Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
45a8c9dd
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
45a8c9dd
编写于
11月 21, 2017
作者:
S
sweetsky0901
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add unpool2d make ok
上级
f638f910
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
59 addition
and
45 deletion
+59
-45
paddle/operators/CMakeLists.txt
paddle/operators/CMakeLists.txt
+7
-0
paddle/operators/math/unpooling.cc
paddle/operators/math/unpooling.cc
+10
-16
paddle/operators/math/unpooling.cu
paddle/operators/math/unpooling.cu
+12
-9
paddle/operators/math/unpooling.h
paddle/operators/math/unpooling.h
+3
-2
paddle/operators/unpool_op.cc
paddle/operators/unpool_op.cc
+16
-9
paddle/operators/unpool_op.cu.cc
paddle/operators/unpool_op.cu.cc
+5
-2
paddle/operators/unpool_op.h
paddle/operators/unpool_op.h
+6
-7
未找到文件。
paddle/operators/CMakeLists.txt
浏览文件 @
45a8c9dd
...
...
@@ -80,6 +80,13 @@ function(op_library TARGET)
file
(
APPEND
${
pybind_file
}
"USE_OP(pool2d);
\n
"
)
endif
()
# unpool_op contains several operators
if
(
"
${
TARGET
}
"
STREQUAL
"unpool_op"
)
set
(
pybind_flag 1
)
# It's enough to just adding one operator to pybind
file
(
APPEND
${
pybind_file
}
"USE_OP(unpool2d);
\n
"
)
endif
()
# pool_cudnn_op contains several operators
if
(
"
${
TARGET
}
"
STREQUAL
"pool_cudnn_op"
)
set
(
pybind_flag 1
)
...
...
paddle/operators/math/unpooling.cc
浏览文件 @
45a8c9dd
...
...
@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/math/
maxout
ing.h"
#include "paddle/operators/math/
unpool
ing.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -20,7 +20,7 @@ namespace math {
// All tensors are in NCHW format
template
<
typename
T
>
class
Unpool2d_Max
_
Functor
<
platform
::
CPUPlace
,
T
>
{
class
Unpool2d_MaxFunctor
<
platform
::
CPUPlace
,
T
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
...
...
@@ -36,16 +36,14 @@ class Unpool2d_Max_Functor<platform::CPUPlace, T> {
int
input_feasize
=
input_height
*
input_width
;
int
output_feasize
=
output_height
*
output_width
;
const
T
*
input_data
=
input
.
data
<
T
>
();
const
T
*
indices_data
=
indices
.
data
<
T
>
();
const
int
*
indices_data
=
indices
.
data
<
int
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
for
(
int
b
=
0
;
b
<
batch_size
;
++
b
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
for
(
int
i
=
0
;
i
<
input_feasize
;
++
i
)
{
int
index
=
indices_data
[
i
];
if
(
index
>
output_feasize
)
{
//抛一个异常!
}
// PADDLE_ENFORCE(index < output_feasize, "err index in unpooling!");
output_data
[
index
]
=
input_data
[
i
];
}
input_data
+=
input_feasize
;
...
...
@@ -70,26 +68,22 @@ public:
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_height
=
input
.
dims
()[
2
];
const
int
input_width
=
input
.
dims
()[
3
];
const
int
output_channels
=
output
->
dims
()[
1
];
const
int
output_height
=
output
->
dims
()[
2
];
const
int
output_width
=
output
->
dims
()[
3
];
const
int
output_channels
=
output
.
dims
()[
1
];
const
int
output_height
=
output
.
dims
()[
2
];
const
int
output_width
=
output
.
dims
()[
3
];
int
input_feasize
=
input_height
*
input_width
;
int
output_feasize
=
output_height
*
output_width
;
const
T
*
input_data
=
input
.
data
<
T
>
();
const
T
*
indices_data
=
indices
.
data
<
T
>
();
const
T
*
output_data
=
output
.
data
<
T
>
();
const
int
*
indices_data
=
indices
.
data
<
int
>
();
const
T
*
output_grad_data
=
output_grad
.
data
<
T
>
();
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
for
(
int
b
=
0
;
b
<
batch_size
;
++
b
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
for
(
int
f
=
0
;
f
<
input_feasize
;
++
f
)
{
for
(
int
i
=
0
;
i
<
input_feasize
;
++
i
)
{
int
index
=
indices_data
[
i
];
if
(
index
>
output_feasize
)
{
//抛一个异常!
}
// PADDLE_ENFORCE(index < output_feasize, "err index in unpooling!");
input_grad_data
[
i
]
=
output_grad_data
[
index
];
}
input_grad_data
+=
input_feasize
;
...
...
paddle/operators/math/unpooling.cu
浏览文件 @
45a8c9dd
...
...
@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/math/
maxout
ing.h"
#include "paddle/operators/math/
unpool
ing.h"
#include "paddle/platform/cuda_helper.h"
namespace
paddle
{
...
...
@@ -22,7 +22,7 @@ namespace math {
template
<
typename
T
>
__global__
void
KernelUnpool2dMax
(
const
int
nthreads
,
const
T
*
input_data
,
const
T
*
indices_data
,
const
int
*
indices_data
,
const
int
input_height
,
const
int
input_width
,
T
*
output_data
,
...
...
@@ -30,16 +30,19 @@ __global__ void KernelUnpool2dMax(const int nthreads,
const
int
output_width
)
{
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
offset
=
blockDim
.
x
*
gridDim
.
x
;
// int output_feasize = output_height * output_width;
for
(
int
i
=
index
;
i
<
nthreads
;
i
+=
offset
)
{
int
out_offset
=
i
/
(
input_height
*
input_width
)
\
*
output_height
*
output_width
;
int
out_index
=
indices_data
[
i
];
// PADDLE_ENFORCE(out_index < output_feasize, "err index in unpooling!");
output_data
[
out_offset
+
out_index
]
=
input_data
[
i
];
}
}
template
<
typename
T
>
__global__
void
KernelUnpool2dMaxGrad
(
const
int
nthreads
,
const
T
*
input_data
,
const
int
*
indices_data
,
const
int
input_height
,
const
int
input_width
,
const
T
*
output_data
,
...
...
@@ -49,10 +52,13 @@ __global__ void KernelUnpool2dMaxGrad(const int nthreads,
T
*
input_grad
)
{
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
offset
=
blockDim
.
x
*
gridDim
.
x
;
// int output_feasize = output_height * output_width;
for
(
int
i
=
index
;
i
<
nthreads
;
i
+=
offset
)
{
int
out_offset
=
i
/
(
input_height
*
input_width
)
\
*
output_height
*
output_width
;
int
out_index
=
indices_data
[
i
];
// PADDLE_ENFORCE(out_index < output_feasize,
// "err index in unpooling!");
input_grad
[
i
]
=
output_grad
[
out_offset
+
out_index
];
}
}
...
...
@@ -72,10 +78,8 @@ class Unpool2d_MaxFunctor<platform::GPUPlace, T> {
const
int
output_channels
=
output
->
dims
()[
1
];
const
int
output_height
=
output
->
dims
()[
2
];
const
int
output_width
=
output
->
dims
()[
3
];
int
input_feasize
=
input_height
*
input_width
;
int
output_feasize
=
output_height
*
output_width
;
const
T
*
input_data
=
input
.
data
<
T
>
();
const
T
*
indices_data
=
indices
.
data
<
T
>
();
const
int
*
indices_data
=
indices
.
data
<
int
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
nthreads
=
output
->
numel
();
...
...
@@ -99,19 +103,18 @@ class Unpool2d_MaxGradFunctor<platform::GPUPlace, T> {
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
indices
,
framework
::
Tensor
*
input_grad
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
int
groups
)
{
const
framework
::
Tensor
&
output_grad
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_height
=
input
.
dims
()[
2
];
const
int
input_width
=
input
.
dims
()[
3
];
const
int
output_channels
=
output
.
dims
()[
1
];
const
int
output_height
=
output
.
dims
()[
2
];
const
int
output_width
=
output
.
dims
()[
3
];
const
T
*
input_data
=
input
.
data
<
T
>
();
const
T
*
indices_data
=
indices
.
data
<
T
>
();
const
int
*
indices_data
=
indices
.
data
<
int
>
();
const
T
*
output_data
=
output
.
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
.
data
<
T
>
();
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
...
...
paddle/operators/math/unpooling.h
浏览文件 @
45a8c9dd
...
...
@@ -26,7 +26,7 @@ namespace math {
template
<
typename
Place
,
typename
T
>
class
Unpool2d_Max
_
Functor
{
class
Unpool2d_MaxFunctor
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
...
...
@@ -35,10 +35,11 @@ class Unpool2d_Max_Functor {
};
template
<
typename
Place
,
class
T
>
class
Unpool2d_Max
_
GradFunctor
{
class
Unpool2d_MaxGradFunctor
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
indices
,
framework
::
Tensor
*
input_grad
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
);
...
...
paddle/operators/unpool_op.cc
浏览文件 @
45a8c9dd
...
...
@@ -20,7 +20,8 @@ using framework::Tensor;
class
Unpool2dOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
UnpoolOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
Unpool2dOpMaker
(
framework
::
OpProto
*
proto
,
\
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"(Tensor) The input tensor of unpool operator. "
...
...
@@ -39,10 +40,12 @@ class Unpool2dOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
std
::
vector
<
int
>>
(
"ksize"
,
"(vector ), the unpooling window size(height, width) "
"of unpooling operator."
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"(vector, default:{1, 1}), "
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"(vector, default:{1, 1}), "
"strides(height, width) of unpooling operator."
)
.
SetDefault
({
1
,
1
});
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"(vector defalut:{0,0}), "
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"(vector defalut:{0,0}), "
"paddings(height, width) of unpooling operator."
)
.
SetDefault
({
0
,
0
});
AddAttr
<
std
::
string
>
(
"unpoolingType"
,
...
...
@@ -73,7 +76,8 @@ class UnpoolOp : public framework::OperatorWithKernel {
auto
in_x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
in_y_dims
=
ctx
->
GetInputDim
(
"Y"
);
std
::
string
unpooling_type
=
ctx
->
Attrs
().
Get
<
std
::
string
>
(
"unpooling_type"
);
std
::
string
unpooling_type
=
\
ctx
->
Attrs
().
Get
<
std
::
string
>
(
"unpooling_type"
);
std
::
vector
<
int
>
ksize
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"paddings"
);
...
...
@@ -95,7 +99,7 @@ class UnpoolOpGrad : public framework::OperatorWithKernel {
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) must not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Y"
),
"Input(
X
) must not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Y"
),
"Input(
Y
) must not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) should not be null"
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)),
...
...
@@ -109,8 +113,11 @@ class UnpoolOpGrad : public framework::OperatorWithKernel {
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
unpool2d
,
ops
::
UnpoolOp
,
ops
::
Unpool2dOpMaker
,
unpool2d_grad
,
ops
::
UnpoolOpGrad
);
REGISTER_OP_CPU_KERNEL
(
unpool2d
,
ops
::
UnpoolKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
unpool2d
,
ops
::
UnpoolKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
UnpoolKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
unpool2d_grad
,
ops
::
UnpoolGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
float
>
,
ops
::
UnpoolGradKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
);
paddle/operators/unpool_op.cu.cc
浏览文件 @
45a8c9dd
...
...
@@ -16,7 +16,10 @@
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
unpool2d
,
ops
::
UnpoolKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
ops
::
UnpoolKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
,
ops
::
UnpoolKernel
<
paddle
::
platform
::
GPUPlace
,
double
>
);
REGISTER_OP_GPU_KERNEL
(
unpool2d_grad
,
ops
::
UnpoolGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
float
>
,
ops
::
UnpoolGradKernel
<
paddle
::
platform
::
GPUPlace
,
double
>
);
paddle/operators/unpool_op.h
浏览文件 @
45a8c9dd
...
...
@@ -37,9 +37,8 @@ class UnpoolKernel : public framework::OpKernel<T> {
switch
(
ksize
.
size
())
{
case
2
:
{
if
(
pooling_type
==
"max"
)
{
math
::
Unpool2d_Max_Functor
<
Place
,
T
>
unpool2d_max_forward
;
unpool2d_max_forward
(
context
.
device_context
(),
*
in_x
,
*
in_y
,
ksize
,
strides
,
paddings
,
out
);
math
::
Unpool2d_MaxFunctor
<
Place
,
T
>
unpool2d_max_forward
;
unpool2d_max_forward
(
context
.
device_context
(),
*
in_x
,
*
in_y
,
out
);
}
}
break
;
default:
{
PADDLE_THROW
(
"Pool op only supports 2D input."
);
}
...
...
@@ -71,12 +70,12 @@ class UnpoolGradKernel : public framework::OpKernel<T> {
switch
(
ksize
.
size
())
{
case
2
:
{
if
(
pooling_type
==
"max"
)
{
math
::
Unpool
GradFunctor
<
Place
,
T
>
maxout
_backward
;
maxout_backward
(
context
.
device_context
(),
*
in_x
,
*
in_y
,
in_x_grad
,
*
out
,
*
out_grad
,
ksize
,
strides
,
paddings
);
math
::
Unpool
2d_MaxGradFunctor
<
Place
,
T
>
unpool2d_max
_backward
;
unpool2d_max_backward
(
context
.
device_context
(),
*
in_x
,
*
in_y
,
in_x_grad
,
*
out
,
*
out_grad
);
}
}
break
;
default:
{
PADDLE_THROW
(
"
P
ool op only supports 2D input."
);
}
default:
{
PADDLE_THROW
(
"
Unp
ool op only supports 2D input."
);
}
}
}
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录