cpp
+0
-2
paddle/gserver/layers/MKLDNNPoolLayer.cpp
paddle/gserver/layers/MKLDNNPoolLayer.cpp
+0
-2
paddle/platform/call_once.h
paddle/platform/call_once.h
+13
-11
python/paddle/v2/framework/layer_helper.py
python/paddle/v2/framework/layer_helper.py
+6
-5
python/paddle/v2/framework/layers.py
python/paddle/v2/framework/layers.py
+50
-1
python/paddle/v2/framework/optimizer.py
python/paddle/v2/framework/optimizer.py
+21
-77
python/paddle/v2/framework/tests/test_understand_sentiment_dynamic_lstm.py
...framework/tests/test_understand_sentiment_dynamic_lstm.py
+110
-0
未找到文件。
paddle/gserver/layers/MKLDNNAddtoLayer.cpp
浏览文件 @
471573ef
...
@@ -54,7 +54,6 @@ void MKLDNNAddtoLayer::reshape(
...
@@ -54,7 +54,6 @@ void MKLDNNAddtoLayer::reshape(
ow
=
iw
;
ow
=
iw
;
reshapeOutput
(
oh
,
ow
);
reshapeOutput
(
oh
,
ow
);
resizeOutput
(
bs
,
oc
*
oh
*
ow
);
resizeOutput
(
bs
,
oc
*
oh
*
ow
);
printSizeInfo
();
}
}
void
MKLDNNAddtoLayer
::
resetFwd
(
std
::
vector
<
primitive
>&
pipeline
,
void
MKLDNNAddtoLayer
::
resetFwd
(
std
::
vector
<
primitive
>&
pipeline
,
...
...
paddle/gserver/layers/MKLDNNBatchNormLayer.cpp
浏览文件 @
471573ef
...
@@ -125,7 +125,6 @@ void MKLDNNBatchNormLayer::reshape(
...
@@ -125,7 +125,6 @@ void MKLDNNBatchNormLayer::reshape(
<<
"Input channel can not be changed"
;
<<
"Input channel can not be changed"
;
reshapeOutput
(
oh
,
ow
);
reshapeOutput
(
oh
,
ow
);
resizeOutput
(
bs
,
oc
*
oh
*
ow
);
resizeOutput
(
bs
,
oc
*
oh
*
ow
);
printSizeInfo
();
}
}
void
MKLDNNBatchNormLayer
::
resetFwd
(
std
::
vector
<
primitive
>&
pipeline
,
void
MKLDNNBatchNormLayer
::
resetFwd
(
std
::
vector
<
primitive
>&
pipeline
,
...
...
paddle/gserver/layers/MKLDNNConvLayer.cpp
浏览文件 @
471573ef
...
@@ -102,8 +102,6 @@ void MKLDNNConvLayer::reshape(
...
@@ -102,8 +102,6 @@ void MKLDNNConvLayer::reshape(
reshapeOutput
(
oh
,
ow
);
reshapeOutput
(
oh
,
ow
);
resizeOutput
(
bs
,
oc
*
oh
*
ow
);
resizeOutput
(
bs
,
oc
*
oh
*
ow
);
printSizeInfo
();
}
}
void
MKLDNNConvLayer
::
resetFwd
(
std
::
vector
<
primitive
>&
pipeline
,
void
MKLDNNConvLayer
::
resetFwd
(
std
::
vector
<
primitive
>&
pipeline
,
...
...
paddle/gserver/layers/MKLDNNConvLayer.h
浏览文件 @
471573ef
...
@@ -92,7 +92,7 @@ public:
...
@@ -92,7 +92,7 @@ public:
void
printSizeInfo
()
override
{
void
printSizeInfo
()
override
{
MKLDNNLayer
::
printSizeInfo
();
MKLDNNLayer
::
printSizeInfo
();
VLOG
(
MKLDNN_SIZES
)
<<
getName
()
<<
": fh: "
<<
fh_
<<
", fw: "
<<
fw_
VLOG
(
MKLDNN_SIZES
)
<<
getName
()
<<
": fh: "
<<
fh_
<<
", fw: "
<<
fw_
<<
"
:
ph: "
<<
ph_
<<
", pw: "
<<
pw_
<<
", sh: "
<<
sh_
<<
"
,
ph: "
<<
ph_
<<
", pw: "
<<
pw_
<<
", sh: "
<<
sh_
<<
", sw: "
<<
sw_
<<
", dh: "
<<
dh_
<<
", dw: "
<<
dw_
;
<<
", sw: "
<<
sw_
<<
", dh: "
<<
dh_
<<
", dw: "
<<
dw_
;
}
}
...
...
paddle/gserver/layers/MKLDNNFcLayer.cpp
浏览文件 @
471573ef
...
@@ -84,8 +84,6 @@ void MKLDNNFcLayer::reshape(
...
@@ -84,8 +84,6 @@ void MKLDNNFcLayer::reshape(
reshapeOutput
(
oh
,
ow
);
reshapeOutput
(
oh
,
ow
);
resizeOutput
(
bs
,
oc
);
resizeOutput
(
bs
,
oc
);
printSizeInfo
();
}
}
void
MKLDNNFcLayer
::
resetFwd
(
std
::
vector
<
primitive
>&
pipeline
,
void
MKLDNNFcLayer
::
resetFwd
(
std
::
vector
<
primitive
>&
pipeline
,
...
...
paddle/gserver/layers/MKLDNNPoolLayer.cpp
浏览文件 @
471573ef
...
@@ -71,8 +71,6 @@ void MKLDNNPoolLayer::reshape(
...
@@ -71,8 +71,6 @@ void MKLDNNPoolLayer::reshape(
reshapeOutput
(
oh
,
ow
);
reshapeOutput
(
oh
,
ow
);
resizeOutput
(
bs
,
oc
*
oh
*
ow
);
resizeOutput
(
bs
,
oc
*
oh
*
ow
);
printSizeInfo
();
}
}
void
MKLDNNPoolLayer
::
resetFwd
(
std
::
vector
<
primitive
>&
pipeline
,
void
MKLDNNPoolLayer
::
resetFwd
(
std
::
vector
<
primitive
>&
pipeline
,
...
...
paddle/platform/call_once.h
浏览文件 @
471573ef
...
@@ -27,11 +27,12 @@ namespace platform {
...
@@ -27,11 +27,12 @@ namespace platform {
This wrap is a hack to avoid this bug.
This wrap is a hack to avoid this bug.
*/
*/
template
<
class
Callable
,
class
...
Args
>
template
<
typename
Callable
,
typename
...
Args
>
inline
void
call_once
(
std
::
once_flag
&
flag
,
Callable
&&
f
,
Args
&&
...
args
)
{
inline
void
call_once
(
std
::
once_flag
&
flag
,
Callable
&&
f
,
Args
&&
...
args
)
{
bool
good
=
false
;
bool
good
=
false
;
std
::
exception
ex
;
std
::
exception
ex
;
std
::
call_once
(
flag
,
[
&
]()
{
std
::
call_once
(
flag
,
[
&
](
Args
&&
...
args
)
{
try
{
try
{
f
(
args
...);
f
(
args
...);
good
=
true
;
good
=
true
;
...
@@ -40,7 +41,8 @@ inline void call_once(std::once_flag& flag, Callable&& f, Args&&... args) {
...
@@ -40,7 +41,8 @@ inline void call_once(std::once_flag& flag, Callable&& f, Args&&... args) {
}
catch
(...)
{
}
catch
(...)
{
ex
=
std
::
runtime_error
(
"excption caught in call_once"
);
ex
=
std
::
runtime_error
(
"excption caught in call_once"
);
}
}
});
},
args
...);
if
(
!
good
)
{
if
(
!
good
)
{
throw
std
::
exception
(
ex
);
throw
std
::
exception
(
ex
);
}
}
...
...
python/paddle/v2/framework/layer_helper.py
浏览文件 @
471573ef
...
@@ -4,7 +4,7 @@ import itertools
...
@@ -4,7 +4,7 @@ import itertools
from
paddle.v2.framework.framework
import
Variable
,
g_main_program
,
\
from
paddle.v2.framework.framework
import
Variable
,
g_main_program
,
\
g_startup_program
,
unique_name
,
Program
g_startup_program
,
unique_name
,
Program
from
paddle.v2.framework.initializer
import
ConstantInitializer
,
\
from
paddle.v2.framework.initializer
import
ConstantInitializer
,
\
UniformInitializer
UniformInitializer
,
XavierInitializer
class
LayerHelper
(
object
):
class
LayerHelper
(
object
):
...
@@ -61,7 +61,7 @@ class LayerHelper(object):
...
@@ -61,7 +61,7 @@ class LayerHelper(object):
@
property
@
property
def
param_attr
(
self
):
def
param_attr
(
self
):
default
=
{
'name'
:
None
,
'initializer'
:
Uniform
Initializer
()}
default
=
{
'name'
:
None
,
'initializer'
:
Xavier
Initializer
()}
actual
=
self
.
kwargs
.
get
(
'param_attr'
,
None
)
actual
=
self
.
kwargs
.
get
(
'param_attr'
,
None
)
if
actual
is
None
:
if
actual
is
None
:
actual
=
default
actual
=
default
...
@@ -70,10 +70,11 @@ class LayerHelper(object):
...
@@ -70,10 +70,11 @@ class LayerHelper(object):
actual
[
default_field
]
=
default
[
default_field
]
actual
[
default_field
]
=
default
[
default_field
]
return
actual
return
actual
@
property
def
bias_attr
(
self
):
def
bias_attr
(
self
):
default
=
{
'name'
:
None
,
'initializer'
:
Constant
Initializer
()}
default
=
{
'name'
:
None
,
'initializer'
:
Xavier
Initializer
()}
bias_attr
=
self
.
kwargs
.
get
(
'bias_attr'
,
None
)
bias_attr
=
self
.
kwargs
.
get
(
'bias_attr'
,
None
)
if
bias_attr
is
Tru
e
:
if
bias_attr
is
Non
e
:
bias_attr
=
default
bias_attr
=
default
if
isinstance
(
bias_attr
,
dict
):
if
isinstance
(
bias_attr
,
dict
):
...
@@ -166,7 +167,7 @@ class LayerHelper(object):
...
@@ -166,7 +167,7 @@ class LayerHelper(object):
num_flatten_dims
=
1
num_flatten_dims
=
1
size
=
list
(
input_var
.
shape
[
num_flatten_dims
:])
size
=
list
(
input_var
.
shape
[
num_flatten_dims
:])
bias_attr
=
self
.
bias_attr
()
bias_attr
=
self
.
bias_attr
if
not
bias_attr
:
if
not
bias_attr
:
return
input_var
return
input_var
...
...
python/paddle/v2/framework/layers.py
浏览文件 @
471573ef
...
@@ -16,7 +16,7 @@ __all__ = [
...
@@ -16,7 +16,7 @@ __all__ = [
def
fc
(
input
,
def
fc
(
input
,
size
,
size
,
param_attr
=
None
,
param_attr
=
None
,
bias_attr
=
Tru
e
,
bias_attr
=
Non
e
,
name
=
None
,
name
=
None
,
act
=
None
,
act
=
None
,
num_flatten_dims
=
1
,
num_flatten_dims
=
1
,
...
@@ -125,6 +125,55 @@ def embedding(input,
...
@@ -125,6 +125,55 @@ def embedding(input,
return
tmp
return
tmp
# TODO(qijun): expose H0 and C0
def
dynamic_lstm
(
input
,
size
,
data_type
=
'float32'
,
param_attr
=
None
,
bias_attr
=
None
,
use_peepholes
=
True
,
is_reverse
=
False
,
gate_activation
=
'sigmoid'
,
cell_activation
=
'tanh'
,
candidate_activation
=
'tanh'
,
main_program
=
None
,
startup_program
=
None
):
helper
=
LayerHelper
(
'lstm'
,
**
locals
())
size
=
size
/
4
weight
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
[
size
,
4
*
size
],
dtype
=
data_type
)
bias_size
=
[
1
,
7
*
size
]
if
not
use_peepholes
:
bias_size
[
1
]
=
4
*
size
bias
=
helper
.
create_parameter
(
attr
=
helper
.
bias_attr
,
shape
=
bias_size
,
dtype
=
data_type
,
suffix
=
'b'
)
hidden
=
helper
.
create_tmp_variable
(
data_type
)
cell
=
helper
.
create_tmp_variable
(
data_type
)
batch_gate
=
helper
.
create_tmp_variable
(
data_type
)
batch_cell_pre_act
=
helper
.
create_tmp_variable
(
data_type
)
helper
.
append_op
(
type
=
'lstm'
,
inputs
=
{
'Input'
:
input
,
'Weight'
:
weight
,
'Bias'
:
bias
},
outputs
=
{
'Hidden'
:
hidden
,
'Cell'
:
cell
,
'BatchGate'
:
batch_gate
,
'BatchCellPreAct'
:
batch_cell_pre_act
},
attrs
=
{
'use_peepholes'
:
use_peepholes
,
'is_reverse'
:
is_reverse
,
'gate_activation'
:
gate_activation
,
'cell_activation'
:
cell_activation
,
'candidate_activation'
:
candidate_activation
})
return
hidden
,
cell
def
data
(
name
,
def
data
(
name
,
shape
,
shape
,
data_type
=
'float32'
,
data_type
=
'float32'
,
...
...
python/paddle/v2/framework/optimizer.py
浏览文件 @
471573ef
...
@@ -35,15 +35,21 @@ class Optimizer(object):
...
@@ -35,15 +35,21 @@ class Optimizer(object):
"""
"""
raise
NotImplementedError
()
raise
NotImplementedError
()
def
_initialize_tensors
(
self
,
block
):
def
_create_param_lr
(
self
,
param_and_grad
):
"""Create all necessary tensors, that will be shared for all parameter updates.
# create learning rate variable for every parameter
param
=
param_and_grad
[
0
]
Tensors like learning rate should be initialized here.
param_lr
=
param
.
optimize_attr
[
'learning_rate'
]
param_lr_shape
=
[
1
]
Args:
param_lr_var
=
self
.
helper
.
create_global_variable
(
block: the block in which the loss variable is present
name
=
unique_name
(
"learning_rate"
),
"""
dtype
=
'float32'
,
pass
shape
=
param_lr_shape
,
lod_level
=
1
,
persistable
=
True
)
param_lr
=
param_lr
*
self
.
_learning_rate
self
.
helper
.
set_variable_initializer
(
var
=
param_lr_var
,
initializer
=
ConstantInitializer
(
param_lr
))
return
param_lr_var
def
_create_accumulators
(
self
,
block
,
parameters
):
def
_create_accumulators
(
self
,
block
,
parameters
):
"""Create all accumulators needed by the parameters
"""Create all accumulators needed by the parameters
...
@@ -161,8 +167,6 @@ class Optimizer(object):
...
@@ -161,8 +167,6 @@ class Optimizer(object):
startup_program
=
startup_program
)
startup_program
=
startup_program
)
self
.
_create_accumulators
(
loss
.
block
,
self
.
_create_accumulators
(
loss
.
block
,
[
p
[
0
]
for
p
in
parameters_and_grads
])
[
p
[
0
]
for
p
in
parameters_and_grads
])
# Create any necessary tensors
self
.
_initialize_tensors
(
loss
.
block
)
optimize_ops
=
[]
optimize_ops
=
[]
for
param_and_grad
in
parameters_and_grads
:
for
param_and_grad
in
parameters_and_grads
:
...
@@ -214,27 +218,16 @@ class SGDOptimizer(Optimizer):
...
@@ -214,27 +218,16 @@ class SGDOptimizer(Optimizer):
self
.
type
=
"sgd"
self
.
type
=
"sgd"
self
.
_learning_rate
=
learning_rate
self
.
_learning_rate
=
learning_rate
def
_initialize_tensors
(
self
,
block
):
lr_shape
=
[
1
]
# create a variable for learning_rate
self
.
_lr
=
self
.
helper
.
create_global_variable
(
name
=
unique_name
(
"learning_rate"
),
dtype
=
'float32'
,
shape
=
lr_shape
,
lod_level
=
1
,
persistable
=
True
)
self
.
helper
.
set_variable_initializer
(
var
=
self
.
_lr
,
initializer
=
ConstantInitializer
(
self
.
_learning_rate
))
def
_append_optimize_op
(
self
,
block
,
param_and_grad
):
def
_append_optimize_op
(
self
,
block
,
param_and_grad
):
assert
isinstance
(
block
,
framework
.
Block
)
assert
isinstance
(
block
,
framework
.
Block
)
# create the optimize op
# create the optimize op
sgd_op
=
block
.
append_op
(
sgd_op
=
block
.
append_op
(
type
=
self
.
type
,
type
=
self
.
type
,
inputs
=
{
inputs
=
{
"Param"
:
param_and_grad
[
0
],
"Param"
:
param_and_grad
[
0
],
"Grad"
:
param_and_grad
[
1
],
"Grad"
:
param_and_grad
[
1
],
"LearningRate"
:
self
.
_
lr
"LearningRate"
:
self
.
_
create_param_lr
(
param_and_grad
)
},
},
outputs
=
{
"ParamOut"
:
param_and_grad
[
0
]})
outputs
=
{
"ParamOut"
:
param_and_grad
[
0
]})
...
@@ -259,19 +252,6 @@ class MomentumOptimizer(Optimizer):
...
@@ -259,19 +252,6 @@ class MomentumOptimizer(Optimizer):
self
.
_momentum
=
momentum
self
.
_momentum
=
momentum
self
.
_use_nesterov
=
bool
(
use_nesterov
)
self
.
_use_nesterov
=
bool
(
use_nesterov
)
def
_initialize_tensors
(
self
,
block
):
assert
isinstance
(
block
,
framework
.
Block
)
lr_shape
=
[
1
]
# create a variable for learning_rate
self
.
_lr
=
self
.
helper
.
create_global_variable
(
name
=
unique_name
(
"learning_rate"
),
dtype
=
'float32'
,
shape
=
lr_shape
,
lod_level
=
1
,
persistable
=
True
)
self
.
helper
.
set_variable_initializer
(
var
=
self
.
_lr
,
initializer
=
ConstantInitializer
(
self
.
_learning_rate
))
def
_create_accumulators
(
self
,
block
,
parameters
):
def
_create_accumulators
(
self
,
block
,
parameters
):
assert
isinstance
(
block
,
framework
.
Block
)
assert
isinstance
(
block
,
framework
.
Block
)
...
@@ -290,7 +270,7 @@ class MomentumOptimizer(Optimizer):
...
@@ -290,7 +270,7 @@ class MomentumOptimizer(Optimizer):
"Param"
:
param_and_grad
[
0
],
"Param"
:
param_and_grad
[
0
],
"Grad"
:
param_and_grad
[
1
],
"Grad"
:
param_and_grad
[
1
],
"Velocity"
:
velocity_acc
,
"Velocity"
:
velocity_acc
,
"LearningRate"
:
self
.
_
lr
"LearningRate"
:
self
.
_
create_param_lr
(
param_and_grad
)
},
},
outputs
=
{
outputs
=
{
"ParamOut"
:
param_and_grad
[
0
],
"ParamOut"
:
param_and_grad
[
0
],
...
@@ -315,18 +295,6 @@ class AdagradOptimizer(Optimizer):
...
@@ -315,18 +295,6 @@ class AdagradOptimizer(Optimizer):
self
.
_learning_rate
=
learning_rate
self
.
_learning_rate
=
learning_rate
self
.
_epsilon
=
epsilon
self
.
_epsilon
=
epsilon
def
_initialize_tensors
(
self
,
block
):
lr_shape
=
[
1
]
# create a variable for learning_rate
self
.
_lr
=
self
.
helper
.
create_global_variable
(
name
=
unique_name
(
"learning_rate"
),
dtype
=
'float32'
,
shape
=
lr_shape
,
lod_level
=
1
,
persistable
=
True
)
self
.
helper
.
set_variable_initializer
(
var
=
self
.
_lr
,
initializer
=
ConstantInitializer
(
self
.
_learning_rate
))
def
_create_accumulators
(
self
,
block
,
parameters
):
def
_create_accumulators
(
self
,
block
,
parameters
):
assert
isinstance
(
block
,
framework
.
Block
)
assert
isinstance
(
block
,
framework
.
Block
)
...
@@ -346,7 +314,7 @@ class AdagradOptimizer(Optimizer):
...
@@ -346,7 +314,7 @@ class AdagradOptimizer(Optimizer):
"Param"
:
param_and_grad
[
0
],
"Param"
:
param_and_grad
[
0
],
"Grad"
:
param_and_grad
[
1
],
"Grad"
:
param_and_grad
[
1
],
"Moment"
:
moment_acc
,
"Moment"
:
moment_acc
,
"LearningRate"
:
self
.
_
lr
"LearningRate"
:
self
.
_
create_param_lr
(
param_and_grad
)
},
},
outputs
=
{
"ParamOut"
:
param_and_grad
[
0
],
outputs
=
{
"ParamOut"
:
param_and_grad
[
0
],
"MomentOut"
:
moment_acc
},
"MomentOut"
:
moment_acc
},
...
@@ -378,18 +346,6 @@ class AdamOptimizer(Optimizer):
...
@@ -378,18 +346,6 @@ class AdamOptimizer(Optimizer):
self
.
_beta2
=
beta2
self
.
_beta2
=
beta2
self
.
_epsilon
=
epsilon
self
.
_epsilon
=
epsilon
def
_initialize_tensors
(
self
,
block
):
lr_shape
=
[
1
]
# create a variable for learning_rate
self
.
_lr
=
self
.
helper
.
create_global_variable
(
name
=
unique_name
(
"learning_rate"
),
dtype
=
'float32'
,
shape
=
lr_shape
,
lod_level
=
1
,
persistable
=
True
)
self
.
helper
.
set_variable_initializer
(
var
=
self
.
_lr
,
initializer
=
ConstantInitializer
(
self
.
_learning_rate
))
def
_create_accumulators
(
self
,
block
,
parameters
):
def
_create_accumulators
(
self
,
block
,
parameters
):
assert
isinstance
(
block
,
framework
.
Block
)
assert
isinstance
(
block
,
framework
.
Block
)
...
@@ -433,7 +389,7 @@ class AdamOptimizer(Optimizer):
...
@@ -433,7 +389,7 @@ class AdamOptimizer(Optimizer):
inputs
=
{
inputs
=
{
"Param"
:
param_and_grad
[
0
],
"Param"
:
param_and_grad
[
0
],
"Grad"
:
param_and_grad
[
1
],
"Grad"
:
param_and_grad
[
1
],
"LearningRate"
:
self
.
_
lr
,
"LearningRate"
:
self
.
_
create_param_lr
(
param_and_grad
)
,
"Moment1"
:
moment1
,
"Moment1"
:
moment1
,
"Moment2"
:
moment2
,
"Moment2"
:
moment2
,
"Beta1Pow"
:
self
.
_beta1_pow_acc
,
"Beta1Pow"
:
self
.
_beta1_pow_acc
,
...
@@ -495,18 +451,6 @@ class AdamaxOptimizer(Optimizer):
...
@@ -495,18 +451,6 @@ class AdamaxOptimizer(Optimizer):
self
.
_beta2
=
beta2
self
.
_beta2
=
beta2
self
.
_epsilon
=
epsilon
self
.
_epsilon
=
epsilon
def
_initialize_tensors
(
self
,
block
):
lr_shape
=
[
1
]
# create a variable for learning_rate
self
.
_lr
=
self
.
helper
.
create_global_variable
(
name
=
unique_name
(
"learning_rate"
),
dtype
=
'float32'
,
shape
=
lr_shape
,
lod_level
=
1
,
persistable
=
True
)
self
.
helper
.
set_variable_initializer
(
var
=
self
.
_lr
,
initializer
=
ConstantInitializer
(
self
.
_learning_rate
))
def
_create_accumulators
(
self
,
block
,
parameters
):
def
_create_accumulators
(
self
,
block
,
parameters
):
# Create beta1 power accumulator tensor
# Create beta1 power accumulator tensor
beta_shape
=
[
1
]
beta_shape
=
[
1
]
...
@@ -536,7 +480,7 @@ class AdamaxOptimizer(Optimizer):
...
@@ -536,7 +480,7 @@ class AdamaxOptimizer(Optimizer):
inputs
=
{
inputs
=
{
"Param"
:
param_and_grad
[
0
],
"Param"
:
param_and_grad
[
0
],
"Grad"
:
param_and_grad
[
1
],
"Grad"
:
param_and_grad
[
1
],
"LearningRate"
:
self
.
_
lr
,
"LearningRate"
:
self
.
_
create_param_lr
(
param_and_grad
)
,
"Moment"
:
moment
,
"Moment"
:
moment
,
"InfNorm"
:
inf_norm
,
"InfNorm"
:
inf_norm
,
"Beta1Pow"
:
self
.
_beta1_pow_acc
"Beta1Pow"
:
self
.
_beta1_pow_acc
...
...
python/paddle/v2/framework/tests/test_understand_sentiment_dynamic_lstm.py
0 → 100644
浏览文件 @
471573ef
import
paddle.v2
as
paddle
import
paddle.v2.framework.layers
as
layers
import
paddle.v2.framework.nets
as
nets
import
paddle.v2.framework.core
as
core
import
paddle.v2.framework.optimizer
as
optimizer
from
paddle.v2.framework.framework
import
Program
,
g_main_program
,
g_startup_program
from
paddle.v2.framework.executor
import
Executor
import
numpy
as
np
def
stacked_lstm_net
(
input_dim
,
class_dim
=
2
,
emb_dim
=
128
,
hid_dim
=
512
,
stacked_num
=
3
):
assert
stacked_num
%
2
==
1
data
=
layers
.
data
(
name
=
"words"
,
shape
=
[
1
],
data_type
=
"int64"
)
label
=
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
data_type
=
"int64"
)
emb
=
layers
.
embedding
(
input
=
data
,
size
=
[
input_dim
,
emb_dim
])
# add bias attr
# TODO(qijun) linear act
fc1
=
layers
.
fc
(
input
=
emb
,
size
=
hid_dim
)
lstm1
,
cell1
=
layers
.
dynamic_lstm
(
input
=
fc1
,
size
=
hid_dim
)
inputs
=
[
fc1
,
lstm1
]
for
i
in
range
(
2
,
stacked_num
+
1
):
fc
=
layers
.
fc
(
input
=
inputs
,
size
=
hid_dim
)
lstm
,
cell
=
layers
.
dynamic_lstm
(
input
=
fc
,
size
=
hid_dim
,
is_reverse
=
(
i
%
2
)
==
0
)
inputs
=
[
fc
,
lstm
]
fc_last
=
layers
.
sequence_pool
(
input
=
inputs
[
0
],
pool_type
=
'max'
)
lstm_last
=
layers
.
sequence_pool
(
input
=
inputs
[
1
],
pool_type
=
'max'
)
prediction
=
layers
.
fc
(
input
=
[
fc_last
,
lstm_last
],
size
=
class_dim
,
act
=
'softmax'
)
cost
=
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
layers
.
mean
(
x
=
cost
)
adam_optimizer
=
optimizer
.
AdamOptimizer
(
learning_rate
=
0.002
)
opts
=
adam_optimizer
.
minimize
(
avg_cost
)
acc
=
layers
.
accuracy
(
input
=
prediction
,
label
=
label
)
return
avg_cost
,
acc
def
to_lodtensor
(
data
,
place
):
seq_lens
=
[
len
(
seq
)
for
seq
in
data
]
cur_len
=
0
lod
=
[
cur_len
]
for
l
in
seq_lens
:
cur_len
+=
l
lod
.
append
(
cur_len
)
flattened_data
=
np
.
concatenate
(
data
,
axis
=
0
).
astype
(
"int64"
)
flattened_data
=
flattened_data
.
reshape
([
len
(
flattened_data
),
1
])
res
=
core
.
LoDTensor
()
res
.
set
(
flattened_data
,
place
)
res
.
set_lod
([
lod
])
return
res
def
main
():
BATCH_SIZE
=
100
PASS_NUM
=
5
word_dict
=
paddle
.
dataset
.
imdb
.
word_dict
()
print
"load word dict successfully"
dict_dim
=
len
(
word_dict
)
class_dim
=
2
cost
,
acc
=
stacked_lstm_net
(
input_dim
=
dict_dim
,
class_dim
=
class_dim
)
train_data
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
imdb
.
train
(
word_dict
),
buf_size
=
1000
),
batch_size
=
BATCH_SIZE
)
place
=
core
.
CPUPlace
()
exe
=
Executor
(
place
)
exe
.
run
(
g_startup_program
)
for
pass_id
in
xrange
(
PASS_NUM
):
for
data
in
train_data
():
tensor_words
=
to_lodtensor
(
map
(
lambda
x
:
x
[
0
],
data
),
place
)
label
=
np
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)).
astype
(
"int64"
)
label
=
label
.
reshape
([
BATCH_SIZE
,
1
])
tensor_label
=
core
.
LoDTensor
()
tensor_label
.
set
(
label
,
place
)
outs
=
exe
.
run
(
g_main_program
,
feed
=
{
"words"
:
tensor_words
,
"label"
:
tensor_label
},
fetch_list
=
[
cost
,
acc
])
cost_val
=
np
.
array
(
outs
[
0
])
acc_val
=
np
.
array
(
outs
[
1
])
print
(
"cost="
+
str
(
cost_val
)
+
" acc="
+
str
(
acc_val
))
if
cost_val
<
1.0
and
acc_val
>
0.7
:
exit
(
0
)
exit
(
1
)
if
__name__
==
'__main__'
:
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录