Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
45af4f2a
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
45af4f2a
编写于
8月 11, 2021
作者:
A
andyjpaddle
提交者:
GitHub
8月 11, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[NPU] add elementwise_min_grad_op_npu,test=develop (#34731)
上级
addd5fce
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
265 addition
and
43 deletion
+265
-43
paddle/fluid/operators/elementwise/elementwise_min_op_npu.cc
paddle/fluid/operators/elementwise/elementwise_min_op_npu.cc
+173
-3
python/paddle/fluid/tests/unittests/npu/test_elementwise_min_op_npu.py
.../fluid/tests/unittests/npu/test_elementwise_min_op_npu.py
+92
-40
未找到文件。
paddle/fluid/operators/elementwise/elementwise_min_op_npu.cc
浏览文件 @
45af4f2a
...
@@ -15,7 +15,9 @@ limitations under the License. */
...
@@ -15,7 +15,9 @@ limitations under the License. */
#include <memory>
#include <memory>
#include <string>
#include <string>
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/elementwise/elementwise_min_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_min_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_npu.h"
#include "paddle/fluid/operators/npu_op_runner.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace
paddle
{
namespace
paddle
{
...
@@ -27,21 +29,182 @@ template <typename DeviceContext, typename T>
...
@@ -27,21 +29,182 @@ template <typename DeviceContext, typename T>
class
ElementwiseMinNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
class
ElementwiseMinNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>();
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
*
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
place
=
ctx
.
GetPlace
();
auto
place
=
ctx
.
GetPlace
();
out
->
mutable_data
<
T
>
(
place
);
out
->
mutable_data
<
T
>
(
place
);
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
bool
direct_compute
=
false
;
auto
x_dims
=
x
->
dims
();
auto
y_dims
=
y
->
dims
();
axis
=
(
axis
==
-
1
?
std
::
abs
(
x_dims
.
size
()
-
y_dims
.
size
())
:
axis
);
if
(
x_dims
.
size
()
>=
y_dims
.
size
())
{
direct_compute
=
y_dims
==
framework
::
slice_ddim
(
x_dims
,
axis
,
x_dims
.
size
());
}
else
{
direct_compute
=
x_dims
==
framework
::
slice_ddim
(
y_dims
,
axis
,
y_dims
.
size
());
}
Tensor
transformed_x
,
transformed_y
;
if
(
direct_compute
)
{
transformed_x
.
ShareDataWith
(
*
x
);
transformed_y
.
ShareDataWith
(
*
y
);
}
else
{
NpuElementWiseOpBroadcast
<
T
>
(
dev_ctx
,
x
,
y
,
axis
,
&
transformed_x
,
&
transformed_y
);
}
const
auto
&
runner
=
NpuOpRunner
(
"Minimum"
,
{
transformed_x
,
transformed_y
},
{
*
out
},
{});
auto
stream
=
auto
stream
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
.
stream
();
runner
.
Run
(
stream
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
ElementwiseMinGradNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>();
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
*
dout
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dy
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
axis
=
(
axis
==
-
1
?
std
::
abs
(
x
->
dims
().
size
()
-
y
->
dims
().
size
())
:
axis
);
auto
stream
=
dev_ctx
.
stream
();
if
(
dx
&&
dy
)
{
// dx
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
Tensor
tmp_x
;
tmp_x
.
ShareDataWith
(
*
dx
);
if
(
dx
->
dims
()
!=
dout
->
dims
())
{
std
::
vector
<
int
>
dst_dims_vec_x
;
std
::
vector
<
int
>
reduce_axes_x
;
auto
src_dims_x
=
dx
->
dims
();
auto
dout_dims
=
dout
->
dims
();
int
src_axis_x
=
(
src_dims_x
.
size
()
<
dout_dims
.
size
()
?
axis
:
0
);
for
(
int
ax
=
0
;
ax
<
dout_dims
.
size
();
++
ax
)
{
if
((
ax
<
src_axis_x
||
ax
>=
src_axis_x
+
src_dims_x
.
size
())
||
(
dout_dims
[
ax
]
>
1
&&
src_dims_x
[
ax
-
src_axis_x
]
==
1
))
{
reduce_axes_x
.
push_back
(
ax
);
}
else
{
dst_dims_vec_x
.
push_back
(
dout_dims
[
ax
]);
}
}
if
(
!
reduce_axes_x
.
empty
())
{
tmp_x
.
Resize
(
framework
::
make_ddim
(
dst_dims_vec_x
));
}
}
// dy
dy
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
Tensor
tmp_y
;
tmp_y
.
ShareDataWith
(
*
dy
);
if
(
dy
->
dims
()
!=
dout
->
dims
())
{
std
::
vector
<
int
>
dst_dims_vec_y
;
std
::
vector
<
int
>
reduce_axes_y
;
auto
src_dims_y
=
dy
->
dims
();
auto
dout_dims
=
dout
->
dims
();
int
src_axis_y
=
(
src_dims_y
.
size
()
<
dout_dims
.
size
()
?
axis
:
0
);
for
(
int
ax
=
0
;
ax
<
dout_dims
.
size
();
++
ax
)
{
if
((
ax
<
src_axis_y
||
ax
>=
src_axis_y
+
src_dims_y
.
size
())
||
(
dout_dims
[
ax
]
>
1
&&
src_dims_y
[
ax
-
src_axis_y
]
==
1
))
{
reduce_axes_y
.
push_back
(
ax
);
}
else
{
dst_dims_vec_y
.
push_back
(
dout_dims
[
ax
]);
}
}
if
(
!
reduce_axes_y
.
empty
())
{
tmp_y
.
Resize
(
framework
::
make_ddim
(
dst_dims_vec_y
));
}
}
const
auto
&
runner
=
NpuOpRunner
(
"Minimum"
,
{
*
x
,
*
y
},
{
*
out
},
{});
const
auto
&
runner
=
NpuOpRunner
(
"MinimumGrad"
,
{
*
dout
,
*
x
,
*
y
},
{
tmp_x
,
tmp_y
},
{{
"grad_x"
,
true
},
{
"grad_y"
,
true
}});
runner
.
Run
(
stream
);
runner
.
Run
(
stream
);
}
else
if
(
dx
)
{
Tensor
zero_tensor
(
dout
->
type
());
zero_tensor
.
mutable_data
<
T
>
(
y
->
dims
(),
ctx
.
GetPlace
());
FillNpuTensorWithConstant
<
T
>
(
&
zero_tensor
,
static_cast
<
T
>
(
0
));
// dx
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
Tensor
tmp_x
;
tmp_x
.
ShareDataWith
(
*
dx
);
if
(
dx
->
dims
()
!=
dout
->
dims
())
{
std
::
vector
<
int
>
dst_dims_vec_x
;
std
::
vector
<
int
>
reduce_axes_x
;
auto
src_dims_x
=
dx
->
dims
();
auto
dout_dims
=
dout
->
dims
();
int
src_axis_x
=
(
src_dims_x
.
size
()
<
dout_dims
.
size
()
?
axis
:
0
);
for
(
int
ax
=
0
;
ax
<
dout_dims
.
size
();
++
ax
)
{
if
((
ax
<
src_axis_x
||
ax
>=
src_axis_x
+
src_dims_x
.
size
())
||
(
dout_dims
[
ax
]
>
1
&&
src_dims_x
[
ax
-
src_axis_x
]
==
1
))
{
reduce_axes_x
.
push_back
(
ax
);
}
else
{
dst_dims_vec_x
.
push_back
(
dout_dims
[
ax
]);
}
}
if
(
!
reduce_axes_x
.
empty
())
{
tmp_x
.
Resize
(
framework
::
make_ddim
(
dst_dims_vec_x
));
}
}
const
auto
&
runner
=
NpuOpRunner
(
"MinimumGrad"
,
{
*
dout
,
*
x
,
*
y
},
{
tmp_x
,
zero_tensor
},
{{
"grad_x"
,
true
},
{
"grad_y"
,
true
}});
runner
.
Run
(
stream
);
}
else
if
(
dy
)
{
Tensor
zero_tensor
(
dout
->
type
());
zero_tensor
.
mutable_data
<
T
>
(
x
->
dims
(),
ctx
.
GetPlace
());
FillNpuTensorWithConstant
<
T
>
(
&
zero_tensor
,
static_cast
<
T
>
(
0
));
// dy
dy
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
Tensor
tmp_y
;
tmp_y
.
ShareDataWith
(
*
dy
);
if
(
dy
->
dims
()
!=
dout
->
dims
())
{
std
::
vector
<
int
>
dst_dims_vec_y
;
std
::
vector
<
int
>
reduce_axes_y
;
auto
src_dims_y
=
dy
->
dims
();
auto
dout_dims
=
dout
->
dims
();
int
src_axis_y
=
(
src_dims_y
.
size
()
<
dout_dims
.
size
()
?
axis
:
0
);
for
(
int
ax
=
0
;
ax
<
dout_dims
.
size
();
++
ax
)
{
if
((
ax
<
src_axis_y
||
ax
>=
src_axis_y
+
src_dims_y
.
size
())
||
(
dout_dims
[
ax
]
>
1
&&
src_dims_y
[
ax
-
src_axis_y
]
==
1
))
{
reduce_axes_y
.
push_back
(
ax
);
}
else
{
dst_dims_vec_y
.
push_back
(
dout_dims
[
ax
]);
}
}
if
(
!
reduce_axes_y
.
empty
())
{
tmp_y
.
Resize
(
framework
::
make_ddim
(
dst_dims_vec_y
));
}
}
const
auto
&
runner
=
NpuOpRunner
(
"MinimumGrad"
,
{
*
dout
,
*
x
,
*
y
},
{
zero_tensor
,
tmp_y
},
{{
"grad_x"
,
true
},
{
"grad_y"
,
true
}});
runner
.
Run
(
stream
);
}
else
{
std
::
cout
<<
"error"
<<
std
::
endl
;
}
}
}
};
};
...
@@ -49,9 +212,16 @@ class ElementwiseMinNPUKernel : public framework::OpKernel<T> {
...
@@ -49,9 +212,16 @@ class ElementwiseMinNPUKernel : public framework::OpKernel<T> {
}
// namespace paddle
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_NPU_KERNEL
(
REGISTER_OP_NPU_KERNEL
(
elementwise_min
,
elementwise_min
,
ops
::
ElementwiseMinNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
float
>
,
ops
::
ElementwiseMinNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
float
>
,
ops
::
ElementwiseMinNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
ops
::
ElementwiseMinNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
paddle
::
platform
::
float16
>
);
paddle
::
platform
::
float16
>
);
REGISTER_OP_NPU_KERNEL
(
elementwise_min_grad
,
ops
::
ElementwiseMinGradNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
float
>
,
ops
::
ElementwiseMinGradNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
paddle
::
platform
::
float16
>
);
python/paddle/fluid/tests/unittests/npu/test_elementwise_min_op_npu.py
浏览文件 @
45af4f2a
...
@@ -18,81 +18,133 @@ import numpy as np
...
@@ -18,81 +18,133 @@ import numpy as np
import
unittest
import
unittest
import
sys
import
sys
sys
.
path
.
append
(
".."
)
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
from
op_test
import
OpTest
,
skip_check_grad_ci
import
paddle
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddle.fluid
import
Program
,
program_guard
import
paddle.fluid.core
as
core
paddle
.
enable_static
()
paddle
.
enable_static
()
SEED
=
2021
SEED
=
2021
class
TestElementwiseMin
(
OpTest
):
class
TestElementwiseMin
Op
(
OpTest
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
set_npu
()
self
.
set_npu
()
self
.
op_type
=
"elementwise_min"
self
.
op_type
=
"elementwise_min"
self
.
place
=
paddle
.
NPUPlace
(
0
)
self
.
place
=
paddle
.
NPUPlace
(
0
)
self
.
init_dtype
()
self
.
init_dtype
()
np
.
random
.
seed
(
SEED
)
self
.
init_input_output
()
x
=
np
.
random
.
uniform
(
1
,
2
,
[
11
,
17
]).
astype
(
self
.
dtype
)
y
=
np
.
random
.
uniform
(
1
,
2
,
[
11
,
17
]).
astype
(
self
.
dtype
)
out
=
np
.
minimum
(
x
,
y
)
self
.
inputs
=
{
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
x
),
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
self
.
x
),
'Y'
:
OpTest
.
np_dtype_to_fluid_dtype
(
y
)
'Y'
:
OpTest
.
np_dtype_to_fluid_dtype
(
self
.
y
)
}
}
self
.
attrs
=
{
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
outputs
=
{
'Out'
:
out
}
self
.
attrs
=
{
'axis'
:
self
.
axis
}
def
set_npu
(
self
):
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
self
.
__class__
.
use_npu
=
True
def
init_input_output
(
self
):
# If x and y have the same value, the min() is not differentiable.
# So we generate test data by the following method
# to avoid them being too close to each other.
self
.
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
)
self
.
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
[
13
,
17
]).
astype
(
self
.
dtype
)
self
.
y
=
self
.
x
+
self
.
sgn
*
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
)
self
.
out
=
np
.
minimum
(
self
.
x
,
self
.
y
)
self
.
axis
=
-
1
def
init_dtype
(
self
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
self
.
check_output_with_place
(
self
.
place
)
# TODO(ascendrc): Min grad test
def
test_check_grad_normal
(
self
):
# def test_check_grad(self):
if
self
.
dtype
==
np
.
float16
:
# if self.dtype == np.float16:
return
# return
# self.check_grad(['X'], 'Out')
#
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
,
'Y'
],
'Out'
,
)
class
TestElementwiseMinFp16
(
OpTest
):
def
test_check_grad_ingore_x
(
self
):
def
setUp
(
self
):
if
self
.
dtype
==
np
.
float16
:
self
.
set_npu
()
return
self
.
op_type
=
"elementwise_min"
self
.
place
=
paddle
.
NPUPlace
(
0
)
self
.
init_dtype
()
self
.
check_grad_with_place
(
np
.
random
.
seed
(
SEED
)
self
.
place
,
x
=
np
.
random
.
uniform
(
1
,
2
,
[
3
,
4
]).
astype
(
self
.
dtype
)
[
'Y'
],
y
=
np
.
random
.
uniform
(
1
,
2
,
[
3
,
4
]).
astype
(
self
.
dtype
)
'Out'
,
out
=
np
.
minimum
(
x
,
y
)
no_grad_set
=
set
(
"X"
),
)
self
.
inputs
=
{
def
test_check_grad_ingore_y
(
self
):
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
x
),
if
self
.
dtype
==
np
.
float16
:
'Y'
:
OpTest
.
np_dtype_to_fluid_dtype
(
y
)
return
}
self
.
attrs
=
{}
self
.
check_grad_with_place
(
self
.
outputs
=
{
'Out'
:
out
}
self
.
place
,
[
'X'
],
'Out'
,
no_grad_set
=
set
(
"Y"
),
)
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
self
.
__class__
.
no_need_check_grad
=
True
class
TestElementwiseMinOpFp16
(
TestElementwiseMinOp
):
def
init_dtype
(
self
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
atol
=
1e-5
)
class
TestElementwiseMinOp_Vector
(
TestElementwiseMinOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
uniform
(
1
,
2
,
(
100
,
)).
astype
(
self
.
dtype
)
self
.
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
self
.
dtype
)
self
.
y
=
self
.
x
+
self
.
sgn
*
np
.
random
.
uniform
(
0.1
,
1
,
(
100
,
)).
astype
(
self
.
dtype
)
self
.
out
=
np
.
minimum
(
self
.
x
,
self
.
y
)
self
.
axis
=
-
1
class
TestElementwiseMinOpFp16_Vector
(
TestElementwiseMinOp_Vector
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1) to test broadcast."
)
class
TestElementwiseMinOp_scalar
(
TestElementwiseMinOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
random_integers
(
-
5
,
5
,
[
10
,
3
,
4
]).
astype
(
self
.
dtype
)
self
.
y
=
np
.
array
([
0.5
]).
astype
(
self
.
dtype
)
self
.
out
=
np
.
minimum
(
self
.
x
,
self
.
y
)
self
.
axis
=
-
1
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1) to test broadcast."
)
class
TestElementwiseMinOpFp16_scalar
(
TestElementwiseMinOp_scalar
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
class
TestElementwiseMinOp_broadcast
(
TestElementwiseMinOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
3
,
100
)).
astype
(
self
.
dtype
)
self
.
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
self
.
dtype
)
self
.
y
=
self
.
x
[
0
,
0
,
:]
+
self
.
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
100
,
)).
astype
(
self
.
dtype
)
self
.
out
=
np
.
minimum
(
self
.
x
,
self
.
y
.
reshape
(
1
,
1
,
100
))
self
.
axis
=
-
1
class
TestElementwiseMinOpFp16_broadcast
(
TestElementwiseMinOp_broadcast
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
class
TestElementwiseMinNet
(
unittest
.
TestCase
):
class
TestElementwiseMin
Op
Net
(
unittest
.
TestCase
):
def
_test
(
self
,
run_npu
=
True
):
def
_test
(
self
,
run_npu
=
True
):
main_prog
=
paddle
.
static
.
Program
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录