From 468f8ccff9eafcd58195e4a948e1d7f068ca6d22 Mon Sep 17 00:00:00 2001 From: phlrain Date: Thu, 11 Apr 2019 12:28:20 +0000 Subject: [PATCH] supprt high rank; test=develop --- .../sigmoid_cross_entropy_with_logits_op.cc | 60 ++++++------ ...st_sigmoid_cross_entropy_with_logits_op.py | 93 +++++++++++++++++++ 2 files changed, 127 insertions(+), 26 deletions(-) diff --git a/paddle/fluid/operators/sigmoid_cross_entropy_with_logits_op.cc b/paddle/fluid/operators/sigmoid_cross_entropy_with_logits_op.cc index 5c92588cc1d..1c2726454f3 100644 --- a/paddle/fluid/operators/sigmoid_cross_entropy_with_logits_op.cc +++ b/paddle/fluid/operators/sigmoid_cross_entropy_with_logits_op.cc @@ -34,15 +34,22 @@ class SigmoidCrossEntropyWithLogitsOp : public framework::OperatorWithKernel { auto x_dims = ctx->GetInputDim("X"); auto labels_dims = ctx->GetInputDim("Label"); - PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank should be 2."); - PADDLE_ENFORCE_EQ(labels_dims.size(), 2, - "Input(Label)'s rank should be 2."); - PADDLE_ENFORCE_EQ(x_dims[0], labels_dims[0], - "The 1st dimension of Input(X) and Input(Label) should " - "be equal."); - PADDLE_ENFORCE_EQ(x_dims[1], labels_dims[1], - "The 2nd dimension of Input(X) and Input(Label) should " - "be equal."); + + int rank = x_dims.size(); + PADDLE_ENFORCE_EQ(rank, labels_dims.size(), + "Input(X) and Input(Label) shall have the same rank."); + bool check = true; + if ((!ctx->IsRuntime()) && (framework::product(x_dims) <= 0 || + framework::product(labels_dims) <= 0)) { + check = false; + } + + if (check) { + PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank), + framework::slice_ddim(labels_dims, 0, rank), + "Input(X) and Input(Label) shall have the same shape " + "except the last dimension."); + } ctx->ShareDim("X", /*->*/ "Out"); ctx->ShareLoD("X", /*->*/ "Out"); @@ -65,23 +72,24 @@ class SigmoidCrossEntropyWithLogitsGradOp auto x_dims = ctx->GetInputDim("X"); auto labels_dims = ctx->GetInputDim("Label"); auto dout_dims = ctx->GetInputDim(framework::GradVarName("Out")); - PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank should be 2."); - PADDLE_ENFORCE_EQ(labels_dims.size(), 2, - "Input(Label)'s rank should be 2."); - PADDLE_ENFORCE_EQ(dout_dims.size(), 2, - "Input(Out@Grad)'s rank should be 2."); - PADDLE_ENFORCE_EQ(x_dims[0], labels_dims[0], - "The 1st dimension of Input(X) and Input(Label) should " - "be equal."); - PADDLE_ENFORCE_EQ(x_dims[1], labels_dims[1], - "The 2nd dimension of Input(X) and Input(Label) should " - "be equal."); - PADDLE_ENFORCE_EQ(x_dims[0], dout_dims[0], - "The 1st dimension of Input(X) and Input(Out@Grad) " - "should be equal."); - PADDLE_ENFORCE_EQ(x_dims[1], dout_dims[1], - "The 2nd dimension of Input(X) and Input(Out@Grad) " - "should be equal."); + + int rank = x_dims.size(); + bool check = true; + if ((!ctx->IsRuntime()) && (framework::product(x_dims) <= 0 || + framework::product(labels_dims) <= 0)) { + check = false; + } + + if (check) { + PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank), + framework::slice_ddim(labels_dims, 0, rank), + "Input(X) and Input(Label) shall have the same shape."); + + PADDLE_ENFORCE_EQ( + framework::slice_ddim(x_dims, 0, rank), + framework::slice_ddim(dout_dims, 0, rank), + "Input(X) and Input(Out@Grad) shall have the same shape."); + } ctx->SetOutputDim(framework::GradVarName("X"), x_dims); } diff --git a/python/paddle/fluid/tests/unittests/test_sigmoid_cross_entropy_with_logits_op.py b/python/paddle/fluid/tests/unittests/test_sigmoid_cross_entropy_with_logits_op.py index ae1883f1f7e..ec10b634091 100644 --- a/python/paddle/fluid/tests/unittests/test_sigmoid_cross_entropy_with_logits_op.py +++ b/python/paddle/fluid/tests/unittests/test_sigmoid_cross_entropy_with_logits_op.py @@ -149,5 +149,98 @@ class TestSigmoidCrossEntropyWithNorm(OpTest): self.check_grad(['X'], 'Out') +class TestSigmoidCrossEntropyWithLogitsOp5(OpTest): + """Test sigmoid_cross_entropy_with_logit_op with probabalistic label + """ + + def setUp(self): + self.op_type = "sigmoid_cross_entropy_with_logits" + batch_size = [10, 10] + num_classes = 20 + self.inputs = { + 'X': logit( + np.random.uniform(0, 1, tuple(batch_size + [num_classes])) + .astype("float32")), + 'Label': np.random.uniform(0, 1, tuple(batch_size + [num_classes])) + .astype("float32") + } + + # Fw Pass is implemented as elementwise sigmoid followed by + # elementwise logistic loss + # Label * -log(sigmoid(X)) + (1 - label) * -log(1 - sigmoid(X)) + sigmoid_X = expit(self.inputs['X']) + term1 = self.inputs['Label'] * np.log(sigmoid_X) + term2 = (1 - self.inputs['Label']) * np.log(1 - sigmoid_X) + self.outputs = {'Out': -term1 - term2} + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + self.check_grad(['X'], 'Out') + + +class TestSigmoidCrossEntropyWithNorm2(OpTest): + def setUp(self): + self.op_type = "sigmoid_cross_entropy_with_logits" + batch_size = [10, 10] + num_classes = 20 + ignore_index = -1 + self.inputs = { + 'X': logit( + np.random.uniform(0, 1, tuple(batch_size + [num_classes])) + .astype("float32")), + 'Label': np.random.randint(-1, 2, tuple(batch_size + [num_classes])) + .astype("float32") + } + self.attrs = {'ignore_index': ignore_index, 'normalize': True} + sigmoid_X = expit(self.inputs['X']) + term1 = self.inputs['Label'] * np.log(sigmoid_X) + term2 = (1 - self.inputs['Label']) * np.log(1 - sigmoid_X) + out = -term1 - term2 + out[np.where(self.inputs['Label'] == ignore_index)] = 0 + if self.attrs['normalize']: + out = out / float( + np.where(self.inputs['Label'] != ignore_index)[0].size) + self.outputs = {'Out': out} + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + self.check_grad(['X'], 'Out') + + +class TestSigmoidCrossEntropyWithLogitsOp6(OpTest): + """Test sigmoid_cross_entropy_with_logit_op with binary label + """ + + def setUp(self): + self.op_type = "sigmoid_cross_entropy_with_logits" + batch_size = [10, 10] + num_classes = 20 + self.inputs = { + 'X': logit( + np.random.uniform(0, 1, tuple(batch_size + [num_classes])) + .astype("float32")), + 'Label': np.random.randint(0, 2, tuple(batch_size + [num_classes])) + .astype("float32") + } + + # Fw Pass is implemented as elementwise sigmoid followed by + # elementwise logistic loss + # Label * -log(sigmoid(X)) + (1 - label) * -log(1 - sigmoid(X)) + sigmoid_X = expit(self.inputs['X']) + term1 = self.inputs['Label'] * np.log(sigmoid_X) + term2 = (1 - self.inputs['Label']) * np.log(1 - sigmoid_X) + self.outputs = {'Out': -term1 - term2} + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + self.check_grad(['X'], 'Out') + + if __name__ == '__main__': unittest.main() -- GitLab