diff --git a/CMakeLists.txt b/CMakeLists.txt index cfaab206e1f321a55119d4a8d65c4a99d3819fff..b35290e12f6d50376bffb538d213bf586f4f9e58 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -55,12 +55,13 @@ option(WITH_FLUID_ONLY "Compile PaddlePaddle fluid only" OFF) option(WITH_GOLANG "Compile PaddlePaddle with GOLANG" OFF) option(GLIDE_INSTALL "Download and install go dependencies " ON) option(USE_NNPACK "Compile PaddlePaddle with NNPACK library" OFF) -option(WITH_DISTRIBUTE "Compile with grpc distributed support" OFF) +option(WITH_DISTRIBUTE "Compile with distributed support" OFF) option(USE_EIGEN_FOR_BLAS "Use matrix multiplication in Eigen" OFF) option(EIGEN_USE_THREADS "Compile with multi-threaded Eigen" OFF) option(WITH_ARM_FP16 "Use half precision support on armv8.2-a cpu" OFF) option(WITH_FAST_BUNDLE_TEST "Bundle tests that can be run in a single process together to reduce launch overhead" OFF) option(WITH_CONTRIB "Compile the third-party contributation" OFF) +option(WITH_GRPC "Use grpc as the default rpc framework" ${WITH_DISTRIBUTE}) # CMAKE_BUILD_TYPE if(NOT CMAKE_BUILD_TYPE) @@ -147,7 +148,16 @@ include(external/any) # download libn::any include(external/eigen) # download eigen3 include(external/pybind11) # download pybind11 include(external/cares) -include(external/grpc) + +if(WITH_DISTRIBUTE) + if(WITH_GRPC) + include(external/grpc) + else() + include(external/leveldb) + include(external/brpc) + endif() +endif() + include(external/snappy) # download snappy include(external/snappystream) include(external/threadpool) diff --git a/benchmark/fluid/README.md b/benchmark/fluid/README.md index f40f3c129741f9b6e3654399a9110b065fec7d6c..28cade4634bb62723bf5120169e202657f548234 100644 --- a/benchmark/fluid/README.md +++ b/benchmark/fluid/README.md @@ -24,10 +24,12 @@ Currently supported `--model` argument include: * Run the following command to start a benchmark job locally: ```bash - python fluid_benchmark.py --model mnist --device GPU + python fluid_benchmark.py --model mnist --device GPU ``` You can choose to use GPU/CPU training. With GPU training, you can specify `--gpus ` to run multi GPU training. + You can set async mode parameter server. With async mode, you can specify + `--async_mode` to train model asynchronous. * Run distributed training with parameter servers: * see [run_fluid_benchmark.sh](https://github.com/PaddlePaddle/Paddle/blob/develop/benchmark/fluid/run_fluid_benchmark.sh) as an example. * start parameter servers: diff --git a/benchmark/fluid/args.py b/benchmark/fluid/args.py new file mode 100644 index 0000000000000000000000000000000000000000..68a3d42d7a8a8082730f4cae3b5d4ea33819ca2f --- /dev/null +++ b/benchmark/fluid/args.py @@ -0,0 +1,126 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import argparse + +__all__ = ['parse_args', ] + +BENCHMARK_MODELS = [ + "machine_translation", "resnet", "vgg", "mnist", "stacked_dynamic_lstm" +] + + +def parse_args(): + parser = argparse.ArgumentParser('Fluid model benchmarks.') + parser.add_argument( + '--model', + type=str, + choices=BENCHMARK_MODELS, + default='resnet', + help='The model to run benchmark with.') + parser.add_argument( + '--batch_size', type=int, default=32, help='The minibatch size.') + # args related to learning rate + parser.add_argument( + '--learning_rate', type=float, default=0.001, help='The learning rate.') + # TODO(wuyi): add "--use_fake_data" option back. + parser.add_argument( + '--skip_batch_num', + type=int, + default=5, + help='The first num of minibatch num to skip, for better performance test' + ) + parser.add_argument( + '--iterations', type=int, default=80, help='The number of minibatches.') + parser.add_argument( + '--pass_num', type=int, default=100, help='The number of passes.') + parser.add_argument( + '--data_format', + type=str, + default='NCHW', + choices=['NCHW', 'NHWC'], + help='The data data_format, now only support NCHW.') + parser.add_argument( + '--device', + type=str, + default='GPU', + choices=['CPU', 'GPU'], + help='The device type.') + parser.add_argument( + '--gpus', + type=int, + default=1, + help='If gpus > 1, will use ParallelExecutor to run, else use Executor.') + # this option is available only for vgg and resnet. + parser.add_argument( + '--cpus', + type=int, + default=1, + help='If cpus > 1, will use ParallelDo to run, else use Executor.') + parser.add_argument( + '--data_set', + type=str, + default='flowers', + choices=['cifar10', 'flowers'], + help='Optional dataset for benchmark.') + parser.add_argument( + '--infer_only', action='store_true', help='If set, run forward only.') + parser.add_argument( + '--use_cprof', action='store_true', help='If set, use cProfile.') + parser.add_argument( + '--use_nvprof', + action='store_true', + help='If set, use nvprof for CUDA.') + parser.add_argument( + '--no_test', + action='store_true', + help='If set, do not test the testset during training.') + parser.add_argument( + '--memory_optimize', + action='store_true', + help='If set, optimize runtime memory before start.') + parser.add_argument( + '--use_fake_data', + action='store_true', + help='If set ommit the actual read data operators.') + parser.add_argument( + '--profile', action='store_true', help='If set, profile a few steps.') + parser.add_argument( + '--update_method', + type=str, + default='local', + choices=['local', 'pserver', 'nccl2'], + help='Choose parameter update method, can be local, pserver, nccl2.') + parser.add_argument( + '--no_split_var', + action='store_true', + default=False, + help='Whether split variables into blocks when update_method is pserver') + parser.add_argument( + '--async_mode', + action='store_true', + default=False, + help='Whether start pserver in async mode to support ASGD') + parser.add_argument( + '--use_reader_op', + action='store_true', + help='Whether to use reader op, and must specify the data path if set this to true.' + ) + parser.add_argument( + '--data_path', + type=str, + default="", + help='Directory that contains all the training recordio files.') + args = parser.parse_args() + return args diff --git a/benchmark/fluid/fluid_benchmark.py b/benchmark/fluid/fluid_benchmark.py index 62a05234c45ee4fe1dc21f5a74efc269227154db..902dca209fcc07cc8048acda84e917f0f6c6af68 100644 --- a/benchmark/fluid/fluid_benchmark.py +++ b/benchmark/fluid/fluid_benchmark.py @@ -24,108 +24,7 @@ import paddle.fluid.core as core import paddle.fluid.profiler as profiler import paddle.fluid.transpiler.distribute_transpiler as distribute_transpiler -BENCHMARK_MODELS = [ - "machine_translation", "resnet", "vgg", "mnist", "stacked_dynamic_lstm" -] - - -def parse_args(): - parser = argparse.ArgumentParser('Fluid model benchmarks.') - parser.add_argument( - '--model', - type=str, - choices=BENCHMARK_MODELS, - default='resnet', - help='The model to run benchmark with.') - parser.add_argument( - '--batch_size', - type=int, - default=32, - help='The batch size on each gpu.') - parser.add_argument( - '--learning_rate', type=float, default=0.001, help='The learning rate.') - parser.add_argument( - '--skip_batch_num', - type=int, - default=5, - help='The first num of minibatch num to skip, for better performance test' - ) - parser.add_argument( - '--iterations', - type=int, - default=80, - help='The number of minibatches, set to -1 to run all batches.') - parser.add_argument( - '--pass_num', type=int, default=100, help='The number of passes.') - parser.add_argument( - '--data_format', - type=str, - default='NCHW', - choices=['NCHW', 'NHWC'], - help='The data data_format, now only support NCHW.') - parser.add_argument( - '--device', - type=str, - default='GPU', - choices=['CPU', 'GPU'], - help='The device type.') - parser.add_argument( - '--gpus', - type=int, - default=1, - help='If gpus > 1, will use ParallelExecutor to run, else use Executor.') - # this option is available only for vgg and resnet. - parser.add_argument( - '--cpus', - type=int, - default=1, - help='If cpus > 1, will use ParallelDo to run, else use Executor.') - parser.add_argument( - '--data_set', - type=str, - default='flowers', - choices=['cifar10', 'flowers', 'imagenet'], - help='Optional dataset for benchmark.') - parser.add_argument( - '--infer_only', action='store_true', help='If set, run forward only.') - parser.add_argument( - '--use_cprof', action='store_true', help='If set, use cProfile.') - parser.add_argument( - '--use_nvprof', - action='store_true', - help='If set, use nvprof for CUDA.') - parser.add_argument( - '--no_test', - action='store_true', - help='If set, do not test the testset during training.') - parser.add_argument( - '--memory_optimize', - action='store_true', - help='If set, optimize runtime memory before start.') - parser.add_argument( - '--use_fake_data', - action='store_true', - help='If set ommit the actual read data operators.') - parser.add_argument( - '--profile', action='store_true', help='If set, profile a few steps.') - parser.add_argument( - '--update_method', - type=str, - default='local', - choices=['local', 'pserver', 'nccl2'], - help='Choose parameter update method, can be local, pserver, nccl2.') - parser.add_argument( - '--use_reader_op', - action='store_true', - help='Whether to use reader op, and must specify the data path if set this to true.' - ) - parser.add_argument( - '--data_path', - type=str, - default="", - help='Directory that contains all the training recordio files.') - args = parser.parse_args() - return args +from args import * def append_nccl2_prepare(trainer_id): @@ -160,7 +59,7 @@ def append_nccl2_prepare(trainer_id): "nccl-based dist train.") -def dist_transpile(trainer_id): +def dist_transpile(trainer_id, args): if trainer_id < 0: return None, None @@ -182,7 +81,12 @@ def dist_transpile(trainer_id): training_role = os.getenv("PADDLE_TRAINING_ROLE") t = distribute_transpiler.DistributeTranspiler() - t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers) + t.transpile( + trainer_id, + pservers=pserver_endpoints, + trainers=trainers, + sync_mode=not args.async_mode, + slice_var_up=not args.no_split_var) if training_role == "PSERVER": pserver_program = t.get_pserver_program(current_endpoint) pserver_startup_program = t.get_startup_program(current_endpoint, @@ -417,7 +321,7 @@ def main(): fluid.memory_optimize(fluid.default_main_program()) if args.update_method == "pserver": - train_prog, startup_prog = dist_transpile(trainer_id) + train_prog, startup_prog = dist_transpile(trainer_id, args) if not train_prog: raise Exception( "Must configure correct environments to run dist train.") diff --git a/benchmark/fluid/models/stacked_dynamic_lstm.py b/benchmark/fluid/models/stacked_dynamic_lstm.py index e1c4857f1a365f6480929ea57296a9801f5ea945..211869af4e8d7180cb485811d3363c50d32f0f74 100644 --- a/benchmark/fluid/models/stacked_dynamic_lstm.py +++ b/benchmark/fluid/models/stacked_dynamic_lstm.py @@ -104,8 +104,9 @@ def get_model(args): loss = fluid.layers.mean(x=loss) # add acc + batch_size_tensor = fluid.layers.create_tensor(dtype='int64') batch_acc = fluid.layers.accuracy(input=logit, label=fluid.layers.data(name='label', \ - shape=[1], dtype='int64')) + shape=[1], dtype='int64'), total=batch_size_tensor) inference_program = fluid.default_main_program().clone() with fluid.program_guard(inference_program): diff --git a/benchmark/fluid/models/vgg.py b/benchmark/fluid/models/vgg.py index 6092cdeb884b3a9b60a3bcf20b022f2b0685e6aa..932601302d2f5d56b53e3462af886429034d8989 100644 --- a/benchmark/fluid/models/vgg.py +++ b/benchmark/fluid/models/vgg.py @@ -82,7 +82,8 @@ def get_model(args): data_file, batch_size=args.batch_size)) images, label = fluid.layers.read_file(data_file) else: - images = fluid.layers.data(name='data', shape=dshape, dtype='float32') + images = fluid.layers.data( + name='data', shape=data_shape, dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') # Train program diff --git a/cmake/configure.cmake b/cmake/configure.cmake index 4158d0528a1aea52c2a3f0880fe1000183a9df53..89d7a62fe9aca3a71ad34b976a186a80174bfd5e 100644 --- a/cmake/configure.cmake +++ b/cmake/configure.cmake @@ -166,3 +166,7 @@ if(WITH_GOLANG) endif() endif(WITH_GOLANG) + +if(WITH_GRPC) + add_definitions(-DPADDLE_WITH_GRPC) +endif(WITH_GRPC) diff --git a/cmake/external/brpc.cmake b/cmake/external/brpc.cmake new file mode 100644 index 0000000000000000000000000000000000000000..8e2c913b2caae0c4eeb844d2b51a8975e81c1592 --- /dev/null +++ b/cmake/external/brpc.cmake @@ -0,0 +1,58 @@ +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +INCLUDE(ExternalProject) + +SET(BRPC_SOURCES_DIR ${THIRD_PARTY_PATH}/brpc) +SET(BRPC_INSTALL_DIR ${THIRD_PARTY_PATH}/install/brpc) +SET(BRPC_INCLUDE_DIR "${BRPC_INSTALL_DIR}/include" CACHE PATH "brpc include directory." FORCE) +SET(BRPC_LIBRARIES "${BRPC_INSTALL_DIR}/lib/libbrpc.a" CACHE FILEPATH "brpc library." FORCE) + +INCLUDE_DIRECTORIES(${BRPC_INCLUDE_DIR}) + +# Reference https://stackoverflow.com/questions/45414507/pass-a-list-of-prefix-paths-to-externalproject-add-in-cmake-args +set(prefix_path "${THIRD_PARTY_PATH}/install/gflags|${THIRD_PARTY_PATH}/install/leveldb|${THIRD_PARTY_PATH}/install/snappy|${THIRD_PARTY_PATH}/install/gtest|${THIRD_PARTY_PATH}/install/protobuf") + +# If minimal .a is need, you can set WITH_DEBUG_SYMBOLS=OFF +ExternalProject_Add( + extern_brpc + ${EXTERNAL_PROJECT_LOG_ARGS} + GIT_REPOSITORY "https://github.com/brpc/brpc" + GIT_TAG "6d153dd7ff00f960ae6895c9c5fff0ce9f07aff2" + PREFIX ${BRPC_SOURCES_DIR} + UPDATE_COMMAND "" + CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER} + -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} + -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS} + -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS} + -DCMAKE_INSTALL_PREFIX=${BRPC_INSTALL_DIR} + -DCMAKE_INSTALL_LIBDIR=${BRPC_INSTALL_DIR}/lib + -DCMAKE_POSITION_INDEPENDENT_CODE=ON + -DCMAKE_BUILD_TYPE=${THIRD_PARTY_BUILD_TYPE} + -DCMAKE_PREFIX_PATH=${prefix_path} + -DBRPC_WITH_GLOG=ON + ${EXTERNAL_OPTIONAL_ARGS} + LIST_SEPARATOR | + CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${BRPC_INSTALL_DIR} + -DCMAKE_INSTALL_LIBDIR:PATH=${BRPC_INSTALL_DIR}/lib + -DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON + -DCMAKE_BUILD_TYPE:STRING=${THIRD_PARTY_BUILD_TYPE} +) +ADD_DEPENDENCIES(extern_brpc protobuf leveldb gflags glog gtest snappy) +ADD_LIBRARY(brpc STATIC IMPORTED GLOBAL) +SET_PROPERTY(TARGET brpc PROPERTY IMPORTED_LOCATION ${BRPC_LIBRARIES}) +ADD_DEPENDENCIES(brpc extern_brpc) + + +LIST(APPEND external_project_dependencies brpc) diff --git a/cmake/external/leveldb.cmake b/cmake/external/leveldb.cmake new file mode 100644 index 0000000000000000000000000000000000000000..fb5091731da02b497a14f119e944905eee4979d5 --- /dev/null +++ b/cmake/external/leveldb.cmake @@ -0,0 +1,44 @@ +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +INCLUDE(ExternalProject) + +SET(LEVELDB_SOURCES_DIR ${THIRD_PARTY_PATH}/leveldb) +SET(LEVELDB_INSTALL_DIR ${THIRD_PARTY_PATH}/install/leveldb) +SET(LEVELDB_INCLUDE_DIR "${LEVELDB_INSTALL_DIR}/include" CACHE PATH "leveldb include directory." FORCE) +SET(LEVELDB_LIBRARIES "${LEVELDB_INSTALL_DIR}/lib/libleveldb.a" CACHE FILEPATH "leveldb library." FORCE) +INCLUDE_DIRECTORIES(${LEVELDB_INCLUDE_DIR}) + +ExternalProject_Add( + extern_leveldb + ${EXTERNAL_PROJECT_LOG_ARGS} + PREFIX ${LEVELDB_SOURCES_DIR} + URL "https://github.com/google/leveldb/archive/v1.18.tar.gz" + URL_MD5 "73770de34a2a5ab34498d2e05b2b7fa0" + CONFIGURE_COMMAND "" + BUILD_COMMAND CXXFLAGS=-fPIC make -j ${NUM_OF_PROCESSOR} libleveldb.a + INSTALL_COMMAND mkdir -p ${LEVELDB_INSTALL_DIR}/lib/ + && cp ${LEVELDB_SOURCES_DIR}/src/extern_leveldb/libleveldb.a ${LEVELDB_LIBRARIES} + && cp -r ${LEVELDB_SOURCES_DIR}/src/extern_leveldb/include ${LEVELDB_INSTALL_DIR}/ + BUILD_IN_SOURCE 1 +) + +ADD_DEPENDENCIES(extern_leveldb snappy) + +ADD_LIBRARY(leveldb STATIC IMPORTED GLOBAL) +SET_PROPERTY(TARGET leveldb PROPERTY IMPORTED_LOCATION ${LEVELDB_LIBRARIES}) +ADD_DEPENDENCIES(leveldb extern_leveldb) + +LIST(APPEND external_project_dependencies leveldb) + diff --git a/cmake/generic.cmake b/cmake/generic.cmake index 9ddd05b3d9404df29ca1bf634105314b7e6a5b70..0e2df86c19086357ab520edfcd8421e35768c928 100644 --- a/cmake/generic.cmake +++ b/cmake/generic.cmake @@ -610,3 +610,21 @@ function(grpc_library TARGET_NAME) COMPILE_FLAGS "-Wno-non-virtual-dtor -Wno-error=non-virtual-dtor -Wno-error=delete-non-virtual-dtor") cc_library("${TARGET_NAME}" SRCS "${grpc_library_SRCS}" DEPS "${TARGET_NAME}_grpc" "${TARGET_NAME}_proto" "${grpc_library_DEPS}") endfunction() + + +function(brpc_library TARGET_NAME) + set(oneValueArgs PROTO) + set(multiValueArgs SRCS DEPS) + set(options "") + cmake_parse_arguments(brpc_library "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN}) + + message(STATUS "generating brpc ${brpc_library_PROTO}") + + get_filename_component(ABS_PROTO ${brpc_library_PROTO} ABSOLUTE) + get_filename_component(PROTO_WE ${brpc_library_PROTO} NAME_WE) + get_filename_component(PROTO_PATH ${ABS_PROTO} PATH) + + protobuf_generate_cpp(brpc_proto_srcs brpc_proto_hdrs "${ABS_PROTO}") + cc_library("${TARGET_NAME}_proto" SRCS "${brpc_proto_srcs}") + cc_library("${TARGET_NAME}" SRCS "${brpc_library_SRCS}" DEPS "${TARGET_NAME}_proto" "${brpc_library_DEPS}") +endfunction() diff --git a/doc/fluid/dev/api_doc_std_cn.md b/doc/fluid/dev/api_doc_std_cn.md index b50f18f21df0787b9761bf0935ed7f4384ff0f98..7d39b8de1e6dc502ffea5f7882bd6a42b1ed6549 100644 --- a/doc/fluid/dev/api_doc_std_cn.md +++ b/doc/fluid/dev/api_doc_std_cn.md @@ -1,8 +1,9 @@ # API注释撰写标准 -- [API注释模块](#API注释模块) -- [格式及示例](#格式及示例) -- [完整示例](#完整示例) +- [API注释撰写标准](#api) + - [API注释模块](#api) + - [格式及示例](#) + - [完整示例](#) ## API注释模块 @@ -217,4 +218,4 @@ API文档须使用reStructuredText格式撰写,该格式详情请参考[链接 ## 完整示例 -fc 的完整注释见[示例](src/fc.py)。 +fc 的完整注释见[示例](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/dev/src/fc.py)。 diff --git a/doc/fluid/dev/api_doc_std_en.md b/doc/fluid/dev/api_doc_std_en.md index e57072d52fd162e92a3482aef33f99ab9394c532..f175b219750d1c765a6a111c2ec3aa732fa46175 100644 --- a/doc/fluid/dev/api_doc_std_en.md +++ b/doc/fluid/dev/api_doc_std_en.md @@ -1,8 +1,9 @@ # API Doc Standard -- [API Doc Structure](#API Doc Structure) -- [Format and Examples](#Format and Examples) -- [Complete Example](#Complete Example) +- [API Doc Standard](#api-doc-standard) + - [API Doc Structure](#api-doc-structure) + - [Format and Examples](#format-and-examples) + - [Complete Example](#complete-example) ## API Doc Structure @@ -223,4 +224,4 @@ Format and examples of each part of API documantation are as follows: (take fc f ## Complete Example -Complete Example of fc please see [here](src/fc.py)。 +Complete Example of fc please see [here](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/dev/src/fc.py)。 diff --git a/doc/survey/dynamic_graph.md b/doc/survey/dynamic_graph.md new file mode 100644 index 0000000000000000000000000000000000000000..553a9dbe15fcdc67fc10ca479ce080c384f012e8 --- /dev/null +++ b/doc/survey/dynamic_graph.md @@ -0,0 +1,378 @@ +# Automatic Differentiation with the Tape + +## Automatic Differentiation + +A key challenge in the field of deep learning is to automatically derive the backward pass from the forward pass described algorithmically by researchers. Such a derivation, or a transformation of the forward pass program, has been long studied before the recent prosperity of deep learning in the field known as [automatic differentiation](https://arxiv.org/pdf/1502.05767.pdf). + +## The Tape + +Given the forward pass program (usually in Python in practices), there are two strategies to derive the backward pass: + +1. from the forward pass program itself, or +1. from the execution trace of the forward pass program, which is often known as the *tape*. + +This article surveys systems that follow the latter strategy. + +## Dynamic Network + +When we train a deep learning model, the tape changes every iteration as the input data change, so we have to re-derive the backward pass every iteration. This is known as *dynamic network*. + +Deep learning systems that utilize the idea of dynamic network gained their popularities in recent years. This article surveys two representative systems: [PyTorch](https://pytorch.org/) and [DyNet](https://dynet.readthedocs.io/en/latest/). + +## An Overview + +Both frameworks record a ‘tape’ of the computation and interpreting (or run-time compiling) a transformation of the tape played back in reverse. This tape is a different kind of entity than the original program.[[link]](http://www.bcl.hamilton.ie/~barak/papers/toplas-reverse.pdf) + +Consider the following code feedforward model. + +```python +x = Variable(randn(20, 1))) +label = Variable(randint(1)) +W_1, W_2 = Variable(randn(20, 20)), Variable(randn(10, 20)) +h = matmul(W_1, x) +pred = matmul(W_2, x) +loss = softmax(pred, label) +loss.backward() +``` + +### 1) Dynet uses List to encode the Tape + +During the forward execution, a list of operators, in this case `matmul`, `matmul` and `softmax`, are recorded in the tape, along with the necessary information needed to do the backward such as pointers to the inputs and outputs. Then the tape is played in reverse order at `loss.backward()`. + +
+ +digraph g { + graph [ + rankdir = "LR" + ]; + node [ + fontsize = "16" + shape = "ellipse" + ]; + edge []; + "node0" [ + label = " type: matmul | input: W_1, x | output: h" + shape = "record" + ]; + "node1" [ + label = " type: matmul | input: W_2, h | output: pred" + shape = "record" + ]; + "node2" [ + label = " type: softmax | input: pred, label | output: loss" + shape = "record" + ]; + "node0":f0 -> "node1":f0 []; + "node1":f0 -> "node2":f0 []; +} +
+ +![Alt text](https://g.gravizo.com/svg?digraph%20g%20{%20graph%20[%20rankdir%20=%20%22LR%22%20];%20node%20[%20fontsize%20=%20%2216%22%20shape%20=%20%22ellipse%22%20];%20edge%20[];%20%22node0%22%20[%20label%20=%20%22%3Cf0%3E%20type:%20matmul%20|%20%3Cf1%3E%20input:%20W_1,%20x%20|%20%3Cf2%3E%20output:%20h%22%20shape%20=%20%22record%22%20];%20%22node1%22%20[%20label%20=%20%22%3Cf0%3E%20type:%20matmul%20|%20%3Cf1%3E%20input:%20W_2,%20h%20|%20%3Cf2%3E%20output:%20pred%22%20shape%20=%20%22record%22%20];%20%22node2%22%20[%20label%20=%20%22%3Cf0%3E%20type:%20softmax%20|%20%3Cf1%3E%20input:%20pred,%20label%20|%20%3Cf2%3E%20output:%20loss%22%20shape%20=%20%22record%22%20];%20%22node0%22:f0%20-%3E%20%22node1%22:f0%20[%20id%20=%200%20];%20%22node1%22:f0%20-%3E%20%22node2%22:f0%20[%20id%20=%201%20];%20}) + +### 2) Pytorch uses Node Graph to encode the Tape + +The graph is composed of `Variable`s and `Function`s. During the forward execution, a `Variable` records its creator function, e.g. `h.creator = matmul`. And a Function records its inputs' previous/dependent functions `prev_func` through `creator`, e.g. `matmul.prev_func = matmul1`. At `loss.backward()`, a topological sort is performed on all `prev_func`s. Then the grad op is performed by the sorted order. + +
+ +digraph g { + graph [ + rankdir = "LR" + ]; + + subgraph function { + node [ + fontsize = "16" + style = filled + shape = "record" + ]; + "matmul0" [ label = " type: matmul | prev_func: None" ]; + "matmul1" [ label = " type: matmul | prev_func: matmul" ]; + "softmax" [ label = " type: softmax | prev_func: matmul" ]; + } + + subgraph variable { + node [ + fontsize = "16" + shape = "Mrecord" + style = filled + fillcolor = white + ]; + "x" [ label = " x | creator: None" ]; + "label" [ label = " label | creator: None" ]; + "W_1" [ label = " W_1 | creator: None" ]; + "W_2" [ label = " W_2 | creator: None" ]; + "h" [ label = " h | creator: None" ]; + "pred" [ label = " pred | creator: matmul" ]; + "loss" [ label = " loss | creator: softmax" ]; + } + + subgraph data_flow { + "x":f0 -> "matmul0":f0; + "W_1":f0 -> "matmul0":f0; + "matmul0":f0 -> "h":f0; + + "h":f0 -> "matmul1":f0; + "W_2":f0 -> "matmul1":f0; + "matmul1":f0 -> "pred":f0; + + "pred":f0 -> "softmax":f0; + "label":f0 -> "softmax":f0; + "softmax":f0 -> "loss":f0; + } + + subgraph prev_func { + edge [color="red", arrowsize="0.6", penwidth="1", constraint=false]; + "matmul1":f1 -> "matmul0":f0; + "softmax":f1 -> "matmul1":f0; + label = "prev_func"; + } +} +
+ +![Alt text](https://g.gravizo.com/svg?digraph%20g%20{%20graph%20[%20rankdir%20=%20%22LR%22%20];%20subgraph%20function%20{%20node%20[%20fontsize%20=%20%2216%22%20style%20=%20filled%20shape%20=%20%22record%22%20];%20%22matmul0%22%20[%20label%20=%20%22%3Cf0%3E%20type:%20matmul%20|%20prev_func:%20None%22%20];%20%22matmul1%22%20[%20label%20=%20%22%3Cf0%3E%20type:%20matmul%20|%20prev_func:%20matmul%22%20];%20%22softmax%22%20[%20label%20=%20%22%3Cf0%3E%20type:%20softmax%20|%20prev_func:%20matmul%22%20];%20}%20subgraph%20variable%20{%20node%20[%20fontsize%20=%20%2216%22%20shape%20=%20%22Mrecord%22%20style%20=%20filled%20fillcolor%20=%20white%20];%20%22x%22%20[%20label%20=%20%22%3Cf0%3E%20x%20|%20%3Cf1%3E%20creator:%20None%22%20];%20%22label%22%20[%20label%20=%20%22%3Cf0%3E%20label%20|%20%3Cf1%3E%20creator:%20None%22%20];%20%22W_1%22%20[%20label%20=%20%22%3Cf0%3E%20W_1%20|%20%3Cf1%3E%20creator:%20None%22%20];%20%22W_2%22%20[%20label%20=%20%22%3Cf0%3E%20W_2%20|%20%3Cf1%3E%20creator:%20None%22%20];%20%22h%22%20[%20label%20=%20%22%3Cf0%3E%20h%20|%20%3Cf1%3E%20creator:%20None%22%20];%20%22pred%22%20[%20label%20=%20%22%3Cf0%3E%20pred%20|%20%3Cf1%3E%20creator:%20matmul%22%20];%20%22loss%22%20[%20label%20=%20%22%3Cf0%3E%20loss%20|%20%3Cf1%3E%20creator:%20softmax%22%20];%20}%20subgraph%20data_flow%20{%20%22x%22:f0%20-%3E%20%22matmul0%22:f0;%20%22W_1%22:f0%20-%3E%20%22matmul0%22:f0;%20%22matmul0%22:f0%20-%3E%20%22h%22:f0;%20%22h%22:f0%20-%3E%20%22matmul1%22:f0;%20%22W_2%22:f0%20-%3E%20%22matmul1%22:f0;%20%22matmul1%22:f0%20-%3E%20%22pred%22:f0;%20%22pred%22:f0%20-%3E%20%22softmax%22:f0;%20%22label%22:f0%20-%3E%20%22softmax%22:f0;%20%22softmax%22:f0%20-%3E%20%22loss%22:f0;%20}%20subgraph%20prev_func%20{%20edge%20[color=%22red%22,%20arrowsize=%220.6%22,%20penwidth=%221%22,%20constraint=false];%20%22matmul1%22:f1%20-%3E%20%22matmul0%22:f0;%20%22softmax%22:f1%20-%3E%20%22matmul1%22:f0;%20label%20=%20%22prev_func%22;%20}%20}) + +Chainer and Autograd uses the similar techniques to record the forward pass. For details please refer to the appendix. + +## Design choices + +### 1) Dynet's List vs Pytorch's Node Graph + +What's good about List: +1. It avoids a topological sort. One only needs to traverse the list of operators in reverse and calling the corresponding backward operator. +1. It promises effient data parallelism implementations. One could count the time of usage of a certain variable during the construction list. Then in the play back, one knows the calculation of a variable has completed. This enables communication and computation overlapping. + +What's good about Node Graph: +1. More flexibility. PyTorch users can mix and match independent graphs however they like, in whatever threads they like (without explicit synchronization). An added benefit of structuring graphs this way is that when a portion of the graph becomes dead, it is automatically freed. [[2]](https://openreview.net/pdf?id=BJJsrmfCZ) Consider the following example, Pytorch only does backward on SmallNet while Dynet does both BigNet and SmallNet. +```python +result = BigNet(data) +loss = SmallNet(data) +loss.backward() +``` + +### 2) Dynet's Lazy evaluation vs Pytorch's Immediate evaluation + +Dynet builds the list in a symbolic matter. Consider the following example +```python +for epoch in range(num_epochs): + for in_words, out_label in training_data: + dy.renew_cg() + W = dy.parameter(W_p) + b = dy.parameter(b_p) + score_sym = dy.softmax(W*dy.concatenate([E[in_words[0]],E[in_words[1]]])+b) + loss_sym = dy.pickneglogsoftmax(score_sym, out_label) + loss_val = loss_sym.value() + loss_sym.backward() +``` +The computation of `lookup`, `concat`, `matmul` and `softmax` didn't happen until the call of `loss_sym.value()`. This defered execution is useful because it allows some graph-like optimization possible, e.g. kernel fusion. + +Pytorch chooses immediate evaluation. It avoids ever materializing a "forward graph"/"tape" (no need to explicitly call `dy.renew_cg()` to reset the list), recording only what is necessary to differentiate the computation, i.e. `creator` and `prev_func`. + + +## What can fluid learn from them? + +TBD + +# Appendix + +### Overview + +| Framework | Has Tape | Core in C++ | First Release Date | +|-----------|----------|-------------|--------------------| +| Autograd | No | No | Mar 5, 2015 | +| Chainer | No | No | Jun 5, 2015 | +| Pytorch | No | Yes | Aug 31, 2016 | +| Dynet | Yes | Yes | Oct 12, 2016 | + +### Source Code +#### Autograd +[Backward code](https://github.com/HIPS/autograd/blob/442205dfefe407beffb33550846434baa90c4de7/autograd/core.py#L8-L40). In the forward pass, a graph of VJPNode is constructed. +```python +# User API +def make_grad(fun, x): + start_node = VJPNode.new_root() + end_value, end_node = trace(start_node, fun, x) + return backward_pass(g, end_node), end_value + +# trace the forward pass by creating VJPNodes +def trace(start_node, fun, x): + with trace_stack.new_trace() as t: + start_box = new_box(x, t, start_node) + end_box = fun(start_box) + return end_box._value, end_box._node + +def backward_pass(g, end_node): + outgrads = {end_node : (g, False)} + for node in toposort(end_node): + outgrad = outgrads.pop(node) + ingrads = node.vjp(outgrad[0]) + for parent, ingrad in zip(node.parents, ingrads): + outgrads[parent] = add_outgrads(outgrads.get(parent), ingrad) + return outgrad[0] + +# Every VJPNode corresponds to a op_grad +class VJPNode(Node): + __slots__ = ['parents', 'vjp'] + def __init__(self, value, fun, args, kwargs, parent_argnums, parents): + self.parents = parents + vjpmaker = primitive_vjps[fun] + self.vjp = vjpmaker(parent_argnums, value, args, kwargs) +``` +#### Chainer +Example Code +```python +# (1) Function Set definition, creates FunctionNode +model = FunctionSet( + l1=F.Linear(784, 100), + l2=F.Linear(100, 100), + l3=F.Linear(100, 10)).to_gpu() + +# (2) Optimizer Setup +opt = optimizers.SGD() +opt.setup(model) + +# (3) Forward computation +def forward(x, t): + h1 = F.relu(model.l1(x)) + h2 = F.relu(model.l2(h1)) + y = model.l3(h2) + return F.softmax_cross_entropy(y, t) + +# (4) Training loop +for epoch in xrange(n_epoch): + for i in xrange(0, N, b_size): + x = Variable(to_gpu(...)) + t = Variable(to_gpu(...)) + opt.zero_grads() + loss = forward(x, t) + loss.backward() + opt.update() +``` +In `forward(x, t)`, a graph of [`VariableNode`](https://github.com/chainer/chainer/blob/master/chainer/variable.py#L110) and [`FunctionNode`](https://github.com/chainer/chainer/blob/a69103a4aa59d5b318f39b01dbcb858d465b89cf/chainer/function_node.py#L19) is constructed. Every output's `VariableNode.creator` is pointed to the `FunctionNode`. +```python +class FunctionNode(object): + ... + def apply(self, inputs): + outputs = self.forward(inputs) + ret = tuple([variable.Variable(y, requires_grad=requires_grad) + for y in outputs]) + # Topological ordering + self.rank = max([x.rank for x in inputs]) if input_vars else 0 + # Add backward edges + for y in ret: + y.creator_node = self + self.inputs = tuple([x.node for x in input_vars]) + self.outputs = tuple([y.node for y in ret]) + + return ret +``` +`loss.backward()` will calculate the accumulated gradient of all variables. All the backward of `FunctionNode`s will be called based on the topological order. +```python +class VariableNode(object): + ... + def backward(self, retain_grad, loss_scale): + if self.creator_node is None: + return + + cand_funcs = [] + seen_set = set() + grads = {} + + # Initialize error by 1, if this is a loss variable + if self.data.size == 1 and self._grad_var is None: + self.grad = numpy.ones_like(self.data) + grads[self._node] = self._grad_var + + def add_cand(cand): + if cand not in seen_set: + # Negate since heapq is min-heap. This is a global variable + heapq.heappush(cand_funcs, (-cand.rank, len(seen_set), cand)) + seen_set.add(cand) + + add_cand(self.creator_node) + + while cand_funcs: + _, _, func = heapq.heappop(cand_funcs) + gxs = func.backward_accumulate(func.inputs, func.outputs, func.outputs.grad) + + for x, gx in enumerate(gxs): + if x in grads: + grads[x] += gx + else: + grads[x] = gx + + if x.creator_node is not None: + add_cand(x.creator_node) +``` + +#### PyTorch +Example Code +```python +x = Variable(torch.ones(5, 5)) +y = Variable(torch.ones(5, 5) * 4) +z = x ** 2 + x * 2 + x * y + y +z.backward(torch.ones(5, 5)) +``` +The trace is done by `Variable.creator` and `Function.previous_functions`. +```python +class Variable(object): + def __init__(self, tensor, creator=None, requires_grad=True): + if creator is None: + creator = Leaf(self, requires_grad) + self.data = tensor + self.creator = creator + self._grad = None + + def backward(self, gradient=None): + if gradient is None: + if self.data.numel() != 1: + raise RuntimeError('backward should be called only on a scalar (i.e. 1-element tensor) or with gradient w.r.t. the variable') + gradient = self.data.new(1).fill_(1) + self._execution_engine.run_backward(self, gradient) + +class Function(obejct): + # ... + def _do_forward(self, *input): + unpacked_input = tuple(arg.data for arg in input) + raw_output = self.forward(*unpacked_input) + + # mark output.creator = self for backward trace + output = tuple(Variable(tensor, self) for tensor in raw_output) + + self.previous_functions = [(arg.creator, id(arg)) for arg in input] + self.output_ids = {id(var): i for i, var in enumerate(output)} + return output + + def _do_backward(self, grad_output): + return self.backwaerd(grad_output) +``` +The [backward](https://github.com/pytorch/pytorch/blob/v0.1.1/torch/autograd/engine.py) is similar to Autograd. + +#### DyNet +Example code +```python +model = dy.model() +W_p = model.add_parameters((20, 100)) +b_p = model.add_parameters(20) +E = model.add_lookup_parameters((20000, 50)) +for epoch in range(num_epochs): + for in_words, out_label in training_data: + dy.renew_cg() # init tape + W = dy.parameter(W_p) + b = dy.parameter(b_p) + score_sym = dy.softmax(W*dy.concatenate([E[in_words[0]],E[in_words[1]]])+b) + loss_sym = dy.pickneglogsoftmax(score_sym, out_label) + loss_val = loss_sym.value() + loss_sym.backward() +``` +[forward](https://github.com/clab/dynet/blob/740a9626a13a2732544de142e256ad0d0a166658/dynet/exec.cc#L84-L158), [backward](https://github.com/clab/dynet/blob/740a9626a13a2732544de142e256ad0d0a166658/dynet/exec.cc#L166-L284). The trace is done by creating a tape of expressions in every iteration. Backward is done by traverse the tape in the reverse order. +```c++ +void SimpleExecutionEngine::backward(VariableIndex from_where, bool full) { + ... + for (int i = num_nodes - 1; i >= 0; --i) { + // each node corresponds to an op + node->backward(xs, node_fx, node_dEdfx, ai, node_dEdxai); + } + ... +} +``` diff --git a/doc/v2/build_and_install/build_from_source_cn.rst b/doc/v2/build_and_install/build_from_source_cn.rst index de7e9eb75c3a053179f2d03ac887955bb4e0a6d2..6421c5308271c2508597d849c79709255caf349a 100644 --- a/doc/v2/build_and_install/build_from_source_cn.rst +++ b/doc/v2/build_and_install/build_from_source_cn.rst @@ -106,7 +106,7 @@ PaddlePaddle需要使用Docker环境完成编译,这样可以免去单独安 - 学习 Docker 有多难? - 理解 Docker 并不难,大概花十分钟看一下 `这篇文章 `_ 。这可以帮您省掉花一小时安装和配置各种开发工具,以及切换机器时需要新安装的辛苦。别忘了 PaddlePaddle 更新可能导致需要新的开发工具。更别提简化问题复现带来的好处了。 + 理解 Docker 并不难,大概花十分钟看一下 `如何使用Docker `_ 。这可以帮您省掉花一小时安装和配置各种开发工具,以及切换机器时需要新安装的辛苦。别忘了 PaddlePaddle 更新可能导致需要新的开发工具。更别提简化问题复现带来的好处了。 - 我可以用 IDE 吗? @@ -123,7 +123,7 @@ PaddlePaddle需要使用Docker环境完成编译,这样可以免去单独安 - 可以并行编译吗? - 是的。我们的 Docker image 运行一个 `Bash脚本 `_ 。这个脚本调用 `make -j$(nproc)` 来启动和 CPU 核一样多的进程来并行编译。 + 是的。我们的 Docker image 运行一个 `Paddle编译Bash脚本 `_ 。这个脚本调用 `make -j$(nproc)` 来启动和 CPU 核一样多的进程来并行编译。 - Docker 需要 sudo @@ -131,11 +131,11 @@ PaddlePaddle需要使用Docker环境完成编译,这样可以免去单独安 - 在 Windows/MacOS 上编译很慢 - Docker 在 Windows 和 MacOS 都可以运行。不过实际上是运行在一个 Linux 虚拟机上。可能需要注意给这个虚拟机多分配一些 CPU 和内存,以保证编译高效。具体做法请参考 `这个issue `_ 。 + Docker 在 Windows 和 MacOS 都可以运行。不过实际上是运行在一个 Linux 虚拟机上。可能需要注意给这个虚拟机多分配一些 CPU 和内存,以保证编译高效。具体做法请参考 `如何为Windows/Mac计算机上的Docker增加内存和虚拟机 `_ 。 - 磁盘不够 - 本文中的例子里,`docker run` 命令里都用了 `--rm` 参数,这样保证运行结束之后的 containers 不会保留在磁盘上。可以用 `docker ps -a` 命令看到停止后但是没有删除的 containers。`docker build` 命令有时候会产生一些中间结果,是没有名字的 images,也会占用磁盘。可以参考 `这篇文章 `_ 来清理这些内容。 + 本文中的例子里,`docker run` 命令里都用了 `--rm` 参数,这样保证运行结束之后的 containers 不会保留在磁盘上。可以用 `docker ps -a` 命令看到停止后但是没有删除的 containers。`docker build` 命令有时候会产生一些中间结果,是没有名字的 images,也会占用磁盘。可以参考 `如何删除Docker Container `_ 来清理这些内容。 .. _compile_deps: @@ -195,7 +195,7 @@ BLAS PaddlePaddle支持 `MKL `_ 和 `OpenBlAS `_ 两种BLAS库。默认使用MKL。如果使用MKL并且机器含有AVX2指令集, -还会下载MKL-DNN数学库,详细参考 `这里 `_ 。 +还会下载MKL-DNN数学库,详细参考 `mkldnn设计文档 `_ 。 如果关闭MKL,则会使用OpenBLAS作为BLAS库。 diff --git a/paddle/contrib/inference/test_paddle_inference_api_impl.cc b/paddle/contrib/inference/test_paddle_inference_api_impl.cc index 4b6cb7b051d1ad2c63e895017c7faf1245c22612..5d843010e02b09087e6b328428e80fb40eb5bb97 100644 --- a/paddle/contrib/inference/test_paddle_inference_api_impl.cc +++ b/paddle/contrib/inference/test_paddle_inference_api_impl.cc @@ -109,7 +109,6 @@ void MainWord2Vec(bool use_gpu) { void MainImageClassification(bool use_gpu) { int batch_size = 2; - bool use_mkldnn = false; bool repeat = false; NativeConfig config = GetConfig(); config.use_gpu = use_gpu; @@ -134,12 +133,8 @@ void MainImageClassification(bool use_gpu) { std::vector cpu_fetchs1; cpu_fetchs1.push_back(&output1); - TestInference(config.model_dir, - cpu_feeds, - cpu_fetchs1, - repeat, - is_combined, - use_mkldnn); + TestInference( + config.model_dir, cpu_feeds, cpu_fetchs1, repeat, is_combined); auto predictor = CreatePaddlePredictor(config); std::vector paddle_tensor_feeds; diff --git a/paddle/fluid/framework/CMakeLists.txt b/paddle/fluid/framework/CMakeLists.txt index 627370cd2df7317b4d32aa967565aaf9cf0c7a08..4271e4c1bb6bc7b83f2633191ea2d464f4f56c4c 100644 --- a/paddle/fluid/framework/CMakeLists.txt +++ b/paddle/fluid/framework/CMakeLists.txt @@ -87,7 +87,7 @@ cc_library(executor SRCS executor.cc DEPS op_registry device_context scope framework_proto glog lod_rank_table feed_fetch_method) -cc_library(parallel_executor SRCS parallel_executor.cc DEPS graph_builder_factory threaded_ssa_graph_executor scope_buffered_ssa_graph_executor) +cc_library(parallel_executor SRCS parallel_executor.cc DEPS ssa_graph_builder_factory threaded_ssa_graph_executor scope_buffered_ssa_graph_executor) cc_library(prune SRCS prune.cc DEPS framework_proto) cc_test(prune_test SRCS prune_test.cc DEPS op_info prune recurrent_op device_context) diff --git a/paddle/fluid/framework/data_type.cc b/paddle/fluid/framework/data_type.cc index b6b93cf422a60c1d8e9cb8b477efd562f9fe4758..60382faffb8e53870658b2d1ff83abc4008cb4cf 100644 --- a/paddle/fluid/framework/data_type.cc +++ b/paddle/fluid/framework/data_type.cc @@ -28,6 +28,9 @@ struct DataTypeMap { }; static DataTypeMap* InitDataTypeMap(); +// C++11 removes the need for manual locking. Concurrent execution shall wait if +// a static local variable is already being initialized. +// https://stackoverflow.com/questions/11711920/how-to-implement-multithread-safe-singleton-in-c11-without-using-mutex static DataTypeMap& gDataTypeMap() { static DataTypeMap* g_data_type_map_ = InitDataTypeMap(); return *g_data_type_map_; diff --git a/paddle/fluid/framework/details/CMakeLists.txt b/paddle/fluid/framework/details/CMakeLists.txt index c43826b64cc5140c539df17fdd13d9bee7fefdcd..3c73b6cc55c187c3f6e7edd1ce38cc58f4e8413d 100644 --- a/paddle/fluid/framework/details/CMakeLists.txt +++ b/paddle/fluid/framework/details/CMakeLists.txt @@ -8,18 +8,19 @@ cc_library(rpc_op_handle SRCS rpc_op_handle.cc DEPS framework_proto scope place cc_library(ssa_graph SRCS ssa_graph.cc DEPS var_handle op_handle_base) cc_library(ssa_graph_builder SRCS ssa_graph_builder.cc DEPS ssa_graph) cc_library(ssa_graph_printer SRCS ssa_graph_printer.cc DEPS ssa_graph_builder) +cc_library(ssa_graph_checker SRCS ssa_graph_checker.cc DEPS ssa_graph_builder) cc_library(variable_visitor SRCS variable_visitor.cc DEPS lod_tensor selected_rows) if(WITH_GPU) - nv_library(nccl_all_reduce_op_handle SRCS nccl_all_reduce_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory + nv_library(all_reduce_op_handle SRCS all_reduce_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory dynload_cuda variable_visitor) - set(multi_devices_graph_builder_deps nccl_all_reduce_op_handle) nv_library(reduce_op_handle SRCS reduce_op_handle.cc DEPS op_handle_base variable_visitor scope ddim dynload_cuda) nv_library(broadcast_op_handle SRCS broadcast_op_handle.cc DEPS op_handle_base scope ddim memory variable_visitor dynload_cuda) else() - set(multi_devices_graph_builder_deps) + cc_library(all_reduce_op_handle SRCS all_reduce_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory + variable_visitor) cc_library(reduce_op_handle SRCS reduce_op_handle.cc DEPS op_handle_base variable_visitor scope ddim) cc_library(broadcast_op_handle SRCS broadcast_op_handle.cc DEPS op_handle_base scope ddim memory variable_visitor) endif() @@ -28,10 +29,10 @@ cc_library(gather_op_handle SRCS gather_op_handle.cc DEPS op_handle_base scope d cc_library(fuse_vars_op_handle SRCS fuse_vars_op_handle.cc DEPS op_handle_base scope) cc_library(multi_devices_graph_builder SRCS multi_devices_graph_builder.cc DEPS ssa_graph_builder computation_op_handle - scale_loss_grad_op_handle rpc_op_handle ${multi_devices_graph_builder_deps} reduce_op_handle broadcast_op_handle) + scale_loss_grad_op_handle rpc_op_handle all_reduce_op_handle reduce_op_handle broadcast_op_handle) -cc_library(graph_builder_factory SRCS graph_builder_factory.cc DEPS multi_devices_graph_builder ssa_graph_printer) +cc_library(ssa_graph_builder_factory SRCS ssa_graph_builder_factory.cc DEPS multi_devices_graph_builder ssa_graph_printer ssa_graph_checker) cc_library(ssa_graph_executor SRCS ssa_graph_executor.cc DEPS ssa_graph framework_proto) cc_library(threaded_ssa_graph_executor SRCS threaded_ssa_graph_executor.cc DEPS fetch_op_handle ssa_graph_executor scope diff --git a/paddle/fluid/framework/details/nccl_all_reduce_op_handle.cc b/paddle/fluid/framework/details/all_reduce_op_handle.cc similarity index 78% rename from paddle/fluid/framework/details/nccl_all_reduce_op_handle.cc rename to paddle/fluid/framework/details/all_reduce_op_handle.cc index 5bba089ade801a06e0364835efe5249105dcfcac..b335d3a0d364c916e19574de8d3ed89aaec7de41 100644 --- a/paddle/fluid/framework/details/nccl_all_reduce_op_handle.cc +++ b/paddle/fluid/framework/details/all_reduce_op_handle.cc @@ -13,25 +13,33 @@ // limitations under the License. #include +#include "paddle/fluid/framework/details/all_reduce_op_handle.h" #include "paddle/fluid/framework/details/container_cast.h" -#include "paddle/fluid/framework/details/nccl_all_reduce_op_handle.h" #include "paddle/fluid/framework/details/reduce_and_gather.h" #include "paddle/fluid/framework/details/variable_visitor.h" namespace paddle { namespace framework { namespace details { -NCCLAllReduceOpHandle::NCCLAllReduceOpHandle( - const std::vector &local_scopes, - const std::vector &places, - const platform::NCCLContextMap &ctxs) + +#ifdef PADDLE_WITH_CUDA +AllReduceOpHandle::AllReduceOpHandle(const std::vector &local_scopes, + const std::vector &places, + const platform::NCCLContextMap *ctxs) : local_scopes_(local_scopes), places_(places), nccl_ctxs_(ctxs) { - for (auto &p : places_) { - this->dev_ctxes_[p] = nccl_ctxs_.DevCtx(p); + if (nccl_ctxs_) { + for (auto &p : places_) { + this->dev_ctxes_[p] = nccl_ctxs_->DevCtx(p); + } } } +#else +AllReduceOpHandle::AllReduceOpHandle(const std::vector &local_scopes, + const std::vector &places) + : local_scopes_(local_scopes), places_(places) {} +#endif -void NCCLAllReduceOpHandle::RunImpl() { +void AllReduceOpHandle::RunImpl() { if (NoDummyInputSize() == 1) { return; // No need to all reduce when GPU count = 1; } else { @@ -58,6 +66,8 @@ void NCCLAllReduceOpHandle::RunImpl() { } if (platform::is_gpu_place(lod_tensors[0]->place())) { +#ifdef PADDLE_WITH_CUDA + PADDLE_ENFORCE(nccl_ctxs_, "nccl_ctxs should not be nullptr."); int dtype = -1; size_t numel = 0; std::vector> all_reduce_calls; @@ -75,7 +85,7 @@ void NCCLAllReduceOpHandle::RunImpl() { } int dev_id = boost::get(p).device; - auto &nccl_ctx = nccl_ctxs_.at(dev_id); + auto &nccl_ctx = nccl_ctxs_->at(dev_id); auto stream = nccl_ctx.stream(); auto comm = nccl_ctx.comm_; all_reduce_calls.emplace_back([=] { @@ -90,22 +100,25 @@ void NCCLAllReduceOpHandle::RunImpl() { call(); } }); +#else + PADDLE_THROW("Not compiled with CUDA"); +#endif } else { // Special handle CPU only Operator's gradient. Like CRF auto &trg = *this->local_scopes_[0] ->FindVar(kLocalExecScopeName) ->Get() - ->Var() + ->FindVar(out_var_handles[0]->name_) ->GetMutable(); // Reduce All Tensor to trg in CPU ReduceLoDTensor func(lod_tensors, &trg); VisitDataType(ToDataType(lod_tensors[0]->type()), func); - for (size_t i = 0; i < local_scopes_.size(); ++i) { + for (size_t i = 1; i < local_scopes_.size(); ++i) { auto &scope = *local_scopes_[i]->FindVar(kLocalExecScopeName)->Get(); auto &p = places_[i]; - auto *var = scope.FindVar(in_var_handles[i]->name_); + auto *var = scope.FindVar(out_var_handles[i]->name_); auto *dev_ctx = dev_ctxes_[p]; RunAndRecordEvent(p, [&trg, var, dev_ctx, p] { @@ -118,7 +131,7 @@ void NCCLAllReduceOpHandle::RunImpl() { } } -std::string NCCLAllReduceOpHandle::Name() const { return "nccl_all_reduce"; } +std::string AllReduceOpHandle::Name() const { return "all_reduce"; } } // namespace details } // namespace framework } // namespace paddle diff --git a/paddle/fluid/framework/details/nccl_all_reduce_op_handle.h b/paddle/fluid/framework/details/all_reduce_op_handle.h similarity index 73% rename from paddle/fluid/framework/details/nccl_all_reduce_op_handle.h rename to paddle/fluid/framework/details/all_reduce_op_handle.h index 8e98d894b828b4162059b30f5c6a74cfc06f402e..fdd250b0d3eb166249271a95f7592b9fadee5265 100644 --- a/paddle/fluid/framework/details/nccl_all_reduce_op_handle.h +++ b/paddle/fluid/framework/details/all_reduce_op_handle.h @@ -20,17 +20,23 @@ #include "paddle/fluid/framework/details/op_handle_base.h" #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/scope.h" +#ifdef PADDLE_WITH_CUDA #include "paddle/fluid/platform/nccl_helper.h" +#endif namespace paddle { namespace framework { namespace details { -struct NCCLAllReduceOpHandle : public OpHandleBase { - NCCLAllReduceOpHandle(const std::vector &local_scopes, - const std::vector &places, - const platform::NCCLContextMap &ctxs); - +struct AllReduceOpHandle : public OpHandleBase { +#ifdef PADDLE_WITH_CUDA + AllReduceOpHandle(const std::vector &local_scopes, + const std::vector &places, + const platform::NCCLContextMap *ctxs); +#else + AllReduceOpHandle(const std::vector &local_scopes, + const std::vector &places); +#endif std::string Name() const override; // Delay and buffer nccl_all_reduce together can significantly increase @@ -43,7 +49,9 @@ struct NCCLAllReduceOpHandle : public OpHandleBase { private: std::vector local_scopes_; std::vector places_; - const platform::NCCLContextMap &nccl_ctxs_; +#ifdef PADDLE_WITH_CUDA + const platform::NCCLContextMap *nccl_ctxs_; +#endif }; } // namespace details diff --git a/paddle/fluid/framework/details/execution_strategy.h b/paddle/fluid/framework/details/execution_strategy.h index e7aa74742f827efabff1189d3213edd748d9082d..716d674fa29bad9321fc20979775c06f26bf4679 100644 --- a/paddle/fluid/framework/details/execution_strategy.h +++ b/paddle/fluid/framework/details/execution_strategy.h @@ -20,7 +20,7 @@ namespace details { struct ExecutionStrategy { size_t num_threads_{0}; - bool use_event_{true}; + bool use_cuda_{true}; bool allow_op_delay_{false}; size_t num_iteration_per_drop_scope_{100}; }; diff --git a/paddle/fluid/framework/details/fuse_vars_op_handle.cc b/paddle/fluid/framework/details/fuse_vars_op_handle.cc index 32415c192f0be51bf0850fe533c212c635779a30..018c9bff71e553d8a3641f06f10b350453676b24 100644 --- a/paddle/fluid/framework/details/fuse_vars_op_handle.cc +++ b/paddle/fluid/framework/details/fuse_vars_op_handle.cc @@ -42,7 +42,7 @@ void FuseVarsOpHandle::RunImpl() { out_t->ShareDataWith(out_tensor->Slice(s, s + numel)); s += numel; } - this->RunAndRecordEvent([this] {}); + this->RunAndRecordEvent([] {}); } std::string FuseVarsOpHandle::Name() const { return "fuse vars"; } diff --git a/paddle/fluid/framework/details/multi_devices_graph_builder.cc b/paddle/fluid/framework/details/multi_devices_graph_builder.cc index 41a56caa229a81caa3dbfdb413691cd3477cc374..600705bb81f00f929f56ceba408909e84431034a 100644 --- a/paddle/fluid/framework/details/multi_devices_graph_builder.cc +++ b/paddle/fluid/framework/details/multi_devices_graph_builder.cc @@ -17,6 +17,7 @@ #include #include +#include "paddle/fluid/framework/details/all_reduce_op_handle.h" #include "paddle/fluid/framework/details/broadcast_op_handle.h" #include "paddle/fluid/framework/details/computation_op_handle.h" #include "paddle/fluid/framework/details/multi_devices_graph_builder.h" @@ -26,10 +27,6 @@ #include "paddle/fluid/framework/op_info.h" #include "paddle/fluid/framework/scope.h" -#ifdef PADDLE_WITH_CUDA -#include "paddle/fluid/framework/details/nccl_all_reduce_op_handle.h" -#endif - namespace paddle { namespace framework { namespace details { @@ -89,7 +86,7 @@ std::vector MultiDevSSAGraphBuilder::FindDistTrainSendVars( for (auto *op : program.Block(0).AllOps()) { // TODO(Yancey1989): use a graceful method to find send op, // instead of the the hard code string - if (op->Type() == "send_vars") { + if (op->Type() == "send") { auto op_vars = op->InputArgumentNames(); send_vars.reserve(send_vars.size() + std::distance(op_vars.begin(), op_vars.end())); @@ -282,7 +279,7 @@ std::unique_ptr MultiDevSSAGraphBuilder::Build( CreateReduceOp(&result, g_name, 0); CreateBroadcastOp(&result, g_name, 0); } else { - InsertNCCLAllReduceOp(&result, g_name); + InsertAllReduceOp(&result, g_name); } break; } @@ -325,6 +322,19 @@ bool MultiDevSSAGraphBuilder::IsSparseGradient( return false; } +void MultiDevSSAGraphBuilder::SetCommunicationContext( + OpHandleBase *op_handle, const platform::Place &p) const { +#ifdef PADDLE_WITH_CUDA + if (nccl_ctxs_ == nullptr) { + op_handle->SetDeviceContext(p, + platform::DeviceContextPool::Instance().Get(p)); + } +#else + op_handle->SetDeviceContext(p, + platform::DeviceContextPool::Instance().Get(p)); +#endif +} + void MultiDevSSAGraphBuilder::CreateBroadcastOp(SSAGraph *result, const std::string &p_name, size_t src_dev_id) const { @@ -339,15 +349,12 @@ void MultiDevSSAGraphBuilder::CreateBroadcastOp(SSAGraph *result, op_handle->AddInput(in); for (size_t i = 0; i < places_.size(); ++i) { - auto &vars = result->vars_.at(i).at(p_name); auto &p = places_[i]; + SetCommunicationContext(op_handle, p); + auto &vars = result->vars_.at(i).at(p_name); auto *out_var = new VarHandle(vars.size(), i, p_name, p); vars.emplace_back(out_var); op_handle->AddOutput(out_var); -#ifndef ADDLE_WITH_CUDA - op_handle->SetDeviceContext(p, - platform::DeviceContextPool::Instance().Get(p)); -#endif } } @@ -359,15 +366,19 @@ void MultiDevSSAGraphBuilder::CreateComputationalOp(SSAGraph *result, CreateOpHandleIOs(result, op, dev_id); } -void MultiDevSSAGraphBuilder::InsertNCCLAllReduceOp( - SSAGraph *result, const std::string &og) const { +void MultiDevSSAGraphBuilder::InsertAllReduceOp(SSAGraph *result, + const std::string &og) const { #ifdef PADDLE_WITH_CUDA result->ops_.emplace_back( - new NCCLAllReduceOpHandle(local_scopes_, places_, *nccl_ctxs_)); + new AllReduceOpHandle(local_scopes_, places_, nccl_ctxs_)); +#else + result->ops_.emplace_back(new AllReduceOpHandle(local_scopes_, places_)); +#endif auto *op_handle = result->ops_.back().get(); for (size_t i = 0; i < places_.size(); ++i) { auto &p = places_[i]; + SetCommunicationContext(op_handle, p); auto &vars = result->vars_[i][og]; PADDLE_ENFORCE(!vars.empty()); auto &prev_grad = vars.back(); @@ -377,9 +388,6 @@ void MultiDevSSAGraphBuilder::InsertNCCLAllReduceOp( vars.emplace_back(var); op_handle->AddOutput(var); } -#else - PADDLE_ENFORCE("Not implemented"); -#endif } bool MultiDevSSAGraphBuilder::IsParameterGradientOnce( @@ -418,7 +426,9 @@ void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(SSAGraph *result) const { for (size_t i = 0; i < places_.size(); ++i) { // Insert ScaleCost OpHandle #ifdef PADDLE_WITH_CUDA - auto *communication_dev_ctx = nccl_ctxs_->DevCtx(places_[i]); + auto *communication_dev_ctx = + nccl_ctxs_ ? nccl_ctxs_->DevCtx(places_[i]) + : platform::DeviceContextPool::Instance().Get(places_[i]); #else auto *communication_dev_ctx = platform::DeviceContextPool::Instance().Get(platform::CPUPlace()); @@ -463,12 +473,9 @@ VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(SSAGraph *result, auto *op_handle = result->ops_.back().get(); for (size_t i = 0; i < places_.size(); ++i) { - auto &vars = result->vars_[i][og]; -#ifndef PADDLE_WITH_CUDA auto &p = places_[i]; - op_handle->SetDeviceContext(p, - platform::DeviceContextPool::Instance().Get(p)); -#endif + SetCommunicationContext(op_handle, p); + auto &vars = result->vars_[i][og]; PADDLE_ENFORCE(!vars.empty()); auto &prev_grad = vars.back(); op_handle->AddInput(prev_grad.get()); @@ -508,17 +515,17 @@ void MultiDevSSAGraphBuilder::CreateRPCOp(SSAGraph *result, const OpDesc &op, op.Type(), places_[device_id])); if (op.Type() == "send_barrier") { - ConnectOp(result, result->ops_.back().get(), "send_vars"); + ConnectOp(result, result->ops_.back().get(), "send"); } else if (op.Type() == "recv") { ConnectOp(result, result->ops_.back().get(), "send_barrier"); } else if (op.Type() == "fetch_barrier") { ConnectOp(result, result->ops_.back().get(), "recv"); - } else if (op.Type() == "send_vars") { + } else if (op.Type() == "send") { // do nothing } else { PADDLE_THROW( "rpc op should be in [" - "send_vars, send_barrier. recv, fetch_barrier]"); + "send, send_barrier. recv, fetch_barrier]"); } // TODO(Yancey1989): schedule rpc op on different place may diff --git a/paddle/fluid/framework/details/multi_devices_graph_builder.h b/paddle/fluid/framework/details/multi_devices_graph_builder.h index b4f93dbda68012ea8bb846842abe13395f42d345..b89686edd94680a11ddf06b64fa8828a07a514f8 100644 --- a/paddle/fluid/framework/details/multi_devices_graph_builder.h +++ b/paddle/fluid/framework/details/multi_devices_graph_builder.h @@ -109,7 +109,7 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder { const std::vector> &var_name_on_devices, const OpDesc &op) const; - void InsertNCCLAllReduceOp(SSAGraph *result, const std::string &og) const; + void InsertAllReduceOp(SSAGraph *result, const std::string &og) const; void CreateBroadcastOp(SSAGraph *result, const std::string &p_name, size_t src_dev_id) const; @@ -121,6 +121,9 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder { private: BuildStrategy strategy_; mutable std::unordered_map remote_vars_devices_; + + void SetCommunicationContext(OpHandleBase *op_handle, + const platform::Place &p) const; }; } // namespace details } // namespace framework diff --git a/paddle/fluid/framework/details/op_handle_base.cc b/paddle/fluid/framework/details/op_handle_base.cc index 3849cca59a3347137b769f97261cfbf97da8d6ff..f79565fe71c4aef140475c922cbbf5a1e0b7fe03 100644 --- a/paddle/fluid/framework/details/op_handle_base.cc +++ b/paddle/fluid/framework/details/op_handle_base.cc @@ -39,9 +39,9 @@ OpHandleBase::~OpHandleBase() { #endif } -void OpHandleBase::Run(bool use_event) { +void OpHandleBase::Run(bool use_cuda) { #ifdef PADDLE_WITH_CUDA - if (events_.empty() && use_event) { + if (events_.empty() && use_cuda) { for (auto &p : dev_ctxes_) { int dev_id = boost::get(p.first).device; PADDLE_ENFORCE(cudaSetDevice(dev_id)); @@ -50,7 +50,7 @@ void OpHandleBase::Run(bool use_event) { } } #else - PADDLE_ENFORCE(!use_event); + PADDLE_ENFORCE(!use_cuda); #endif RunImpl(); diff --git a/paddle/fluid/framework/details/op_handle_base.h b/paddle/fluid/framework/details/op_handle_base.h index dc92b0fe9f760d95d4869fdd56c0400b6710437f..fbd90a3296bca92b097cab925b218b91e7f4752f 100644 --- a/paddle/fluid/framework/details/op_handle_base.h +++ b/paddle/fluid/framework/details/op_handle_base.h @@ -36,7 +36,7 @@ class OpHandleBase { virtual std::string Name() const = 0; - void Run(bool use_event); + void Run(bool use_cuda); virtual void RecordWaitEventOnCtx(platform::DeviceContext *waited_ctx); diff --git a/paddle/fluid/framework/details/reduce_and_gather.h b/paddle/fluid/framework/details/reduce_and_gather.h index 2b95a284990da8f9b7c16d6e4221eb1ed061f74b..a6ffb37313a88120bc9e8d5ce326f60aeebdff69 100644 --- a/paddle/fluid/framework/details/reduce_and_gather.h +++ b/paddle/fluid/framework/details/reduce_and_gather.h @@ -37,7 +37,9 @@ struct ReduceLoDTensor { PADDLE_ENFORCE_NE(t0.numel(), 0); dst_tensor_.Resize(t0.dims()); T *dst = dst_tensor_.mutable_data(platform::CPUPlace()); - std::copy(t0.data(), t0.data() + t0.numel(), dst); + if (dst != t0.data()) { + std::copy(t0.data(), t0.data() + t0.numel(), dst); + } for (size_t i = 1; i < src_tensors_.size(); ++i) { auto &t = *src_tensors_[i]; diff --git a/paddle/fluid/framework/details/ssa_graph_builder.cc b/paddle/fluid/framework/details/ssa_graph_builder.cc index 211113c7979ee95d896c0a57879f7b3ad13b36ef..88a21f48879a15450051ad94ed76e1c48bf23014 100644 --- a/paddle/fluid/framework/details/ssa_graph_builder.cc +++ b/paddle/fluid/framework/details/ssa_graph_builder.cc @@ -11,8 +11,8 @@ // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. - #include "paddle/fluid/framework/details/ssa_graph_builder.h" +#include namespace paddle { namespace framework { diff --git a/paddle/fluid/framework/details/graph_builder_factory.cc b/paddle/fluid/framework/details/ssa_graph_builder_factory.cc similarity index 90% rename from paddle/fluid/framework/details/graph_builder_factory.cc rename to paddle/fluid/framework/details/ssa_graph_builder_factory.cc index a04b9bb63c06b40ff5c30c9792cdfad5d64d404c..b4b49d3de6da2e5fd7836668619e42d10bb6b35a 100644 --- a/paddle/fluid/framework/details/graph_builder_factory.cc +++ b/paddle/fluid/framework/details/ssa_graph_builder_factory.cc @@ -12,9 +12,10 @@ // See the License for the specific language governing permissions and // limitations under the License. -#include "paddle/fluid/framework/details/graph_builder_factory.h" +#include "paddle/fluid/framework/details/ssa_graph_builder_factory.h" #include #include "paddle/fluid/framework/details/multi_devices_graph_builder.h" +#include "paddle/fluid/framework/details/ssa_graph_checker.h" #include "paddle/fluid/framework/details/ssa_graph_printer.h" namespace paddle { @@ -40,6 +41,8 @@ std::unique_ptr SSAGraphBuilderFactory::Create() { res.reset(new SSAGraghBuilderWithPrinter( std::move(fout), std::move(graphviz_printer), std::move(res))); } + res.reset(new SSAGraghBuilderWithChecker(std::move(res))); + return res; } } // namespace details diff --git a/paddle/fluid/framework/details/graph_builder_factory.h b/paddle/fluid/framework/details/ssa_graph_builder_factory.h similarity index 95% rename from paddle/fluid/framework/details/graph_builder_factory.h rename to paddle/fluid/framework/details/ssa_graph_builder_factory.h index 857ab12d684e19788597e144fc0c46571d06aafc..91a119de83ed3d1573803e48faf86c874eed98d6 100644 --- a/paddle/fluid/framework/details/graph_builder_factory.h +++ b/paddle/fluid/framework/details/ssa_graph_builder_factory.h @@ -40,7 +40,11 @@ class SSAGraphBuilderFactory { loss_var_name_(loss_var_name), param_names_(param_names), local_scopes_(local_scopes), - strategy_(strategy) {} + strategy_(strategy) { +#ifdef PADDLE_WITH_CUDA + nccl_ctxs_ = nullptr; +#endif + } #ifdef PADDLE_WITH_CUDA void SetNCCLContextMap(platform::NCCLContextMap* nccl_ctxs) { diff --git a/paddle/fluid/framework/details/ssa_graph_checker.cc b/paddle/fluid/framework/details/ssa_graph_checker.cc new file mode 100644 index 0000000000000000000000000000000000000000..da5428946ee588e8eac1f78929dc0432df532975 --- /dev/null +++ b/paddle/fluid/framework/details/ssa_graph_checker.cc @@ -0,0 +1,87 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/framework/details/ssa_graph.h" +#include +#include "paddle/fluid/framework/details/ssa_graph_checker.h" + +namespace paddle { +namespace framework { +namespace details { + +bool SSAGraghBuilderWithChecker::IsValidGraph(const SSAGraph *graph) const { + std::unordered_map pending_ops; + std::unordered_set pending_vars; + std::unordered_set ready_vars; + std::unordered_set ready_ops; + + auto insert_pending_var = [&](VarHandleBase *var) { + pending_vars.insert(var); + if (var->generated_op_ == nullptr) { + ready_vars.emplace(var); + } + }; + + for (auto &var_map : graph->vars_) { + for (auto &name_pair : var_map) { + for (auto &version_pair : name_pair.second) { + insert_pending_var(version_pair.get()); + } + } + } + + for (auto &var : graph->dep_vars_) { + insert_pending_var(var.get()); + } + + for (auto &op : graph->ops_) { + if (op->Inputs().empty()) { + ready_ops.insert(op.get()); + } else { + pending_ops.insert({op.get(), op.get()->NoDupInputSize()}); + } + } + + auto run_all_ops = [&](std::unordered_set &set) { + for (auto *op : set) { + for (auto out : op->Outputs()) { + ready_vars.emplace(out); + } + } + set.clear(); + }; + + while (!pending_vars.empty()) { + run_all_ops(ready_ops); + + if (ready_vars.empty()) { + return false; + } + + for (auto ready_var : ready_vars) { + pending_vars.erase(ready_var); + for (auto *op : ready_var->pending_ops_) { + auto &deps = --pending_ops[op]; + if (deps == 0) { + ready_ops.insert(op); + } + } + } + ready_vars.clear(); + } + return true; +} +} // namespace details +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/details/ssa_graph_checker.h b/paddle/fluid/framework/details/ssa_graph_checker.h new file mode 100644 index 0000000000000000000000000000000000000000..542c4a172891ba9d3621918986089b2e400b6ae8 --- /dev/null +++ b/paddle/fluid/framework/details/ssa_graph_checker.h @@ -0,0 +1,44 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include "paddle/fluid/framework/details/ssa_graph_builder.h" + +namespace paddle { +namespace framework { +namespace details { +class SSAGraph; + +class SSAGraghBuilderWithChecker : public SSAGraphBuilder { + public: + explicit SSAGraghBuilderWithChecker( + std::unique_ptr&& builder) + : builder_(std::move(builder)) {} + + std::unique_ptr Build(const ProgramDesc& program) const override { + auto graph = builder_->Build(program); + PADDLE_ENFORCE(IsValidGraph(graph.get())); + return graph; + } + + bool IsValidGraph(const SSAGraph* graph) const; + + private: + std::unique_ptr builder_; +}; + +} // namespace details +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/details/threaded_ssa_graph_executor.cc b/paddle/fluid/framework/details/threaded_ssa_graph_executor.cc index 496fadd04dac982b87b9d9e14f599ed37d9709d0..6c5098ce85b784a3edcf8f48d2cc828aabd8e161 100644 --- a/paddle/fluid/framework/details/threaded_ssa_graph_executor.cc +++ b/paddle/fluid/framework/details/threaded_ssa_graph_executor.cc @@ -185,6 +185,7 @@ void ThreadedSSAGraphExecutor::InsertPendingVar( ready_vars->Push(var); } } + void ThreadedSSAGraphExecutor::RunOp( BlockingQueue *ready_var_q, details::OpHandleBase *op) { auto op_run = [ready_var_q, op, this] { @@ -192,7 +193,7 @@ void ThreadedSSAGraphExecutor::RunOp( if (VLOG_IS_ON(10)) { VLOG(10) << op << " " << op->Name() << " : " << op->DebugString(); } - op->Run(strategy_.use_event_); + op->Run(strategy_.use_cuda_); VLOG(10) << op << " " << op->Name() << " Done "; running_ops_--; ready_var_q->Extend(op->Outputs()); diff --git a/paddle/fluid/framework/executor.cc b/paddle/fluid/framework/executor.cc index 3d68c5fb870d5b575f97eeb286528544402b8ed9..d4d6c34108b9f1e457d8eb0c36d10339b03330bd 100644 --- a/paddle/fluid/framework/executor.cc +++ b/paddle/fluid/framework/executor.cc @@ -24,6 +24,7 @@ limitations under the License. */ #include "paddle/fluid/platform/profiler.h" DECLARE_bool(benchmark); +DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run"); namespace paddle { namespace framework { @@ -115,6 +116,7 @@ void Executor::CreateVariables(const ProgramDesc& pdesc, Scope* scope, void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id, bool create_local_scope, bool create_vars) { platform::RecordBlock b(block_id); + if (FLAGS_use_mkldnn) EnableMKLDNN(pdesc); auto ctx = Prepare(pdesc, block_id); RunPreparedContext(ctx.get(), scope, create_local_scope, create_vars); } @@ -214,6 +216,7 @@ void Executor::Run(const ProgramDesc& program, Scope* scope, const std::string& feed_holder_name, const std::string& fetch_holder_name) { platform::RecordBlock b(kProgramId); + if (FLAGS_use_mkldnn) EnableMKLDNN(program); bool has_feed_ops = has_feed_operators(program.Block(0), *feed_targets, feed_holder_name); bool has_fetch_ops = @@ -225,7 +228,6 @@ void Executor::Run(const ProgramDesc& program, Scope* scope, unique_ptr_of_copy_program.reset(new ProgramDesc(program)); copy_program = unique_ptr_of_copy_program.get(); } - auto* global_block = copy_program->MutableBlock(0); if (!has_feed_ops) { @@ -378,5 +380,19 @@ void Executor::RunPreparedContext( } } +void Executor::EnableMKLDNN(const ProgramDesc& program) { +#ifdef PADDLE_WITH_MKLDNN + VLOG(3) << "use_mkldnn=True"; + for (size_t bid = 0; bid < program.Size(); ++bid) { + auto* block = const_cast(program).MutableBlock(bid); + for (auto* op : block->AllOps()) { + if (op->HasAttr("use_mkldnn")) { + op->SetAttr("use_mkldnn", true); + } + } + } +#endif +} + } // namespace framework } // namespace paddle diff --git a/paddle/fluid/framework/executor.h b/paddle/fluid/framework/executor.h index 0c3c23611d95e0da67cabfb8fb2755a4a52c991b..e6f9c3d31c18f762ef2de269977e0642a79fb174 100644 --- a/paddle/fluid/framework/executor.h +++ b/paddle/fluid/framework/executor.h @@ -81,6 +81,8 @@ class Executor { const std::string& feed_holder_name = "feed", const std::string& fetch_holder_name = "fetch"); + void EnableMKLDNN(const ProgramDesc& program); + private: const platform::Place place_; }; diff --git a/paddle/fluid/framework/framework.proto b/paddle/fluid/framework/framework.proto index d35125fe8c3c8018c38650dc87b2b1474ded6058..68fcc104d48b2b39929ed2198a2dd2eabae10e94 100644 --- a/paddle/fluid/framework/framework.proto +++ b/paddle/fluid/framework/framework.proto @@ -71,6 +71,7 @@ message OpProto { optional bool duplicable = 3 [ default = false ]; optional bool intermediate = 4 [ default = false ]; optional bool dispensable = 5 [ default = false ]; + optional string reuse = 6; } // AttrProto describes the C++ type Attribute. diff --git a/paddle/fluid/framework/op_info.cc b/paddle/fluid/framework/op_info.cc index b99e82f8c4358b60a014c6fc7c61c9bbb8683834..f1261dee0319440995951d1bee145404186a8ad4 100644 --- a/paddle/fluid/framework/op_info.cc +++ b/paddle/fluid/framework/op_info.cc @@ -17,12 +17,11 @@ limitations under the License. */ namespace paddle { namespace framework { -static OpInfoMap* g_op_info_map = nullptr; - +// C++11 removes the need for manual locking. Concurrent execution shall wait if +// a static local variable is already being initialized. +// https://stackoverflow.com/questions/11711920/how-to-implement-multithread-safe-singleton-in-c11-without-using-mutex OpInfoMap& OpInfoMap::Instance() { - if (g_op_info_map == nullptr) { - g_op_info_map = new OpInfoMap(); - } + static OpInfoMap* g_op_info_map = new OpInfoMap(); return *g_op_info_map; } } // namespace framework diff --git a/paddle/fluid/framework/op_proto_maker.cc b/paddle/fluid/framework/op_proto_maker.cc index ae9f4efd44acdcdff2806deea6826e4089459a78..001b5cb5a8eb57cbe0a2e0ad7f64ef05f8149922 100644 --- a/paddle/fluid/framework/op_proto_maker.cc +++ b/paddle/fluid/framework/op_proto_maker.cc @@ -21,6 +21,7 @@ namespace framework { void OpProtoAndCheckerMaker::Validate() { validated_ = true; CheckNoDuplicatedInOutAttrs(); + CheckReuseVars(); } OpProtoAndCheckerMaker::VariableBuilder OpProtoAndCheckerMaker::AddInput( @@ -56,6 +57,24 @@ void OpProtoAndCheckerMaker::CheckNoDuplicatedInOutAttrs() { } } +void OpProtoAndCheckerMaker::CheckReuseVars() { + std::unordered_set names; + for (auto& input : proto_->inputs()) { + names.insert(input.name()); + } + auto checker = [&](const std::string& name, const std::string& reused) { + PADDLE_ENFORCE( + names.count(reused), + "Output [%s] reuse Input [%s], but the input is not registered.", name, + reused); + }; + for (auto& output : proto_->outputs()) { + if (output.has_reuse()) { + checker(output.name(), output.reuse()); + } + } +} + void OpProtoAndCheckerMaker::operator()(proto::OpProto* proto, OpAttrChecker* attr_checker) { proto_ = proto; diff --git a/paddle/fluid/framework/op_proto_maker.h b/paddle/fluid/framework/op_proto_maker.h index 8493b9d8b326c71a33b95bf95e5fc1743c686eb7..92f86bb5de520878d0a7b8d7214620580242c061 100644 --- a/paddle/fluid/framework/op_proto_maker.h +++ b/paddle/fluid/framework/op_proto_maker.h @@ -14,6 +14,8 @@ limitations under the License. */ #pragma once #include +#include + #include "glog/logging.h" #include "paddle/fluid/framework/attribute.h" #include "paddle/fluid/framework/framework.pb.h" @@ -64,6 +66,11 @@ class OpProtoAndCheckerMaker { var_->set_dispensable(true); return *this; } + + VariableBuilder &Reuse(const std::string &name) { + var_->set_reuse(name); + return *this; + } }; VariableBuilder AddInput(const std::string &name, const std::string &comment); @@ -89,6 +96,8 @@ class OpProtoAndCheckerMaker { void CheckNoDuplicatedInOutAttrs(); void Validate(); + void CheckReuseVars(); + proto::OpProto *proto_; OpAttrChecker *op_checker_; bool validated_{false}; diff --git a/paddle/fluid/framework/op_proto_maker_test.cc b/paddle/fluid/framework/op_proto_maker_test.cc index a8030d377fdb4d4aef74b315e21792dad10fac96..58f70cb39c0d96ed3b9ff35ea132ba75a37f5405 100644 --- a/paddle/fluid/framework/op_proto_maker_test.cc +++ b/paddle/fluid/framework/op_proto_maker_test.cc @@ -47,3 +47,23 @@ TEST(ProtoMaker, DuplicatedInOut) { ASSERT_THROW(proto_maker(&op_proto, &op_checker), paddle::platform::EnforceNotMet); } + +class TestInplaceProtoMaker : public paddle::framework::OpProtoAndCheckerMaker { + public: + void Make() { + AddInput("X", "input of test op"); + AddOutput("XOut", "output of test op").Reuse("X"); + AddOutput("NoOut", "output of test op").Reuse("NotExists"); + } +}; + +TEST(ProtoMaker, InplaceOutput) { + paddle::framework::proto::OpProto op_proto; + paddle::framework::OpAttrChecker op_checker; + TestInplaceProtoMaker proto_maker; + ASSERT_THROW(proto_maker(&op_proto, &op_checker), + paddle::platform::EnforceNotMet); + // proto_maker(&op_proto, &op_checker); + // proto_maker.Make(); + // ASSERT_THROW(proto_maker.Validate(), paddle::platform::EnforceNotMet); +} diff --git a/paddle/fluid/framework/parallel_executor.cc b/paddle/fluid/framework/parallel_executor.cc index 9844daf875bcb81cd00ad6d732c09fbda7c6e491..e8c9ef29cad281e50861cd1daf12e2c793a7f711 100644 --- a/paddle/fluid/framework/parallel_executor.cc +++ b/paddle/fluid/framework/parallel_executor.cc @@ -22,8 +22,8 @@ limitations under the License. */ #include "paddle/fluid/platform/nccl_helper.h" #endif -#include "paddle/fluid/framework/details/graph_builder_factory.h" #include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h" +#include "paddle/fluid/framework/details/ssa_graph_builder_factory.h" #include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h" #include "paddle/fluid/platform/profiler.h" @@ -43,7 +43,8 @@ class ParallelExecutorPrivate { #ifdef PADDLE_WITH_CUDA std::unique_ptr nccl_ctxs_; #endif - bool own_local_scope; + bool own_local_scope_; + bool use_cuda_; }; std::vector &ParallelExecutor::GetLocalScopes() { @@ -60,35 +61,40 @@ ParallelExecutor::ParallelExecutor( size_t num_trainers, size_t trainer_id) : member_(new ParallelExecutorPrivate(places)) { member_->global_scope_ = scope; + member_->use_cuda_ = exec_strategy.use_cuda_; // Step 1. Bcast the params to devs. // Create local scopes if (local_scopes.empty()) { - member_->own_local_scope = true; + member_->own_local_scope_ = true; member_->local_scopes_.emplace_back(member_->global_scope_); for (size_t i = 1; i < member_->places_.size(); ++i) { member_->local_scopes_.emplace_back(&scope->NewScope()); } } else { - member_->own_local_scope = false; + member_->own_local_scope_ = false; PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size()); for (size_t i = 0; i < member_->places_.size(); ++i) { member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope()); } } + if (member_->use_cuda_) { // Bcast Parameters to all GPUs #ifdef PADDLE_WITH_CUDA - auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME); - ncclUniqueId *nccl_id = nullptr; - if (nccl_id_var != nullptr) { - nccl_id = nccl_id_var->GetMutable(); - } - member_->nccl_ctxs_.reset(new platform::NCCLContextMap( - member_->places_, nccl_id, num_trainers, trainer_id)); + auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME); + ncclUniqueId *nccl_id = nullptr; + if (nccl_id_var != nullptr) { + nccl_id = nccl_id_var->GetMutable(); + } + member_->nccl_ctxs_.reset(new platform::NCCLContextMap( + member_->places_, nccl_id, num_trainers, trainer_id)); +#else + PADDLE_THROW("Not compiled with CUDA"); #endif - if (platform::is_gpu_place(places[0]) && member_->local_scopes_.size() != 1 && - local_scopes.empty()) { // Is CUDA + } + + if (member_->local_scopes_.size() != 1 && local_scopes.empty()) { BCastParamsToGPUs(bcast_vars); } // Startup Program has been run. All local scopes has correct parameters. @@ -107,10 +113,14 @@ ParallelExecutor::ParallelExecutor( details::SSAGraphBuilderFactory builder_factory( member_->places_, loss_var_name, params, member_->local_scopes_, build_strategy); - + if (member_->use_cuda_) { #ifdef PADDLE_WITH_CUDA - builder_factory.SetNCCLContextMap(member_->nccl_ctxs_.get()); + builder_factory.SetNCCLContextMap(member_->nccl_ctxs_.get()); +#else + PADDLE_THROW("Not compiled with CUDA"); #endif + } + builder_ = std::move(builder_factory.Create()); member_->executor_.reset(new details::ThreadedSSAGraphExecutor( exec_strategy, member_->local_scopes_, places, @@ -123,7 +133,6 @@ ParallelExecutor::ParallelExecutor( void ParallelExecutor::BCastParamsToGPUs( const std::unordered_set &vars) const { -#ifdef PADDLE_WITH_CUDA auto *main_scope = member_->local_scopes_[0]; for (auto &var : vars) { @@ -135,6 +144,7 @@ void ParallelExecutor::BCastParamsToGPUs( auto &main_tensor = main_var->Get(); auto &dims = main_tensor.dims(); if (paddle::platform::is_gpu_place(main_tensor.place())) { +#ifdef PADDLE_WITH_CUDA size_t numel = main_tensor.numel(); ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type()); platform::NCCLGroupGuard guard; @@ -161,6 +171,10 @@ void ParallelExecutor::BCastParamsToGPUs( nccl_ctx.comm_, nccl_ctx.stream()); } } + member_->nccl_ctxs_->WaitAll(); +#else + PADDLE_THROW("Not compiled with CUDA"); +#endif } else { platform::CPUPlace cpu; for (size_t i = 1; i < member_->places_.size(); ++i) { @@ -171,11 +185,7 @@ void ParallelExecutor::BCastParamsToGPUs( paddle::framework::TensorCopy(main_tensor, cpu, t); } } - member_->nccl_ctxs_->WaitAll(); } -#else - PADDLE_THROW("Not compiled with CUDA"); -#endif } void ParallelExecutor::Run(const std::vector &fetch_tensors, @@ -221,7 +231,7 @@ void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes( } ParallelExecutor::~ParallelExecutor() { - if (member_->own_local_scope) { + if (member_->own_local_scope_) { for (size_t i = 1; i < member_->local_scopes_.size(); ++i) { member_->global_scope_->DeleteScope(member_->local_scopes_[i]); } diff --git a/paddle/fluid/inference/tensorrt/convert/ut_helper.h b/paddle/fluid/inference/tensorrt/convert/ut_helper.h index 8613d5b1c13bc24572b374a8d115690f089a71d1..3b1f531adc5d756259df1c350f7f44bf71ee1f93 100644 --- a/paddle/fluid/inference/tensorrt/convert/ut_helper.h +++ b/paddle/fluid/inference/tensorrt/convert/ut_helper.h @@ -64,7 +64,8 @@ class TRTConvertValidation { TRTConvertValidation(int batch_size, const std::unordered_set& parameters, - framework::Scope& scope, int workspace_size = 1 << 10) + framework::Scope& scope, // NOLINT + int workspace_size = 1 << 10) : parameters_(parameters), scope_(scope) { // create engine. engine_.reset(new TensorRTEngine(10, 1 << 10, &stream_)); @@ -151,7 +152,8 @@ class TRTConvertValidation { // Compare two output ASSERT_FALSE(fluid_out.empty()); for (size_t i = 0; i < fluid_out.size(); i++) { - EXPECT_LT(std::abs(fluid_out[i] - trt_out[i]), 1e-6); + // Loose the threshold for CI in different machine model. + EXPECT_LT(std::abs(fluid_out[i] - trt_out[i]), 2e-5); } } } diff --git a/paddle/fluid/inference/tests/book/test_inference_image_classification.cc b/paddle/fluid/inference/tests/book/test_inference_image_classification.cc index 987da18116cc6f4902bd66ae317f2470a8bc5057..60c761c5281e2f535aab0200c93fb738addcdb87 100644 --- a/paddle/fluid/inference/tests/book/test_inference_image_classification.cc +++ b/paddle/fluid/inference/tests/book/test_inference_image_classification.cc @@ -21,7 +21,6 @@ DEFINE_string(fp16_dirname, "", "Directory of the float16 inference model."); DEFINE_int32(batch_size, 1, "Batch size of input data"); DEFINE_int32(repeat, 1, "Running the inference program repeat times"); DEFINE_bool(skip_cpu, false, "Skip the cpu test"); -DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run inference"); TEST(inference, image_classification) { if (FLAGS_dirname.empty() || FLAGS_batch_size < 1 || FLAGS_repeat < 1) { @@ -59,10 +58,8 @@ TEST(inference, image_classification) { // Run inference on CPU LOG(INFO) << "--- CPU Runs: ---"; LOG(INFO) << "Batch size is " << FLAGS_batch_size; - LOG(INFO) << "FLAGS_use_mkldnn: " << FLAGS_use_mkldnn; TestInference( - dirname, cpu_feeds, cpu_fetchs1, FLAGS_repeat, is_combined, - FLAGS_use_mkldnn); + dirname, cpu_feeds, cpu_fetchs1, FLAGS_repeat, is_combined); LOG(INFO) << output1.dims(); } diff --git a/paddle/fluid/inference/tests/book/test_inference_nlp.cc b/paddle/fluid/inference/tests/book/test_inference_nlp.cc index a0e83a17058a4edcb8f23f23ce155e644ae0cf3b..9dcd79c3bb9ed713ff0f12024969cc5798750988 100644 --- a/paddle/fluid/inference/tests/book/test_inference_nlp.cc +++ b/paddle/fluid/inference/tests/book/test_inference_nlp.cc @@ -27,7 +27,6 @@ limitations under the License. */ DEFINE_string(model_path, "", "Directory of the inference model."); DEFINE_string(data_file, "", "File of input index data."); DEFINE_int32(repeat, 100, "Running the inference program repeat times"); -DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run inference"); DEFINE_bool(prepare_vars, true, "Prepare variables before executor"); DEFINE_int32(num_threads, 1, "Number of threads should be used"); @@ -190,9 +189,6 @@ TEST(inference, nlp) { std::unique_ptr inference_program; inference_program = InitProgram(&executor, scope.get(), FLAGS_model_path, /*model combined*/ false); - if (FLAGS_use_mkldnn) { - EnableMKLDNN(inference_program); - } // always prepare context std::unique_ptr ctx; ctx = executor.Prepare(*inference_program, 0); diff --git a/paddle/fluid/inference/tests/test_helper.h b/paddle/fluid/inference/tests/test_helper.h index 01b8dc0be662da22fe15a79cd9abfe5fa92c9577..44c36b1683b037832a218df02184e7cd2ba143e9 100644 --- a/paddle/fluid/inference/tests/test_helper.h +++ b/paddle/fluid/inference/tests/test_helper.h @@ -22,6 +22,8 @@ limitations under the License. */ #include "paddle/fluid/inference/io.h" #include "paddle/fluid/platform/profiler.h" +DECLARE_bool(use_mkldnn); + template void SetupTensor(paddle::framework::LoDTensor* input, paddle::framework::DDim dims, T lower, T upper) { @@ -133,24 +135,11 @@ std::vector> GetFeedTargetShapes( return feed_target_shapes; } -void EnableMKLDNN( - const std::unique_ptr& program) { - for (size_t bid = 0; bid < program->Size(); ++bid) { - auto* block = program->MutableBlock(bid); - for (auto* op : block->AllOps()) { - if (op->HasAttr("use_mkldnn")) { - op->SetAttr("use_mkldnn", true); - } - } - } -} - template void TestInference(const std::string& dirname, const std::vector& cpu_feeds, const std::vector& cpu_fetchs, - const int repeat = 1, const bool is_combined = false, - const bool use_mkldnn = false) { + const int repeat = 1, const bool is_combined = false) { // 1. Define place, executor, scope auto place = Place(); auto executor = paddle::framework::Executor(place); @@ -182,9 +171,6 @@ void TestInference(const std::string& dirname, "init_program", paddle::platform::DeviceContextPool::Instance().Get(place)); inference_program = InitProgram(&executor, scope, dirname, is_combined); - if (use_mkldnn) { - EnableMKLDNN(inference_program); - } } // Disable the profiler and print the timing information paddle::platform::DisableProfiler(paddle::platform::EventSortingKey::kDefault, @@ -210,7 +196,10 @@ void TestInference(const std::string& dirname, fetch_targets[fetch_target_names[i]] = cpu_fetchs[i]; } - // 6. Run the inference program + // 6. If export Flags_use_mkldnn=True, use mkldnn related ops. + if (FLAGS_use_mkldnn) executor.EnableMKLDNN(*inference_program); + + // 7. Run the inference program { if (!CreateVars) { // If users don't want to create and destroy variables every time they diff --git a/paddle/fluid/operators/CMakeLists.txt b/paddle/fluid/operators/CMakeLists.txt index 5e86b16ba1ff69c798372a144fb3bf699768f2e6..d6a36eff09c7f70803d3be619b26d16660da1ec2 100644 --- a/paddle/fluid/operators/CMakeLists.txt +++ b/paddle/fluid/operators/CMakeLists.txt @@ -186,19 +186,23 @@ endif() add_subdirectory(detail) if(WITH_DISTRIBUTE) - - set(DISTRIBUTE_DEPS sendrecvop_grpc grpc++_unsecure grpc_unsecure gpr cares zlib protobuf) + + set(DISTRIBUTE_DEPS "") + if(WITH_GRPC) + set(DISTRIBUTE_DEPS sendrecvop_grpc grpc++_unsecure grpc_unsecure gpr cares zlib protobuf) + else() + set(DISTRIBUTE_DEPS sendrecvop_brpc brpc leveldb snappystream snappy protobuf ssl crypto zlib) + endif() + set(DISTRIBUTE_COMPILE_FLAGS "-Wno-non-virtual-dtor -Wno-error=non-virtual-dtor -Wno-error=delete-non-virtual-dtor") - op_library(send_op DEPS ${DISTRIBUTE_DEPS}) - set_source_files_properties(send_op.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS}) op_library(prefetch_op DEPS ${DISTRIBUTE_DEPS}) set_source_files_properties(prefetch_op.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS}) op_library(recv_op DEPS ${DISTRIBUTE_DEPS}) set_source_files_properties(recv_op.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS}) op_library(listen_and_serv_op DEPS ${DISTRIBUTE_DEPS}) set_source_files_properties(listen_and_serv_op.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS}) - op_library(send_vars_op DEPS ${DISTRIBUTE_DEPS}) - set_source_files_properties(send_vars_op.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS}) + op_library(send_op DEPS ${DISTRIBUTE_DEPS}) + set_source_files_properties(send_op.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS}) op_library(send_barrier_op DEPS ${DISTRIBUTE_DEPS}) op_library(fetch_barrier_op DEPS ${DISTRIBUTE_DEPS}) set_source_files_properties(send_barrier_op.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS}) @@ -208,15 +212,18 @@ if(WITH_DISTRIBUTE) # listen_and_serv_op sum_op executor SERIAL) if(WITH_GPU) set_source_files_properties(test_send_nccl_id.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS}) - cc_test(test_send_nccl_id SRCS test_send_nccl_id.cc DEPS send_op - listen_and_serv_op executor SERIAL) - op_library(gen_nccl_id_op DEPS nccl_common sendrecvop_grpc) + cc_test(test_send_nccl_id SRCS test_send_nccl_id.cc DEPS listen_and_serv_op executor SERIAL) + if(WITH_GRPC) + op_library(gen_nccl_id_op DEPS nccl_common sendrecvop_grpc) + else() + op_library(gen_nccl_id_op DEPS nccl_common sendrecvop_brpc) + endif() set_source_files_properties(gen_nccl_id_op.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS}) else() set(DEPS_OPS ${DEPS_OPS} gen_nccl_id_op) endif() else() - set(DEPS_OPS ${DEPS_OPS} send_op prefetch_op recv_op listen_and_serv_op send_vars_op send_barrier_op fetch_barrier_op gen_nccl_id_op) + set(DEPS_OPS ${DEPS_OPS} prefetch_op recv_op listen_and_serv_op send_op send_barrier_op fetch_barrier_op gen_nccl_id_op) endif() op_library(cross_entropy_op DEPS cross_entropy) diff --git a/paddle/fluid/operators/activation_op.cc b/paddle/fluid/operators/activation_op.cc index 8478ae20a59250f45daf9e8e4e18fddfe61b945e..af1d85047e519df6766b2139a0445ae9dc5945e2 100644 --- a/paddle/fluid/operators/activation_op.cc +++ b/paddle/fluid/operators/activation_op.cc @@ -24,12 +24,12 @@ namespace operators { : public ::paddle::framework::OpProtoAndCheckerMaker { \ public: \ void Make() override { \ - AddInput("X", "Input of " #OP_NAME "operator"); \ - AddOutput("Out", "Output of" #OP_NAME "operator"); \ + AddInput("X", "Input of " #OP_NAME " operator"); \ + AddOutput("Out", "Output of " #OP_NAME " operator").Reuse("X"); \ AddAttr("use_mkldnn", \ "(bool, default false) Only used in mkldnn kernel") \ .SetDefault(false); \ - AddComment(#OP_COMMENT); \ + AddComment(OP_COMMENT); \ } \ } diff --git a/paddle/fluid/operators/adam_op.cc b/paddle/fluid/operators/adam_op.cc index 99b0239855d6241b064a5883c2be3d58078b3b61..6ee73c3000fb45b4e1cd5bbb730da7d61b494b6f 100644 --- a/paddle/fluid/operators/adam_op.cc +++ b/paddle/fluid/operators/adam_op.cc @@ -89,9 +89,9 @@ class AdamOpMaker : public framework::OpProtoAndCheckerMaker { AddInput("Beta1Pow", "(Tensor) Input beta1 power accumulator"); AddInput("Beta2Pow", "(Tensor) Input beta2 power accumulator"); - AddOutput("ParamOut", "(Tensor) Output parameter"); - AddOutput("Moment1Out", "(Tensor) Output first moment"); - AddOutput("Moment2Out", "(Tensor) Output second moment"); + AddOutput("ParamOut", "(Tensor) Output parameter").Reuse("Param"); + AddOutput("Moment1Out", "(Tensor) Output first moment").Reuse("Moment1"); + AddOutput("Moment2Out", "(Tensor) Output second moment").Reuse("Moment2"); AddAttr("beta1", "(float, default 0.9) " diff --git a/paddle/fluid/operators/arg_max_op.cc b/paddle/fluid/operators/arg_max_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..8174d3735859b1fac40cd4c07545f34874d31ab7 --- /dev/null +++ b/paddle/fluid/operators/arg_max_op.cc @@ -0,0 +1,33 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/fluid/operators/arg_min_max_op_base.h" + +REGISTER_OPERATOR(arg_max, paddle::operators::ArgMinMaxOp, + paddle::operators::ArgMaxOpMaker, + paddle::framework::EmptyGradOpMaker); + +REGISTER_OP_CPU_KERNEL( + arg_max, + paddle::operators::ArgMaxKernel, + paddle::operators::ArgMaxKernel, + paddle::operators::ArgMaxKernel, + paddle::operators::ArgMaxKernel, + paddle::operators::ArgMaxKernel, + paddle::operators::ArgMaxKernel, + paddle::operators::ArgMaxKernel); diff --git a/paddle/fluid/operators/arg_max_op.cu b/paddle/fluid/operators/arg_max_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..a147d77a9e9c577984028e1a6ed9582dda622069 --- /dev/null +++ b/paddle/fluid/operators/arg_max_op.cu @@ -0,0 +1,31 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/fluid/operators/arg_min_max_op_base.h" + +REGISTER_OP_CUDA_KERNEL( + arg_max, + paddle::operators::ArgMaxKernel, + paddle::operators::ArgMaxKernel, + paddle::operators::ArgMaxKernel, + paddle::operators::ArgMaxKernel, + paddle::operators::ArgMaxKernel, + paddle::operators::ArgMaxKernel, + paddle::operators::ArgMaxKernel); diff --git a/paddle/fluid/operators/arg_min_max_op_base.h b/paddle/fluid/operators/arg_min_max_op_base.h new file mode 100644 index 0000000000000000000000000000000000000000..6cbdaefeda099c36a864289ef8195c20d09c55e6 --- /dev/null +++ b/paddle/fluid/operators/arg_min_max_op_base.h @@ -0,0 +1,160 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include +#include +#include +#include "paddle/fluid/framework/ddim.h" +#include "paddle/fluid/framework/eigen.h" +#include "paddle/fluid/framework/lod_tensor.h" +#include "paddle/fluid/framework/op_registry.h" +#include "paddle/fluid/framework/operator.h" +#include "paddle/fluid/platform/enforce.h" +#include "paddle/fluid/string/printf.h" + +namespace paddle { +namespace operators { + +enum ArgMinMaxType { kArgMin, kArgMax }; + +template +struct ArgMinMaxFunctor {}; + +#define DECLARE_ARG_MIN_MAX_FUNCTOR(eigen_op_type, enum_argminmax_value) \ + template \ + struct ArgMinMaxFunctor { \ + void operator()(const DeviceContext& ctx, const framework::LoDTensor& in, \ + framework::LoDTensor* out, int64_t axis) { \ + auto in_eigen = framework::EigenTensor::From(in); \ + auto out_eigen = framework::EigenTensor::From(*out); \ + out_eigen.device(*(ctx.eigen_device())) = \ + in_eigen.eigen_op_type(axis).template cast(); \ + } \ + } + +DECLARE_ARG_MIN_MAX_FUNCTOR(argmin, ArgMinMaxType::kArgMin); +DECLARE_ARG_MIN_MAX_FUNCTOR(argmax, ArgMinMaxType::kArgMax); + +template +class ArgMinMaxKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto& x = *(ctx.Input("X")); + auto& out = *(ctx.Output("Out")); + out.mutable_data(ctx.GetPlace()); + auto axis = ctx.Attr("axis"); + auto& dev_ctx = ctx.template device_context(); + +#define CALL_ARG_MINMAX_FUNCTOR(rank) \ + ArgMinMaxFunctor \ + functor##rank; \ + functor##rank(dev_ctx, x, &out, axis) + + switch (x.dims().size()) { + case 1: + CALL_ARG_MINMAX_FUNCTOR(1); + break; + case 2: + CALL_ARG_MINMAX_FUNCTOR(2); + break; + case 3: + CALL_ARG_MINMAX_FUNCTOR(3); + break; + case 4: + CALL_ARG_MINMAX_FUNCTOR(4); + break; + case 5: + CALL_ARG_MINMAX_FUNCTOR(5); + break; + case 6: + CALL_ARG_MINMAX_FUNCTOR(6); + break; + default: + PADDLE_THROW( + "%s operator doesn't supports tensors whose ranks are greater " + "than 6.", + (EnumArgMinMaxValue == kArgMin ? "argmin" : "argmax")); + break; +#undef CALL_ARG_MINMAX_FUNCTOR + } + } +}; + +template +using ArgMinKernel = + ArgMinMaxKernel; + +template +using ArgMaxKernel = + ArgMinMaxKernel; + +class ArgMinMaxOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + void InferShape(framework::InferShapeContext* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null"); + PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) should not be null"); + const auto& x_dims = ctx->GetInputDim("X"); + int64_t axis = ctx->Attrs().Get("axis"); + PADDLE_ENFORCE(axis >= -x_dims.size() && axis < x_dims.size(), + "'axis' must be inside [-Rank(X), Rank(X))"); + + auto x_rank = x_dims.size(); + if (axis < 0) axis += x_rank; + + std::vector vec; + for (int64_t i = 0; i < axis; i++) vec.push_back(x_dims[i]); + for (int64_t i = axis + 1; i < x_rank; i++) vec.push_back(x_dims[i]); + ctx->SetOutputDim("Out", framework::make_ddim(vec)); + } +}; + +class BaseArgMinMaxOpMaker : public framework::OpProtoAndCheckerMaker { + protected: + virtual const char* OpName() const = 0; + virtual const char* Name() const = 0; + + public: + void Make() override { + AddInput("X", "Input tensor."); + AddOutput("Out", "Output tensor."); + AddAttr("axis", "The axis in which to compute the arg indics."); + AddComment(string::Sprintf(R"DOC( + %s Operator. + + Computes the indices of the %s elements of the input tensor's element + along the provided axis. +)DOC", + OpName(), Name())); + } +}; + +class ArgMinOpMaker : public BaseArgMinMaxOpMaker { + protected: + const char* OpName() const override { return "ArgMin"; } + const char* Name() const override { return "min"; } +}; + +class ArgMaxOpMaker : public BaseArgMinMaxOpMaker { + protected: + const char* OpName() const override { return "ArgMax"; } + const char* Name() const override { return "max"; } +}; +} // namespace operators +} // namespace paddle diff --git a/paddle/fluid/operators/arg_min_op.cc b/paddle/fluid/operators/arg_min_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..41f188029f17dbe8717afc0ca0760a39edc24b54 --- /dev/null +++ b/paddle/fluid/operators/arg_min_op.cc @@ -0,0 +1,33 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/fluid/operators/arg_min_max_op_base.h" + +REGISTER_OPERATOR(arg_min, paddle::operators::ArgMinMaxOp, + paddle::operators::ArgMinOpMaker, + paddle::framework::EmptyGradOpMaker); + +REGISTER_OP_CPU_KERNEL( + arg_min, + paddle::operators::ArgMinKernel, + paddle::operators::ArgMinKernel, + paddle::operators::ArgMinKernel, + paddle::operators::ArgMinKernel, + paddle::operators::ArgMinKernel, + paddle::operators::ArgMinKernel, + paddle::operators::ArgMinKernel); diff --git a/paddle/fluid/operators/arg_min_op.cu b/paddle/fluid/operators/arg_min_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..4d020508505a6ebac8be41ce1e4f99d436b67ab5 --- /dev/null +++ b/paddle/fluid/operators/arg_min_op.cu @@ -0,0 +1,31 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/fluid/operators/arg_min_max_op_base.h" + +REGISTER_OP_CUDA_KERNEL( + arg_min, + paddle::operators::ArgMinKernel, + paddle::operators::ArgMinKernel, + paddle::operators::ArgMinKernel, + paddle::operators::ArgMinKernel, + paddle::operators::ArgMinKernel, + paddle::operators::ArgMinKernel, + paddle::operators::ArgMinKernel); diff --git a/paddle/fluid/operators/batch_norm_op.cc b/paddle/fluid/operators/batch_norm_op.cc index d7e0af28c1bfa6a9073b25b0a301234cc5d194f5..92fbb9adaf6a6a335abee3c9443d4b1d6097021b 100644 --- a/paddle/fluid/operators/batch_norm_op.cc +++ b/paddle/fluid/operators/batch_norm_op.cc @@ -151,13 +151,15 @@ class BatchNormOpMaker : public framework::OpProtoAndCheckerMaker { AddInput("Variance", "The global variance (for training) " "or estimated Variance (for testing)"); - AddOutput("Y", "result after normalization"); + AddOutput("Y", "result after normalization").Reuse("X"); AddOutput("MeanOut", "Share memory with Mean. " - "Store the global mean when training"); + "Store the global mean when training") + .Reuse("Mean"); AddOutput("VarianceOut", "Share memory with Variance. " - "Store the global Variance when training"); + "Store the global Variance when training") + .Reuse("Variance"); AddOutput("SavedMean", "Mean of the current mini batch, " "will apply to output when training") diff --git a/paddle/fluid/operators/batch_size_like.h b/paddle/fluid/operators/batch_size_like.h index 483c9f8c2191fa4eb98b91112f9d6753e2fbddc3..fc15d56891cf7af10a91ca22a09c84fa2e52d465 100644 --- a/paddle/fluid/operators/batch_size_like.h +++ b/paddle/fluid/operators/batch_size_like.h @@ -54,18 +54,18 @@ class BatchSizeLikeOp : public framework::OperatorWithKernel { class BatchSizeLikeOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() final { - AddInput("Input", - "(Tensor) Tensor " - "whose input_dim_idx'th dimension specifies the batch_size"); + AddInput( + "Input", + "Tensor whose input_dim_idx'th dimension specifies the batch_size"); AddOutput("Out", - "(Tensor) Tensor of specified shape will be filled " + "Tensor of specified shape will be filled " "with the specified value"); - AddAttr>("shape", "(vector) The shape of the output"); + AddAttr>("shape", "The shape of the output"); AddAttr("input_dim_idx", - "(int, default 0) The index of input's batch size dimension") + "default 0. The index of input's batch size dimension") .SetDefault(0); AddAttr("output_dim_idx", - "(int, default 0) The index of output's batch size dimension") + "default 0. The index of output's batch size dimension") .SetDefault(0); Apply(); } diff --git a/paddle/fluid/operators/bilinear_interp_op.cc b/paddle/fluid/operators/bilinear_interp_op.cc index 3321adf2743c28f6eeca8b5cc91ef89beed6b97c..2572e813d656353a2187c29da89266733a32f3ce 100644 --- a/paddle/fluid/operators/bilinear_interp_op.cc +++ b/paddle/fluid/operators/bilinear_interp_op.cc @@ -56,17 +56,16 @@ class BilinearInterpOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", - "(Tensor) The input tensor of bilinear interpolation, " + "The input tensor of bilinear interpolation, " "This is a 4-D tensor with shape of (N x C x h x w)"); AddInput("OutSize", - "(Tensor) This is a 1-D tensor with two number. " + "This is a 1-D tensor with two number. " "The first number is height and the second number is width.") .AsDispensable(); - AddOutput("Out", - "(Tensor) The dimension of output is (N x C x out_h x out_w]"); + AddOutput("Out", "The dimension of output is (N x C x out_h x out_w)"); - AddAttr("out_h", "(int) output height of bilinear interpolation op."); - AddAttr("out_w", "(int) output width of bilinear interpolation op."); + AddAttr("out_h", "output height of bilinear interpolation op."); + AddAttr("out_w", "output width of bilinear interpolation op."); AddComment(R"DOC( Bilinear interpolation is an extension of linear interpolation for interpolating functions of two variables (e.g. H-direction and diff --git a/paddle/fluid/operators/conv_op.cc b/paddle/fluid/operators/conv_op.cc index 850297a2327f33a4a765f64f201e217fce5db89b..27f1313116aad99d34fa8f1d3d6a1e7aced4d394 100644 --- a/paddle/fluid/operators/conv_op.cc +++ b/paddle/fluid/operators/conv_op.cc @@ -125,7 +125,8 @@ void Conv2DOpMaker::Make() { "input image channels divided by the groups."); AddOutput("Output", "(Tensor) The output tensor of convolution operator. " - "The format of output tensor is also NCHW."); + "The format of output tensor is also NCHW.") + .Reuse("Input"); AddAttr>("strides", "(vector default:{1, 1}), the " "strides(h_stride, w_stride) of " @@ -220,7 +221,8 @@ void Conv3DOpMaker::Make() { "input image channels divided by the groups."); AddOutput("Output", "(Tensor) The output tensor of convolution operator." - "The format of output tensor is also NCDHW."); + "The format of output tensor is also NCDHW.") + .Reuse("Input"); AddAttr>("strides", "(vector, default:{1, 1, 1}), the " "strides(d_stride, h_stride, w_stride) of " diff --git a/paddle/fluid/operators/crop_op.cc b/paddle/fluid/operators/crop_op.cc index 669b3bbe9df4cae1aa381184092dfa51157ab6a3..5b5a220cf90e7813f914ae35733e7a4103391b2d 100644 --- a/paddle/fluid/operators/crop_op.cc +++ b/paddle/fluid/operators/crop_op.cc @@ -48,6 +48,13 @@ class CropOp : public framework::OperatorWithKernel { ctx->SetOutputDim("Out", y_dim); } } + + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext& ctx) const override { + return framework::OpKernelType( + framework::ToDataType(ctx.Input("X")->type()), + ctx.device_context()); + } }; class CropOpMaker : public framework::OpProtoAndCheckerMaker { @@ -60,13 +67,19 @@ class CropOpMaker : public framework::OpProtoAndCheckerMaker { "The input used as reference for cropping, " "which is of the same dimensions as X.") .AsDispensable(); + AddInput("Offsets", + "The input used to describe offsets in runtime, which is a " + "1-D vector whose size equals to the rank of input 'X'. The " + "elements data type must be int.") + .AsDispensable(); AddOutput("Out", "The output of crop op, " "which is of the same dimensions as X."); AddAttr>("offsets", "A list describing offsets to be cropped. " "The size of offsets list should be the same as " - "the dimension size of input X."); + "the dimension size of input X.") + .SetDefault(std::vector()); AddAttr>("shape", "A list describing the shape of output. " "The size of shape list should be the same as " @@ -77,6 +90,17 @@ Crop Operator. Crop input into output, as specified by offsets and shape. +There are two ways to set the offsets: +1. In runtime: Using the input 'Offsets', which is a Vairbale and can be + output of other operators. This way is suitable for + dynamic offsets. +2. In network configuration: Using the attribute 'offsets', which will be + set in Python configure script. This way is + suitable for fixed offsets. +You CANNOT use these two ways at the same time. An exception will be raised +if input 'Offset' is configured and meanwhile the attribute 'offsets' is +not empty. + There are two ways to set shape: 1. reference input: crop input X into the same shape as reference input. The dimension of reference input should @@ -146,6 +170,15 @@ class CropOpGrad : public framework::OperatorWithKernel { ctx->SetOutputDim(x_grad_name, x_dims); } } + + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext& ctx) const override { + return framework::OpKernelType( + framework::ToDataType( + ctx.Input(framework::GradVarName("Out")) + ->type()), + ctx.device_context()); + } }; } // namespace operators diff --git a/paddle/fluid/operators/crop_op.h b/paddle/fluid/operators/crop_op.h index f05c2e23284e3a24cf48442996f671ec6084c391..91cfbbda7352c9b1676aae99e2bd57ccc9e10069 100644 --- a/paddle/fluid/operators/crop_op.h +++ b/paddle/fluid/operators/crop_op.h @@ -27,6 +27,37 @@ template ; using framework::Tensor; +static std::vector GetOffsets(const framework::ExecutionContext& ctx) { + std::vector res; + int rank = ctx.Input("X")->dims().size(); + if (ctx.HasInput("Offsets")) { + PADDLE_ENFORCE(ctx.Attr>("offsets").empty(), + "Input 'Offsets' and attribute 'offsets' should not be used " + "at the same time."); + const auto* offsets_tensor = ctx.Input("Offsets"); + PADDLE_ENFORCE_EQ(offsets_tensor->dims().size(), 1); + PADDLE_ENFORCE_EQ( + rank, offsets_tensor->dims()[0], + "Offsets size should be equal to dimension size of input tensor."); + const int* offsets_data; + framework::Tensor cpu_tmp_tensor; + if (platform::is_cpu_place(offsets_tensor->place())) { + offsets_data = offsets_tensor->data(); + } else { + framework::TensorCopySync(*offsets_tensor, platform::CPUPlace(), + &cpu_tmp_tensor); + offsets_data = cpu_tmp_tensor.data(); + } + res = std::vector(offsets_data, offsets_data + rank); + } else { + res = ctx.Attr>("offsets"); + PADDLE_ENFORCE_EQ( + rank, res.size(), + "Offsets size should be equal to dimension size of input tensor."); + } + return res; +} + template class CropKernel : public framework::OpKernel { public: @@ -37,10 +68,7 @@ class CropKernel : public framework::OpKernel { T* out_data = out->mutable_data(context.GetPlace()); auto x_stride = framework::stride(x->dims()); auto out_stride = framework::stride(out->dims()); - auto offsets = context.Attr>("offsets"); - PADDLE_ENFORCE_EQ( - x->dims().size(), static_cast(offsets.size()), - "Offsets size should be equal to dimension size of input tensor."); + auto offsets = GetOffsets(context); int64_t offset = 0; for (size_t i = 0; i < offsets.size(); ++i) { offset += (x_stride[i] * offsets[i]); @@ -56,7 +84,7 @@ void CropGradFunction(const framework::ExecutionContext& context) { if (d_x != nullptr) { auto* d_out = context.Input(framework::GradVarName("Out")); d_x->mutable_data(context.GetPlace()); - auto offsets = context.Attr>("offsets"); + auto offsets = GetOffsets(context); Eigen::array, D> paddings; for (size_t i = 0; i < D; ++i) { paddings[i].first = offsets[i]; diff --git a/paddle/fluid/operators/cross_entropy_op.cc b/paddle/fluid/operators/cross_entropy_op.cc index a3bec3da45136bca5cb2763e7ffd6b67703a1813..d5e095f9cad95b74b8ff79e4a60ccbdf11512a5a 100644 --- a/paddle/fluid/operators/cross_entropy_op.cc +++ b/paddle/fluid/operators/cross_entropy_op.cc @@ -124,7 +124,8 @@ class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker { "Tensor with shape [N x D]."); AddOutput("Y", "(Tensor, default Tensor), a 2-D tensor with shape " - "[N x 1]. The cross entropy loss."); + "[N x 1]. The cross entropy loss.") + .Reuse("X"); AddAttr("soft_label", "(bool, default false), a flag indicating whether to " "interpretate the given labels as soft labels.") diff --git a/paddle/fluid/operators/detail/CMakeLists.txt b/paddle/fluid/operators/detail/CMakeLists.txt index c29dc5d7e077a73b7db6a0c9204c2029ec1392bc..abc5aad0430e71928a441c9488dda16dfdd63b9c 100644 --- a/paddle/fluid/operators/detail/CMakeLists.txt +++ b/paddle/fluid/operators/detail/CMakeLists.txt @@ -1,12 +1,38 @@ -if(WITH_DISTRIBUTE) +if(NOT WITH_DISTRIBUTE) + return() +endif() + + +if(WITH_GRPC) grpc_library(sendrecvop_grpc SRCS bytebuffer_stream.cc sendrecvop_utils.cc grpc_client.cc request_handler_impl.cc rpc_client.cc rpc_server.cc grpc_server.cc variable_response.cc PROTO send_recv.proto DEPS lod_tensor selected_rows memory) set(DISTRIBUTE_COMPILE_FLAGS "-Wno-non-virtual-dtor -Wno-error=non-virtual-dtor -Wno-error=delete-non-virtual-dtor") - set_source_files_properties(serde_test.cc grpc_server_test.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS}) - cc_test(serde_test SRCS serde_test.cc variable_response.cc DEPS grpc++_unsecure grpc_unsecure gpr + set_source_files_properties(grpc_serde_test.cc rpc_server_test.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS}) + cc_test(serde_test SRCS grpc_serde_test.cc variable_response.cc DEPS grpc++_unsecure grpc_unsecure gpr cares zlib protobuf sendrecvop_grpc SERIAL) - cc_test(grpc_server_test SRCS grpc_server_test.cc DEPS sendrecvop_grpc + cc_test(grpc_server_test SRCS rpc_server_test.cc DEPS sendrecvop_grpc grpc++_unsecure grpc_unsecure gpr cares zlib protobuf executor proto_desc lookup_table_op SERIAL) + return() endif() + + +set(DISTRIBUTE_COMPILE_FLAGS "-Wno-non-virtual-dtor -Wno-error=non-virtual-dtor -Wno-error=delete-non-virtual-dtor") +set_source_files_properties(brpc_server.cc brpc_client.cc rpc_server_test.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS}) +brpc_library(sendrecvop_brpc SRCS brpc_client.cc brpc_server.cc rpc_server.cc rpc_client.cc request_handler_impl.cc + PROTO send_recv.proto + DEPS lod_tensor selected_rows memory) + +find_library(OPENSSL_CRYPTO_LIBRARY_STATIC NAMES libcrypto.so) +ADD_LIBRARY(crypto SHARED IMPORTED GLOBAL) +SET_PROPERTY(TARGET crypto PROPERTY IMPORTED_LOCATION ${OPENSSL_CRYPTO_LIBRARY_STATIC}) + + +find_library(OPENSSL_SSL_LIBRARY_STATIC NAMES libssl.so) +ADD_LIBRARY(ssl SHARED IMPORTED GLOBAL) +SET_PROPERTY(TARGET ssl PROPERTY IMPORTED_LOCATION ${OPENSSL_SSL_LIBRARY_STATIC}) + +cc_test(brpc_server_test SRCS rpc_server_test.cc DEPS sendrecvop_brpc + brpc protobuf leveldb gflags glog + protobuf executor proto_desc lookup_table_op snappystream snappy ssl crypto SERIAL) diff --git a/paddle/fluid/operators/detail/brpc_client.cc b/paddle/fluid/operators/detail/brpc_client.cc new file mode 100644 index 0000000000000000000000000000000000000000..9a4e410f1d83e93883438fae116c38eb60787673 --- /dev/null +++ b/paddle/fluid/operators/detail/brpc_client.cc @@ -0,0 +1,180 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/operators/detail/brpc_client.h" +#include "paddle/fluid/framework/threadpool.h" + +namespace paddle { +namespace operators { +namespace detail { + +DEFINE_int32(brpc_channel_num, 24, + "Number of channels to send requests connected to one server"); +DEFINE_int32(timeout_ms, 30000, "RPC timeout in milliseconds"); +DEFINE_int32(max_retry, 3, "Max retries(not including the first RPC)"); + +BRPCClient::~BRPCClient() { Wait(); } + +void HandleSendResponse(brpc::Controller* cntl, + sendrecv::VoidMessage* response) { + // std::unique_ptr makes sure cntl/response will be deleted before returning. + std::unique_ptr cntl_guard(cntl); + std::unique_ptr response_guard(response); + + if (cntl->Failed()) { + LOG(WARNING) << "Fail to send EchoRequest, " << cntl->ErrorText(); + return; + } + LOG(INFO) << "Received response from " << cntl->remote_side() + << " latency=" << cntl->latency_us() << "us"; +} + +bool BRPCClient::AsyncSendVar(const std::string& ep, + const platform::DeviceContext& ctx, + const framework::Scope& scope, + const std::string& var_name, int64_t time_out) { + const platform::DeviceContext* p_ctx = &ctx; + const std::string ep_val = ep; + const std::string var_name_val = var_name; + const framework::Scope* p_scope = &scope; + const auto ch_ptr = GetChannel(ep_val); + + framework::AsyncIO( + [var_name_val, p_ctx, ep_val, p_scope, time_out, ch_ptr, this] { + auto ch_ctx = ch_ptr->Pop(); + brpc::Controller* cntl = new brpc::Controller(); + sendrecv::VoidMessage* response = new sendrecv::VoidMessage(); + cntl->set_timeout_ms(time_out); + + google::protobuf::Closure* done = + brpc::NewCallback(&HandleSendResponse, cntl, response); + + sendrecv::VariableMessage request; + ch_ctx->stub->SendVariable(cntl, &request, response, done); + }); + req_count_++; + + return true; +} + +void HandleGetResponse(brpc::Controller* cntl, + sendrecv::VariableMessage* response) { + // std::unique_ptr makes sure cntl/response will be deleted before returning. + std::unique_ptr cntl_guard(cntl); + std::unique_ptr response_guard(response); + + if (cntl->Failed()) { + LOG(WARNING) << "Fail to send EchoRequest, " << cntl->ErrorText(); + return; + } + LOG(INFO) << "Received response from " << cntl->remote_side() + << " latency=" << cntl->latency_us() << "us"; + + // framework::Variable* outvar = nullptr; + // DeserializeFromByteBuffer(ret_msg, *var_h.ctx, var_h.scope, &outvar); +} + +bool BRPCClient::AsyncGetVar(const std::string& ep, + const platform::DeviceContext& ctx, + const framework::Scope& scope, + const std::string& var_name, int64_t time_out) { + const platform::DeviceContext* p_ctx = &ctx; + const std::string ep_val = ep; + const std::string var_name_val = var_name; + const framework::Scope* p_scope = &scope; + const auto ch = GetChannel(ep_val); + + framework::AsyncIO( + [var_name_val, ep_val, p_scope, p_ctx, time_out, ch, this] {}); + + req_count_++; + + return true; +} + +bool BRPCClient::AsyncPrefetchVar(const std::string& ep, + const platform::DeviceContext& ctx, + const framework::Scope& scope, + const std::string& in_var_name, + const std::string& out_var_name, + int64_t time_out) { + const platform::DeviceContext* p_ctx = &ctx; + const std::string ep_val = ep; + const std::string in_var_name_val = in_var_name; + const std::string out_var_name_val = out_var_name; + const framework::Scope* p_scope = &scope; + const auto ch = GetChannel(ep_val); + + framework::AsyncIO([in_var_name_val, out_var_name_val, ep_val, p_scope, p_ctx, + time_out, ch, this] {}); + + req_count_++; + return true; +} + +void BRPCClient::AsyncSendBatchBarrier(const std::string& ep, + int64_t time_out) { + req_count_++; +} + +void BRPCClient::AsyncSendFetchBarrier(const std::string& ep, + int64_t time_out) { + req_count_++; +} + +void BRPCClient::Wait() { + std::unique_lock lk(sync_mutex_); + sync_cond_.wait(lk, [this] { return req_count_ == 0; }); +} + +ChannelQueuePtr BRPCClient::GetChannel(const std::string& ep) { + { + std::lock_guard guard(chan_mutex_); + auto it = channels_.find(ep); + if (it != channels_.end()) { + return it->second; + } + } + + ChannelQueuePtr q(new framework::BlockingQueue()); + + brpc::ChannelOptions options; + options.protocol = "baidu_std"; + options.connection_type = "pooled"; + options.connect_timeout_ms = 100; + options.timeout_ms = FLAGS_timeout_ms /*milliseconds*/; + options.max_retry = FLAGS_max_retry; + for (int i = 0; i < FLAGS_brpc_channel_num; ++i) { + std::shared_ptr c(new ChannelContext()); + if (c->channel.Init(ep.c_str(), &options) != 0) { + LOG(ERROR) << "Fail to initialize channel"; + return nullptr; + } + + c->stub.reset(new sendrecv::SendRecvService_Stub( + static_cast(&c->channel))); + q->Push(c); + } + + { + std::lock_guard guard(chan_mutex_); + channels_[ep] = q; + } + + return q; +} + +} // namespace detail +} // namespace operators +} // namespace paddle diff --git a/paddle/fluid/operators/detail/brpc_client.h b/paddle/fluid/operators/detail/brpc_client.h new file mode 100644 index 0000000000000000000000000000000000000000..1e953ea431d51a9586bfd0b352c7f27d079ff1a8 --- /dev/null +++ b/paddle/fluid/operators/detail/brpc_client.h @@ -0,0 +1,100 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include + +#include // NOLINT +#include +#include +#include +#include +#include // NOLINT +#include +#include + +#include "brpc/channel.h" +#include "paddle/fluid/framework/blocking_queue.h" +#include "paddle/fluid/framework/data_type.h" +#include "paddle/fluid/framework/lod_tensor.h" +#include "paddle/fluid/framework/scope.h" +#include "paddle/fluid/framework/selected_rows.h" +#include "paddle/fluid/operators/detail/rpc_client.h" +#include "paddle/fluid/operators/detail/send_recv.pb.h" +#include "paddle/fluid/platform/macros.h" // for DISABLE_COPY_AND_ASSIGN + +namespace paddle { +namespace operators { +namespace detail { + +struct ChannelContext { + brpc::Channel channel; + std::shared_ptr stub; +}; + +typedef std::shared_ptr ChannelContextPtr; +typedef std::shared_ptr> + ChannelQueuePtr; + +class BRPCClient : public RPCClient { + public: + BRPCClient() {} + virtual ~BRPCClient(); + + bool AsyncSendVar(const std::string& ep, const platform::DeviceContext& ctx, + const framework::Scope& scope, const std::string& var_name, + int64_t time_out = RPCClient::rpc_time_out) override; + + bool AsyncGetVar(const std::string& ep, const platform::DeviceContext& ctx, + const framework::Scope& scope, const std::string& var_name, + int64_t time_out = RPCClient::rpc_time_out) override; + + bool AsyncPrefetchVar(const std::string& ep, + const platform::DeviceContext& ctx, + const framework::Scope& scope, + const std::string& in_var_name, + const std::string& out_var_name, + int64_t time_out = RPCClient::rpc_time_out) override; + + void AsyncSendBatchBarrier( + const std::string& ep, + int64_t time_out = RPCClient::rpc_time_out) override; + + void AsyncSendFetchBarrier( + const std::string& ep, + int64_t time_out = RPCClient::rpc_time_out) override; + + void Wait() override; + + private: + void Proceed(); + ChannelQueuePtr GetChannel(const std::string& ep); + + private: + std::unordered_map channels_; + + // mutex for Wait client sync + std::mutex sync_mutex_; + std::condition_variable sync_cond_; + std::atomic req_count_{0}; + + // mutex for GetChannel thread safety + std::mutex chan_mutex_; + DISABLE_COPY_AND_ASSIGN(BRPCClient); +}; + +} // namespace detail +} // namespace operators +} // namespace paddle diff --git a/paddle/fluid/operators/detail/brpc_server.cc b/paddle/fluid/operators/detail/brpc_server.cc new file mode 100644 index 0000000000000000000000000000000000000000..2170abe679f9ededff3b53e3139e56f8aad227cb --- /dev/null +++ b/paddle/fluid/operators/detail/brpc_server.cc @@ -0,0 +1,144 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/operators/detail/brpc_server.h" +#include "paddle/fluid/operators/detail/request_handler.h" + +namespace sendrecv { + +typedef std::unordered_map + HandlerMap; + +class BRPCServiceImpl : public SendRecvService { + public: + explicit BRPCServiceImpl(const HandlerMap& rpc_call_map) + : request_send_h_(nullptr), + request_get_h_(nullptr), + request_prefetch_h_(nullptr) { + auto it = rpc_call_map.find(paddle::operators::detail::kRequestSend); + if (it != rpc_call_map.end()) { + request_send_h_ = it->second; + } + + it = rpc_call_map.find(paddle::operators::detail::kRequestSend); + if (it != rpc_call_map.end()) { + request_get_h_ = it->second; + } + + it = rpc_call_map.find(paddle::operators::detail::kRequestPrefetch); + if (it != rpc_call_map.end()) { + request_prefetch_h_ = it->second; + } + } + + virtual ~BRPCServiceImpl() {} + + void SendVariable(google::protobuf::RpcController* cntl_butil, + const VariableMessage* request, VoidMessage* response, + google::protobuf::Closure* done) override { + PADDLE_ENFORCE(request_send_h_ != nullptr, + "RequestSend handler should be registed first!"); + brpc::ClosureGuard done_guard(done); + + paddle::framework::Scope* local_scope = request_send_h_->scope(); + paddle::framework::Variable* outvar = nullptr; + paddle::framework::Variable* invar = nullptr; + + std::string varname = request->varname(); + + if (!request_send_h_->sync_mode()) { + local_scope = &request_send_h_->scope()->NewScope(); + invar = local_scope->Var(varname); + } else { + invar = local_scope->FindVar(varname); + } + + request_send_h_->Handle(varname, local_scope, invar, &outvar); + + if (!request_send_h_->sync_mode()) { + request_send_h_->scope()->DeleteScope(local_scope); + } + } + + void GetVariable(google::protobuf::RpcController* cntl_butil, + const VariableMessage* request, VariableMessage* response, + google::protobuf::Closure* done) override { + PADDLE_ENFORCE(request_get_h_ != nullptr, + "RequestGet handler should be registed first!"); + } + + void PrefetchVariable(google::protobuf::RpcController* cntl_butil, + const VariableMessage* request, + VariableMessage* response, + google::protobuf::Closure* done) override { + PADDLE_ENFORCE(request_prefetch_h_ != nullptr, + "kRequestPrefetch handler should be registed first!"); + } + + private: + paddle::operators::detail::RequestHandler* request_send_h_; + paddle::operators::detail::RequestHandler* request_get_h_; + paddle::operators::detail::RequestHandler* request_prefetch_h_; +}; +} // namespace sendrecv + +namespace paddle { +namespace operators { +namespace detail { + +void AsyncBRPCServer::StartServer() { + // Instance of your service. + sendrecv::BRPCServiceImpl service_impl(rpc_call_map_); + + // Add the service into server. Notice the second parameter, because the + // service is put on stack, we don't want server to delete it, otherwise + // use brpc::SERVER_OWNS_SERVICE. + if (server_.AddService(&service_impl, brpc::SERVER_DOESNT_OWN_SERVICE) != 0) { + LOG(FATAL) << "Fail to add service"; + return; + } + + brpc::ServerOptions options; + options.idle_timeout_sec = idle_timeout_s_; + options.max_concurrency = max_concurrency_; + if (server_.Start(bind_address_.c_str(), &options) != 0) { + LOG(FATAL) << "Fail to start EchoServer" << bind_address_; + return; + } + + butil::EndPoint ep = server_.listen_address(); + selected_port_ = ep.port; + + { + std::lock_guard lock(this->mutex_ready_); + ready_ = 1; + } + condition_ready_.notify_all(); + + server_.Join(); +} + +void AsyncBRPCServer::ShutDownImpl() { server_.Stop(1000); } + +void AsyncBRPCServer::WaitServerReady() { + VLOG(3) << "AsyncGRPCServer is wait server ready"; + std::unique_lock lock(this->mutex_ready_); + condition_ready_.wait(lock, [=] { return this->ready_ == 1; }); + VLOG(3) << "AsyncGRPCServer WaitSeverReady"; +} + +}; // namespace detail +}; // namespace operators +}; // namespace paddle diff --git a/paddle/fluid/operators/detail/brpc_server.h b/paddle/fluid/operators/detail/brpc_server.h new file mode 100644 index 0000000000000000000000000000000000000000..0105c8074a46849031d8fa9c21a5507a982ec3c3 --- /dev/null +++ b/paddle/fluid/operators/detail/brpc_server.h @@ -0,0 +1,53 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include // NOLINT +#include // NOLINT +#include + +#include "brpc/server.h" +#include "paddle/fluid/operators/detail/rpc_server.h" +#include "paddle/fluid/operators/detail/send_recv.pb.h" + +namespace paddle { +namespace operators { +namespace detail { + +class AsyncBRPCServer final : public RPCServer { + public: + explicit AsyncBRPCServer(const std::string& address, int client_num) + : RPCServer(address, client_num), ready_(0) {} + + virtual ~AsyncBRPCServer() {} + void StartServer() override; + void WaitServerReady() override; + + private: + void ShutDownImpl() override; + + brpc::Server server_; + + static constexpr int idle_timeout_s_ = -1; + static constexpr int max_concurrency_ = 0; + + std::mutex mutex_ready_; + std::condition_variable condition_ready_; + int ready_; +}; + +}; // namespace detail +}; // namespace operators +}; // namespace paddle diff --git a/paddle/fluid/operators/detail/grpc_client.cc b/paddle/fluid/operators/detail/grpc_client.cc index fae39418b4166c9110a40b550e0b9801075edc7e..6b8373b1509c898e6ae70a18833df39a4898714a 100644 --- a/paddle/fluid/operators/detail/grpc_client.cc +++ b/paddle/fluid/operators/detail/grpc_client.cc @@ -19,6 +19,7 @@ limitations under the License. */ #include #include "paddle/fluid/framework/threadpool.h" +#include "paddle/fluid/operators/detail/request_handler.h" #include "paddle/fluid/platform/profiler.h" namespace paddle { diff --git a/paddle/fluid/operators/detail/serde_test.cc b/paddle/fluid/operators/detail/grpc_serde_test.cc similarity index 100% rename from paddle/fluid/operators/detail/serde_test.cc rename to paddle/fluid/operators/detail/grpc_serde_test.cc diff --git a/paddle/fluid/operators/detail/grpc_server.cc b/paddle/fluid/operators/detail/grpc_server.cc index 57867aad4d679f75ea790b65b5773a73586fd96e..18651544a1c0207127be335c37fe85c6e24dc16e 100644 --- a/paddle/fluid/operators/detail/grpc_server.cc +++ b/paddle/fluid/operators/detail/grpc_server.cc @@ -41,11 +41,22 @@ class RequestBase { virtual ~RequestBase() {} virtual void Process() = 0; - CallStatus Status() { return status_; } - void SetStatus(CallStatus status) { status_ = status; } + CallStatus Status() const { + std::lock_guard l(status_mu_); + return status_; + } + + template + void Finish(const T& reply, ServerAsyncResponseWriter* responder) { + std::lock_guard l(status_mu_); + status_ = FINISH; + responder->Finish(reply, ::grpc::Status::OK, + reinterpret_cast(static_cast(req_id_))); + } virtual std::string GetReqName() = 0; protected: + mutable std::mutex status_mu_; ::grpc::ServerContext ctx_; GrpcService::AsyncService* service_; ::grpc::ServerCompletionQueue* cq_; @@ -80,9 +91,7 @@ class RequestSend final : public RequestBase { framework::Variable* outvar = nullptr; request_handler_->Handle(varname, scope, invar, &outvar); - status_ = FINISH; - responder_.Finish(reply_, ::grpc::Status::OK, - reinterpret_cast(static_cast(req_id_))); + Finish(reply_, &responder_); } protected: @@ -122,9 +131,7 @@ class RequestGet final : public RequestBase { SerializeToByteBuffer(varname, outvar, *request_handler_->dev_ctx(), &reply_); } - status_ = FINISH; - responder_.Finish(reply_, ::grpc::Status::OK, - reinterpret_cast(static_cast(req_id_))); + Finish(reply_, &responder_); } protected: @@ -166,9 +173,7 @@ class RequestPrefetch final : public RequestBase { SerializeToByteBuffer(varname, outvar, *request_handler_->dev_ctx(), &reply_); - responder_.Finish(reply_, ::grpc::Status::OK, - reinterpret_cast(static_cast(req_id_))); - status_ = FINISH; + Finish(reply_, &responder_); } protected: diff --git a/paddle/fluid/operators/detail/grpc_server.h b/paddle/fluid/operators/detail/grpc_server.h index e6ffc7066f24d5088a95801ed1c0670b24d5771f..f1db7590f6f14d5d44acc12453861a446e278cd2 100644 --- a/paddle/fluid/operators/detail/grpc_server.h +++ b/paddle/fluid/operators/detail/grpc_server.h @@ -53,6 +53,7 @@ class AsyncGRPCServer final : public RPCServer { void StartServer() override; private: + // HandleRequest needs to be thread-safe. void HandleRequest( ::grpc::ServerCompletionQueue* cq, const std::string& rpc_name, std::function TryToRegisterNewOne); diff --git a/paddle/fluid/operators/detail/macros.h b/paddle/fluid/operators/detail/macros.h new file mode 100644 index 0000000000000000000000000000000000000000..da1de72dad00db3ffe609e17bd198ef0a56bbfcd --- /dev/null +++ b/paddle/fluid/operators/detail/macros.h @@ -0,0 +1,27 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#ifdef PADDLE_WITH_GRPC +#include "paddle/fluid/operators/detail/grpc_client.h" +#include "paddle/fluid/operators/detail/grpc_server.h" +#define RPCSERVER_T detail::AsyncGRPCServer +#define RPCCLIENT_T detail::GRPCClient +#else +#include "paddle/fluid/operators/detail/brpc_client.h" +#include "paddle/fluid/operators/detail/brpc_server.h" +#define RPCSERVER_T detail::AsyncBRPCServer +#define RPCCLIENT_T detail::BRPCClient +#endif diff --git a/paddle/fluid/operators/detail/request_handler.h b/paddle/fluid/operators/detail/request_handler.h index 4bc5e7f10ee2a8939d230fe96517bd9f56c13933..fa979024e37f435b918568a1c5e603f8962f9172 100644 --- a/paddle/fluid/operators/detail/request_handler.h +++ b/paddle/fluid/operators/detail/request_handler.h @@ -28,7 +28,6 @@ #include "paddle/fluid/framework/scope.h" #include "paddle/fluid/framework/selected_rows.h" #include "paddle/fluid/framework/var_type.h" -#include "paddle/fluid/operators/detail/sendrecvop_utils.h" namespace paddle { namespace operators { @@ -38,6 +37,10 @@ constexpr char kRequestSend[] = "RequestSend"; constexpr char kRequestGet[] = "RequestGet"; constexpr char kRequestPrefetch[] = "RequestPrefetch"; +#define LISTEN_TERMINATE_MESSAGE "TERMINATE@RECV" +#define BATCH_BARRIER_MESSAGE "BATCH_BARRIER@RECV" +#define FETCH_BARRIER_MESSAGE "FETCH_BARRIER@RECV" + class RPCServer; class RequestHandler { @@ -80,7 +83,6 @@ class RequestHandler { } framework::ProgramDesc* program() { return program_; } framework::Executor* executor() { return executor_; } - std::vector& sparse_vars() { return sparse_vars_; } // This function processes user's rpc request. // The implemention is in request_handler_impl. @@ -113,13 +115,7 @@ class RequestHandler { std::unordered_map>* grad_to_prepared_ctx_; - - // Record received sparse variables, so that - // we could reset those after execute optimize program - std::vector sparse_vars_; RPCServer* rpc_server_; - - std::mutex sparse_var_mutex_; }; } // namespace detail diff --git a/paddle/fluid/operators/detail/request_handler_impl.cc b/paddle/fluid/operators/detail/request_handler_impl.cc index f16c06d52f4fb86d51083a8b3b98d05a64c1af74..5f1a346e93b1a0239af77b86d10782d67c403e23 100644 --- a/paddle/fluid/operators/detail/request_handler_impl.cc +++ b/paddle/fluid/operators/detail/request_handler_impl.cc @@ -16,15 +16,12 @@ #include #include -#include "paddle/fluid/framework/blocking_queue.h" #include "paddle/fluid/framework/data_type.h" #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/scope.h" #include "paddle/fluid/framework/selected_rows.h" #include "paddle/fluid/operators/detail/request_handler_impl.h" #include "paddle/fluid/operators/detail/rpc_server.h" -#include "paddle/fluid/operators/detail/sendrecvop_utils.h" -#include "paddle/fluid/operators/detail/variable_response.h" namespace paddle { namespace operators { @@ -63,16 +60,22 @@ bool RequestSendHandler::Handle(const std::string& varname, PADDLE_THROW("sync: Can not find server side var"); return false; } - if (invar->IsType()) { - std::unique_lock lock(sparse_var_mutex_); + std::unique_lock lock(mutex_sparse_vars_); sparse_vars_.push_back(invar); } } - return true; } +void RequestSendHandler::ResetSparseVarRecorder() { + std::unique_lock lock(mutex_sparse_vars_); + for (auto* var : sparse_vars_) { + var->GetMutable()->mutable_rows()->clear(); + } + sparse_vars_.clear(); +} + bool RequestGetHandler::Handle(const std::string& varname, framework::Scope* scope, framework::Variable* invar, diff --git a/paddle/fluid/operators/detail/request_handler_impl.h b/paddle/fluid/operators/detail/request_handler_impl.h index 8d0c62232b68ad6c05e751c25103802ee12db57e..c392267cfaeb7e94e6a23d6445c09b756e7e58b1 100644 --- a/paddle/fluid/operators/detail/request_handler_impl.h +++ b/paddle/fluid/operators/detail/request_handler_impl.h @@ -29,7 +29,6 @@ #include "paddle/fluid/framework/selected_rows.h" #include "paddle/fluid/framework/var_type.h" #include "paddle/fluid/operators/detail/request_handler.h" -#include "paddle/fluid/operators/detail/sendrecvop_utils.h" namespace paddle { namespace operators { @@ -41,6 +40,11 @@ class RequestSendHandler final : public RequestHandler { virtual ~RequestSendHandler() {} bool Handle(const std::string& varname, framework::Scope* scope, framework::Variable* var, framework::Variable** outvar) override; + void ResetSparseVarRecorder(); + + private: + std::mutex mutex_sparse_vars_; + std::vector sparse_vars_; }; class RequestGetHandler final : public RequestHandler { diff --git a/paddle/fluid/operators/detail/rpc_client.h b/paddle/fluid/operators/detail/rpc_client.h index 8e3717f076db6a52916d0e15813f9f61148c6553..7e76ac0348574d4090793b191be0ff3ff8666b37 100644 --- a/paddle/fluid/operators/detail/rpc_client.h +++ b/paddle/fluid/operators/detail/rpc_client.h @@ -26,6 +26,8 @@ namespace detail { class RPCClient { public: + RPCClient() {} + virtual ~RPCClient() {} virtual bool AsyncSendVar(const std::string& ep, const platform::DeviceContext& ctx, const framework::Scope& scope, diff --git a/paddle/fluid/operators/detail/rpc_server.h b/paddle/fluid/operators/detail/rpc_server.h index c2e7ae706c9dc6776e09b25e424b30f110c3855d..f809c13c726ac2f1c60e8cf84848c4138f631b44 100644 --- a/paddle/fluid/operators/detail/rpc_server.h +++ b/paddle/fluid/operators/detail/rpc_server.h @@ -60,6 +60,7 @@ class RPCServer { void SetCond(const std::string& rpc_name); void WaitCond(const std::string& rpc_name); void IncreaseBatchBarrier(const std::string rpc_name); + void ResetBarrierCounter(); protected: diff --git a/paddle/fluid/operators/detail/grpc_server_test.cc b/paddle/fluid/operators/detail/rpc_server_test.cc similarity index 92% rename from paddle/fluid/operators/detail/grpc_server_test.cc rename to paddle/fluid/operators/detail/rpc_server_test.cc index a1f9ba15e656a686c4bb0d81cf00dea120b8c0ad..f49274a7b53d04f82718887aabaffd5d33053dfe 100644 --- a/paddle/fluid/operators/detail/grpc_server_test.cc +++ b/paddle/fluid/operators/detail/rpc_server_test.cc @@ -17,15 +17,14 @@ limitations under the License. */ #include // NOLINT #include "gtest/gtest.h" -#include "paddle/fluid/operators/detail/grpc_client.h" -#include "paddle/fluid/operators/detail/grpc_server.h" -#include "paddle/fluid/operators/detail/rpc_client.h" - #include "paddle/fluid/framework/block_desc.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/operator.h" +#include "paddle/fluid/operators/detail/macros.h" #include "paddle/fluid/operators/detail/request_handler_impl.h" +#include "paddle/fluid/operators/detail/rpc_client.h" +#include "paddle/fluid/operators/detail/rpc_server.h" namespace framework = paddle::framework; namespace platform = paddle::platform; @@ -33,7 +32,7 @@ namespace detail = paddle::operators::detail; USE_OP(lookup_table); -std::unique_ptr g_rpc_service; +std::unique_ptr g_rpc_service; std::unique_ptr g_req_handler; framework::BlockDesc* AppendPrefetchBlcok(framework::ProgramDesc* program) { @@ -112,20 +111,19 @@ void StartServer() { g_req_handler->SetRPCServer(g_rpc_service.get()); std::thread server_thread( - std::bind(&detail::AsyncGRPCServer::StartServer, g_rpc_service.get())); + std::bind(&detail::RPCServer::StartServer, g_rpc_service.get())); server_thread.join(); } TEST(PREFETCH, CPU) { g_req_handler.reset(new detail::RequestPrefetchHandler(true)); - g_rpc_service.reset(new detail::AsyncGRPCServer("127.0.0.1:0", 1)); + g_rpc_service.reset(new RPCSERVER_T("127.0.0.1:0", 1)); + detail::RPCClient* client = detail::RPCClient::GetInstance(); std::thread server_thread(StartServer); g_rpc_service->WaitServerReady(); - detail::RPCClient* client = - detail::RPCClient::GetInstance(); int port = g_rpc_service->GetSelectedPort(); std::string ep = paddle::string::Sprintf("127.0.0.1:%d", port); diff --git a/paddle/fluid/operators/detail/send_recv.proto b/paddle/fluid/operators/detail/send_recv.proto index a244afc46f3247c7e6e8481b09b5c729a2a569f7..54cb93e04d18b3784be187c9c8885bbccc55488b 100644 --- a/paddle/fluid/operators/detail/send_recv.proto +++ b/paddle/fluid/operators/detail/send_recv.proto @@ -14,6 +14,8 @@ limitations under the License. */ syntax = "proto3"; package sendrecv; +// option cc_generic_services = true; + service SendRecvService { // For parameter server round-robin like hashing, do not split tensors. // Send and recv only one tensor diff --git a/paddle/fluid/operators/detail/sendrecvop_utils.h b/paddle/fluid/operators/detail/sendrecvop_utils.h index c72e1bd076f670458f3915072154847db6205092..bd16bf1dab8d933ffd18b6d6d9e3ce1c7d73029b 100644 --- a/paddle/fluid/operators/detail/sendrecvop_utils.h +++ b/paddle/fluid/operators/detail/sendrecvop_utils.h @@ -32,16 +32,6 @@ namespace paddle { namespace operators { namespace detail { -#define LISTEN_TERMINATE_MESSAGE "TERMINATE@RECV" -#define BATCH_BARRIER_MESSAGE "BATCH_BARRIER@RECV" -#define FETCH_BARRIER_MESSAGE "FETCH_BARRIER@RECV" - -static int64_t GetTimestamp() { - struct timeval tp; - gettimeofday(&tp, NULL); - return tp.tv_sec * 1000 + tp.tv_usec / 1000; -} - typedef void (*DestroyCallback)(void*); void SerializeToByteBuffer(const std::string& name, framework::Variable* var, diff --git a/paddle/fluid/operators/elementwise_op.h b/paddle/fluid/operators/elementwise_op.h index f4cec8ad971abebe8d6dff1a384c8414269148a5..0803a6035d342fefdae69297461fc78abbf18414 100644 --- a/paddle/fluid/operators/elementwise_op.h +++ b/paddle/fluid/operators/elementwise_op.h @@ -59,7 +59,7 @@ class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker { void Make() final { AddInput("X", "(Tensor), The first input tensor of elementwise op."); AddInput("Y", "(Tensor), The second input tensor of elementwise op."); - AddOutput("Out", "The output of elementwise op."); + AddOutput("Out", "The output of elementwise op.").Reuse("X"); AddAttr("axis", "(int, default -1). The start dimension index " "for broadcasting Y onto X.") diff --git a/paddle/fluid/operators/fetch_barrier_op.cc b/paddle/fluid/operators/fetch_barrier_op.cc index ad67585e485b237f5d4b809af712ce658ef602bb..98b051afb551f373009d2bd3df1a8daa64b7e6c7 100644 --- a/paddle/fluid/operators/fetch_barrier_op.cc +++ b/paddle/fluid/operators/fetch_barrier_op.cc @@ -19,9 +19,7 @@ limitations under the License. */ #include "paddle/fluid/framework/framework.pb.h" #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/op_registry.h" - -#include "paddle/fluid/operators/detail/grpc_client.h" -#include "paddle/fluid/operators/detail/rpc_client.h" +#include "paddle/fluid/operators/detail/macros.h" #include "paddle/fluid/platform/profiler.h" namespace paddle { @@ -45,7 +43,7 @@ class FetchBarrierOp : public framework::OperatorBase { platform::RecordEvent record_event(Type(), &ctx); detail::RPCClient* rpc_client = - detail::RPCClient::GetInstance(); + detail::RPCClient::GetInstance(); rpc_client->Wait(); diff --git a/paddle/fluid/operators/fill_constant_batch_size_like_op.cc b/paddle/fluid/operators/fill_constant_batch_size_like_op.cc index 1ae78675a0cac8a72aeaef1227b631a41e4a10b2..453a1b32a0171a2ca88879ab3287e89c4d3c7759 100644 --- a/paddle/fluid/operators/fill_constant_batch_size_like_op.cc +++ b/paddle/fluid/operators/fill_constant_batch_size_like_op.cc @@ -32,16 +32,16 @@ class FillConstantBatchSizeLikeOp : public BatchSizeLikeOp { class FillConstantBatchSizeLikeOpMaker : public BatchSizeLikeOpMaker { protected: void Apply() override { - AddAttr("dtype", - "(int, default 5 (FP32)) " - "Output data type") + AddAttr( + "dtype", + "It could be numpy.dtype. Output data type. Default is float32") .SetDefault(framework::proto::VarType::FP32); - AddAttr("value", "(float, default 0) The value to be filled") + AddAttr("value", "default 0. The value to be filled") .SetDefault(0.0f); AddComment(R"DOC( -FillConstantBatchSizeLike Operator. - -Fill up a variable with specified constant value. +This function creates a tensor of specified *shape*, *dtype* and batch size, +and initializes this with a constant supplied in *value*. The batch size is +obtained from the `input` tensor. )DOC"); } diff --git a/paddle/fluid/operators/gather_test.cc b/paddle/fluid/operators/gather_test.cc index 9c0561b016fdbfa8e48535eaa673a3f85bc936e5..f6b156eb30dae154395b34dcfc26319cd89edbca 100644 --- a/paddle/fluid/operators/gather_test.cc +++ b/paddle/fluid/operators/gather_test.cc @@ -43,7 +43,8 @@ TEST(Gather, GatherData) { auto* cpu_place = new paddle::platform::CPUPlace(); paddle::platform::CPUDeviceContext ctx(*cpu_place); paddle::operators::CPUGather(ctx, *src, *index, output); - + delete cpu_place; + cpu_place = NULL; for (int i = 0; i < 4; ++i) EXPECT_EQ(p_output[i], i + 4); for (int i = 4; i < 8; ++i) EXPECT_EQ(p_output[i], i - 4); diff --git a/paddle/fluid/operators/gen_nccl_id_op.cc b/paddle/fluid/operators/gen_nccl_id_op.cc index 547de4fa49dc16182c424118c0f5705d2396100a..111e58844c83806af4ebe0aa9e2126a9ddec1d8a 100644 --- a/paddle/fluid/operators/gen_nccl_id_op.cc +++ b/paddle/fluid/operators/gen_nccl_id_op.cc @@ -21,8 +21,7 @@ limitations under the License. */ #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/threadpool.h" -#include "paddle/fluid/operators/detail/grpc_client.h" -#include "paddle/fluid/operators/detail/grpc_server.h" +#include "paddle/fluid/operators/detail/macros.h" #include "paddle/fluid/operators/detail/request_handler_impl.h" #include "paddle/fluid/platform/nccl_helper.h" @@ -61,8 +60,8 @@ class GenNCCLIdOp : public framework::OperatorBase { std::vector endpoint_list = Attr>("endpoint_list"); - detail::RPCClient* client = - detail::RPCClient::GetInstance(); + detail::RPCClient* client = detail::RPCClient::GetInstance(); + for (auto& ep : endpoint_list) { VLOG(3) << "sending nccl id to " << ep; client->AsyncSendVar(ep, dev_ctx, *scope, NCCL_ID_VARNAME); @@ -78,9 +77,11 @@ class GenNCCLIdOp : public framework::OperatorBase { // deleter will call GRPC Server's base class's dtor and // that will cause a wired crash. detail::RequestSendHandler rpc_h(true); - detail::AsyncGRPCServer rpc_service(endpoint, 1); - rpc_service.RegisterRPC(detail::kRequestSend, &rpc_h); - rpc_h.SetRPCServer(&rpc_service); + std::unique_ptr rpc_service( + new RPCSERVER_T(endpoint, 1)); + + rpc_service->RegisterRPC(detail::kRequestSend, &rpc_h); + rpc_h.SetRPCServer(rpc_service.get()); framework::ProgramDesc empty_program; framework::Executor executor(dev_ctx.GetPlace()); @@ -90,12 +91,13 @@ class GenNCCLIdOp : public framework::OperatorBase { rpc_h.SetExecutor(&executor); std::thread server_thread( - std::bind(&detail::AsyncGRPCServer::StartServer, &rpc_service)); - rpc_service.SetCond(detail::kRequestSend); + std::bind(&detail::RPCServer::StartServer, rpc_service.get())); + + rpc_service->SetCond(detail::kRequestSend); VLOG(3) << "start getting nccl id from trainer 0..."; - rpc_service.WaitBarrier(detail::kRequestSend); + rpc_service->WaitBarrier(detail::kRequestSend); VLOG(3) << "got nccl id and stop server..."; - rpc_service.ShutDown(); + rpc_service->ShutDown(); VLOG(3) << "rpc server stopped"; server_thread.join(); } diff --git a/paddle/fluid/operators/linear_chain_crf_op.cc b/paddle/fluid/operators/linear_chain_crf_op.cc index e38525cd7f44de020f364ffd16e71a439048347f..a711da362771353891f900f544d97e64510dc0ba 100644 --- a/paddle/fluid/operators/linear_chain_crf_op.cc +++ b/paddle/fluid/operators/linear_chain_crf_op.cc @@ -67,8 +67,6 @@ class LinearChainCRFOpMaker : public framework::OpProtoAndCheckerMaker { "mini-batch. Note: S is equal to the sequence number in a mini-batch. " "The output is no longer a LoDTensor."); AddComment(R"DOC( -LinearChainCRF Operator. - Conditional Random Field defines an undirected probabilistic graph with nodes denoting random variables and edges denoting dependencies between these variables. CRF learns the conditional probability $P(Y|X)$, where diff --git a/paddle/fluid/operators/listen_and_serv_op.cc b/paddle/fluid/operators/listen_and_serv_op.cc index 66a0f87b46c6447bac7e42f0f61e3170cb1f2fdb..76106004404bb0bb108cca003869f07c43bbf62f 100644 --- a/paddle/fluid/operators/listen_and_serv_op.cc +++ b/paddle/fluid/operators/listen_and_serv_op.cc @@ -19,7 +19,8 @@ limitations under the License. */ #include // NOLINT #include -#include "paddle/fluid/operators/detail/grpc_server.h" +#include "paddle/fluid/operators/detail/macros.h" + #include "paddle/fluid/operators/detail/request_handler_impl.h" #include "paddle/fluid/operators/listen_and_serv_op.h" #include "paddle/fluid/platform/profiler.h" @@ -89,6 +90,12 @@ void ListenAndServOp::SavePort() const { rpc_service_->SavePort(); } +static int64_t GetTimestamp() { + struct timeval tp; + gettimeofday(&tp, NULL); + return tp.tv_sec * 1000 + tp.tv_usec / 1000; +} + void ListenAndServOp::RunSyncLoop(framework::Executor *executor, framework::ProgramDesc *program, framework::Scope *recv_scope, @@ -108,9 +115,6 @@ void ListenAndServOp::RunSyncLoop(framework::Executor *executor, std::shared_ptr(nullptr)); rpc_service_->ResetBarrierCounter(); - // Record received sparse variables, so that - // we could reset those after execute optimize program - std::vector sparse_vars; while (true) { // Get from multiple trainers, we don't care about the order in which // the gradients arrives, just add suffix 0~n and merge the gradient. @@ -130,7 +134,7 @@ void ListenAndServOp::RunSyncLoop(framework::Executor *executor, int32_t last_parent_blkid = program->Block(1).Parent(); std::vector parallel_blkids; parallel_blkids.push_back(1); - double ts = detail::GetTimestamp(); + double ts = GetTimestamp(); for (size_t blkid = 2; blkid < num_blocks; ++blkid) { if (blkid != static_cast(prefetch_block->ID())) { if (program->Block(blkid).Parent() != last_parent_blkid) { @@ -144,20 +148,14 @@ void ListenAndServOp::RunSyncLoop(framework::Executor *executor, } ParallelExecuteBlocks(parallel_blkids, executor, optimize_prepared, program, recv_scope); - VLOG(2) << "run all blocks spent " << detail::GetTimestamp() - ts << "(ms)"; - - // Reset the received sparse variables, the sum operator would not - // sum the input sparse variables which rows is empty at the next - // mini-batch. - // TODO(Yancey1989): move the reset action into an operator, we couldn't - // have any hide logic in the operator. - for (framework::Variable *var : sparse_vars) { - var->GetMutable()->mutable_rows()->clear(); - } + VLOG(2) << "run all blocks spent " << GetTimestamp() - ts << "(ms)"; rpc_service_->SetCond(detail::kRequestGet); rpc_service_->WaitBarrier(detail::kRequestGet); rpc_service_->ResetBarrierCounter(); + // reset received sparse vars to avoid reuse it in the next mini-batch + dynamic_cast(request_send_handler_.get()) + ->ResetSparseVarRecorder(); } // while(true) } @@ -244,8 +242,8 @@ void ListenAndServOp::RunImpl(const framework::Scope &scope, LOG(INFO) << "sync_mode:" << sync_mode << ", fan_in:" << fan_in << ", end_point:" << endpoint; - // request_handler_.reset(new detail::GRPCRequestSendHandler(sync_mode)); - rpc_service_.reset(new detail::AsyncGRPCServer(endpoint, fan_in)); + rpc_service_.reset(new RPCSERVER_T(endpoint, fan_in)); + request_send_handler_.reset(new detail::RequestSendHandler(sync_mode)); request_get_handler_.reset(new detail::RequestGetHandler(sync_mode)); request_prefetch_handler_.reset( diff --git a/paddle/fluid/operators/load_op.cc b/paddle/fluid/operators/load_op.cc index 93f45cff8a26201b1fbb1c44141e125a67c44037..8f4b5049271c9592d2db268ea7ff2f5c8abc28b6 100644 --- a/paddle/fluid/operators/load_op.cc +++ b/paddle/fluid/operators/load_op.cc @@ -74,25 +74,18 @@ class LoadOp : public framework::OperatorBase { class LoadOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { - AddOutput("Out", "(Tensor) The tensor need to be loaded"); + AddOutput("Out", "The tensor need to be loaded"); AddAttr( "load_as_fp16", - "(boolean, default false)" "If true, the tensor will be first loaded and then " "converted to float16 data type. Otherwise, the tensor will be " - "directly loaded without data type conversion.") + "directly loaded without data type conversion. Default is false.") .SetDefault(false); AddAttr("file_path", - "(string) " - "Variable will be loaded from \"file_path\".") + R"(Variable will be loaded from "file_path")") .AddCustomChecker( [](const std::string &path) { return !path.empty(); }); - AddComment(R"DOC( -Load Operator. - -Load operator will load a tensor variable from disk file. - -)DOC"); + AddComment("Load operator will load a tensor variable from disk file."); } }; } // namespace operators diff --git a/paddle/fluid/operators/math/math_function_test.cc b/paddle/fluid/operators/math/math_function_test.cc index 3719a264e90ea7d1a99eb9589ce4fd0d8e074781..b545671b43d3a453ab03e4774427179617f62db0 100644 --- a/paddle/fluid/operators/math/math_function_test.cc +++ b/paddle/fluid/operators/math/math_function_test.cc @@ -77,6 +77,8 @@ TEST(math_function, gemm_trans_clbas) { paddle::platform::CPUDeviceContext context(*cpu_place); GetBlas(context).GEMM(false, true, m, n, k, 1, input1_ptr, 3, input2_ptr + 3, 3, 1, input3_ptr + 1, 4); + delete cpu_place; + cpu_place = NULL; EXPECT_EQ(input3_ptr[0], 0); EXPECT_EQ(input3_ptr[1], 24); diff --git a/paddle/fluid/operators/max_sequence_len_op.cc b/paddle/fluid/operators/max_sequence_len_op.cc index 8e508b68eeab69a4595904dcc3ea0a541d9ab6e6..b1e69f375d3274aade3184af02f7f914dba5db71 100644 --- a/paddle/fluid/operators/max_sequence_len_op.cc +++ b/paddle/fluid/operators/max_sequence_len_op.cc @@ -42,10 +42,15 @@ class MaxSeqenceLenOp : public framework::OperatorBase { class MaxSeqenceLenOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { - AddInput("RankTable", "The lod_rank_table."); - AddOutput("Out", "The max sequence length."); - AddComment( - R"DOC(Calculate the max sequence length through lod_rank_table.)DOC"); + AddInput("RankTable", "Input variable which is a LoDRankTable object"); + AddOutput("Out", "The max sequence length"); + AddComment(R"DOC( + Given a LoDRankTable object, this layer returns the max length of + a batch of sequences. In fact, a LoDRankTable object contains a list of + tuples() and the list is already sorted by + sequence length in descending order, so the operator just returns the + sequence length of the first tuple element +)DOC"); } }; diff --git a/paddle/fluid/operators/mean_op.cc b/paddle/fluid/operators/mean_op.cc index 74477eb439dc202c3f5f17fdf3e1647bc5c23512..4881cff4a368ffae9b030f04b7fff01d6ee7d26e 100644 --- a/paddle/fluid/operators/mean_op.cc +++ b/paddle/fluid/operators/mean_op.cc @@ -34,7 +34,7 @@ class MeanOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "The input of mean op"); - AddOutput("Out", "The output of mean op"); + AddOutput("Out", "The output of mean op").Reuse("X"); AddComment(R"DOC( Mean Operator. diff --git a/paddle/fluid/operators/norm_op.cc b/paddle/fluid/operators/norm_op.cc index cdbc975c02214721ceae3a338741101ef32d7ee9..aa19c62c83648814e86b1e7062424be3693e4b98 100644 --- a/paddle/fluid/operators/norm_op.cc +++ b/paddle/fluid/operators/norm_op.cc @@ -16,40 +16,34 @@ limitations under the License. */ namespace paddle { namespace operators { -template class NormOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { - AddInput( - "X", - "(Tensor) The input tensor of norm operator. " - "The format of input tensor is NCHW. Where N is batch size, C is the " - "number of channels, H and W is the height and width of feature."); - AddInput("Scale", - "(Tensor) The input tensor of norm operator. " - "The format of input tensor is C * 1."); - AddAttr("epsilon", - "(float, default 1e-10) Constant " - "for numerical stability.") + AddInput("X", "(Tensor) A tensor of rank >= axis."); + AddAttr("axis", + "The axis on which to apply normalization. If axis < 0, " + "the dimension to normalization is rank(X) + axis. -1 is " + "the last dimension."); + AddAttr("epsilon", + "(float, default 1e-10) The epsilon value is used " + "to avoid division by zero.") .SetDefault(1.0e-10f); - AddOutput("Out", - "(Tensor) The output tensor of norm operator." - "N * M." - "M = C * H * W"); + AddOutput("Norm", + "(Tensor) A tensor saved the `sqrt(sum(x) + epsion)` will " + "be used in backward kernel.") + .AsIntermediate(); + AddOutput("Out", "(Tensor) A tensor of the same shape as X."); AddComment(R"DOC( - "Input shape: $(N, C, H, W)$ - Scale shape: $(C, 1)$ - Output shape: $(N, C, H, W)$ - Where - forward - $$ - [\frac {x_{1}}{\sqrt{\sum{x_{i}^{2}}}} \frac {x_{2}}{\sqrt{\sum{x_{i}^{2}}}} \frac {x_{3}}{\sqrt{\sum{x_{i}^{2}}}} \cdot \cdot \cdot \frac {x_{n}}{\sqrt{\sum{x_{i}^{2}}}}] - $$ - backward - $$ - \frac{\frac{\mathrm{d}L }{\mathrm{d}y_{1}} - \frac {x_{1}\sum {\frac{\mathrm{d} L}{\mathrm{d} y_{j}}}x_{j}}{\sum x_{j}^{2}} }{\sqrt{\sum{x_{j}^{2}}}} - $$ - )DOC"); + +Given a tensor, apply 2-normalization along the provided axis. + +$$ +y = \frac{x}{ \sqrt{\sum {x^2} + epsion }} +$$ + +where, $\sum {x^2}$ is calculated along the `axis` dimension. + +)DOC"); } }; @@ -58,15 +52,15 @@ class NormOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), - "Input(X) of NormOp" - "should not be null."); - PADDLE_ENFORCE(ctx->HasInput("Scale"), - "Input(Scale) of NormOp" - "should not be null."); + "Input(X) of NormOp should not be null."); PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) of NormOp should not be null."); - auto in_x_dims = ctx->GetInputDim("X"); - ctx->SetOutputDim("Out", in_x_dims); + auto xdim = ctx->GetInputDim("X"); + ctx->SetOutputDim("Out", xdim); + int axis = ctx->Attrs().Get("axis"); + if (axis < 0) axis = xdim.size() + axis; + xdim[axis] = 1; + ctx->SetOutputDim("Norm", xdim); } }; @@ -84,12 +78,12 @@ class NormOpGrad : public framework::OperatorWithKernel { } // namespace paddle namespace ops = paddle::operators; -REGISTER_OPERATOR(norm, ops::NormOp, ops::NormOpMaker, +using CPU = paddle::platform::CPUDeviceContext; + +REGISTER_OPERATOR(norm, ops::NormOp, ops::NormOpMaker, paddle::framework::DefaultGradOpDescMaker); REGISTER_OPERATOR(norm_grad, ops::NormOpGrad); -REGISTER_OP_CPU_KERNEL( - norm, ops::NormKernel, - ops::NormKernel); -REGISTER_OP_CPU_KERNEL( - norm_grad, ops::NormGradKernel, - ops::NormGradKernel); +REGISTER_OP_CPU_KERNEL(norm, ops::NormKernel, + ops::NormKernel); +REGISTER_OP_CPU_KERNEL(norm_grad, ops::NormGradKernel, + ops::NormGradKernel); diff --git a/paddle/fluid/operators/norm_op.cu b/paddle/fluid/operators/norm_op.cu index d1d9be50742b54a3b6f068fd43ec4b16696183bf..1d0021d33ff9ee65c3366183466b94266e6c2999 100644 --- a/paddle/fluid/operators/norm_op.cu +++ b/paddle/fluid/operators/norm_op.cu @@ -16,9 +16,9 @@ limitations under the License. */ #include "paddle/fluid/operators/norm_op.h" namespace ops = paddle::operators; -REGISTER_OP_CUDA_KERNEL( - norm, ops::NormKernel, - ops::NormKernel); -REGISTER_OP_CUDA_KERNEL( - norm_grad, ops::NormGradKernel, - ops::NormGradKernel); +using CUDA = paddle::platform::CUDADeviceContext; + +REGISTER_OP_CUDA_KERNEL(norm, ops::NormKernel, + ops::NormKernel); +REGISTER_OP_CUDA_KERNEL(norm_grad, ops::NormGradKernel, + ops::NormGradKernel); diff --git a/paddle/fluid/operators/norm_op.h b/paddle/fluid/operators/norm_op.h index 0ad29e8a0385c46a07842930378ed7a040564437..3167bdc8ac718b23435690577e4163826d14a332 100644 --- a/paddle/fluid/operators/norm_op.h +++ b/paddle/fluid/operators/norm_op.h @@ -19,156 +19,110 @@ limitations under the License. */ namespace paddle { namespace operators { -template +inline void GetDims(const framework::DDim& dim, int axis, int* pre, int* n, + int* post) { + *pre = 1; + *post = 1; + *n = dim[axis]; + for (int i = 0; i < axis; ++i) { + (*pre) *= dim[i]; + } + for (int i = axis + 1; i < dim.size(); ++i) { + (*post) *= dim[i]; + } +} + +template class NormKernel : public framework::OpKernel { public: - void Compute(const framework::ExecutionContext& context) const override { - const framework::Tensor* in_x = context.Input("X"); - const framework::Tensor* scale = context.Input("Scale"); - auto* out = context.Output("Out"); - auto epsilon = static_cast(context.Attr("epsilon")); - out->mutable_data(context.GetPlace()); - int batch_size = in_x->dims()[0]; - int channels = in_x->dims()[1]; - int height = in_x->dims()[2]; - int width = in_x->dims()[3]; - int fea_len = height * width; - auto* place = - context.template device_context().eigen_device(); - auto x = - framework::EigenMatrix::From( - *in_x, framework::make_ddim({batch_size, fea_len * channels})); - // get square - framework::Tensor x_square; - x_square.mutable_data(in_x->dims(), context.GetPlace()); - auto x_square_eigen = - framework::EigenMatrix::From( - x_square, framework::make_ddim({batch_size, fea_len * channels})); - x_square_eigen.device(*place) = x.square(); - auto scale_eigen = - framework::EigenVector::Flatten( - *scale); - for (int n = 0; n < batch_size; ++n) { - framework::Tensor in_x_batch = in_x->Slice(n, n + 1); - auto in_x_batch_eigen = - framework::EigenMatrix::From( - in_x_batch, framework::make_ddim({channels, fea_len})); - framework::Tensor x_square_batch = x_square.Slice(n, n + 1); - auto x_square_batch_eigen = - framework::EigenMatrix::From( - x_square_batch, framework::make_ddim({channels, fea_len})); - framework::Tensor out_batch = out->Slice(n, n + 1); - auto out_batch_eigen = - framework::EigenMatrix::From( - out_batch, framework::make_ddim({channels, fea_len})); - framework::Tensor tmp_tensor; - tmp_tensor.mutable_data(framework::make_ddim({1, fea_len}), - context.GetPlace()); - auto tmp = framework::EigenVector::Flatten(tmp_tensor); - // get colsum and sqrt , inverse - auto dim = Eigen::array({{0}}); - tmp.device(*place) = x_square_batch_eigen.sum(dim); - tmp.device(*place) = (tmp + epsilon).sqrt().inverse(); - Eigen::array broadcast_dim_col; - broadcast_dim_col[1] = 1; - broadcast_dim_col[0] = channels; - out_batch_eigen.device(*place) = - in_x_batch_eigen * (tmp.broadcast(broadcast_dim_col)); - Eigen::array broadcast_dim_row; - broadcast_dim_row[1] = fea_len; - broadcast_dim_row[0] = 1; - out_batch_eigen.device(*place) = - out_batch_eigen * (scale_eigen.broadcast(broadcast_dim_row)); - } + void Compute(const framework::ExecutionContext& ctx) const override { + auto* in_x = ctx.Input("X"); + auto* out_y = ctx.Output("Out"); + auto* out_norm = ctx.Output("Norm"); + out_y->mutable_data(ctx.GetPlace()); + out_norm->mutable_data(ctx.GetPlace()); + + auto xdim = in_x->dims(); + auto ndim = out_norm->dims(); + T eps = static_cast(ctx.Attr("epsilon")); + int axis = ctx.Attr("axis"); + if (axis < 0) axis = xdim.size() + axis; + int pre, n, post; + GetDims(xdim, axis, &pre, &n, &post); + + auto* place = ctx.template device_context().eigen_device(); + + Eigen::DSizes shape(pre, n, post); + Eigen::DSizes norm_shape(pre, post); + + auto x_e = framework::EigenVector::Flatten(*in_x); + auto y_e = framework::EigenVector::Flatten(*out_y); + auto norm_e = framework::EigenVector::Flatten(*out_norm); + auto x = x_e.reshape(shape); + auto y = y_e.reshape(shape); + auto norm = norm_e.reshape(norm_shape); + + Eigen::DSizes rdim(1); + // y = x / sqrt((sum(x * x) + epsilon)) + // norm = sqrt(sum(x * x) + epsilon) + auto sum = x.pow(2).sum(rdim) + eps; + norm.device(*place) = sum.sqrt(); + // y = x / norm + Eigen::DSizes rshape(pre, 1, post); + Eigen::DSizes bcast(1, n, 1); + y.device(*place) = x / norm.reshape(rshape).broadcast(bcast); } }; template class NormGradKernel : public framework::OpKernel { public: - void Compute(const framework::ExecutionContext& context) const override { - const framework::Tensor* in_x = context.Input("X"); - const framework::Tensor* scale = context.Input("Scale"); - const framework::Tensor* out_grad = - context.Input(framework::GradVarName("Out")); - auto epsilon = static_cast(context.Attr("epsilon")); - framework::Tensor* in_x_grad = - context.Output(framework::GradVarName("X")); - in_x_grad->mutable_data(context.GetPlace()); - int batch_size = in_x->dims()[0]; - int channels = in_x->dims()[1]; - int height = in_x->dims()[2]; - int width = in_x->dims()[3]; - int fea_len = height * width; - auto* place = - context.template device_context().eigen_device(); - - auto scale_eigen = - framework::EigenVector::Flatten( - *scale); - auto x = - framework::EigenMatrix::From( - *in_x, framework::make_ddim({batch_size, fea_len * channels})); - // get square - framework::Tensor x_square; - x_square.mutable_data(in_x->dims(), context.GetPlace()); - auto x_square_eigen = - framework::EigenMatrix::From( - x_square, framework::make_ddim({batch_size, fea_len * channels})); - x_square_eigen.device(*place) = x.square(); - - for (int n = 0; n < batch_size; ++n) { - framework::Tensor in_x_batch = in_x->Slice(n, n + 1); - auto in_x_batch_eigen = - framework::EigenMatrix::From( - in_x_batch, framework::make_ddim({channels, fea_len})); - framework::Tensor in_g_batch = in_x_grad->Slice(n, n + 1); - auto in_g_batch_eigen = - framework::EigenMatrix::From( - in_g_batch, framework::make_ddim({channels, fea_len})); - framework::Tensor x_square_batch = x_square.Slice(n, n + 1); - auto x_square_batch_eigen = - framework::EigenMatrix::From( - x_square_batch, framework::make_ddim({channels, fea_len})); - framework::Tensor outg_batch = out_grad->Slice(n, n + 1); - auto outg_batch_eigen = - framework::EigenMatrix::From( - outg_batch, framework::make_ddim({channels, fea_len})); - - framework::Tensor tmp_tensor; - tmp_tensor.mutable_data(framework::make_ddim({1, fea_len}), - context.GetPlace()); - auto tmp_eigen = - framework::EigenVector::Flatten(tmp_tensor); - auto dim = Eigen::array({{0}}); - tmp_eigen.device(*place) = (in_x_batch_eigen * outg_batch_eigen).sum(dim); - framework::Tensor norm_tmp_tensor; - norm_tmp_tensor.mutable_data(framework::make_ddim({1, fea_len}), - context.GetPlace()); - auto norm_tmp_eigen = - framework::EigenVector::Flatten(norm_tmp_tensor); - norm_tmp_eigen.device(*place) = - (x_square_batch_eigen.sum(dim) + epsilon).sqrt(); - Eigen::array broadcast_dim_col; - broadcast_dim_col[1] = 1; - broadcast_dim_col[0] = channels; - in_g_batch_eigen.device(*place) = - in_x_batch_eigen * tmp_eigen.broadcast(broadcast_dim_col); - in_g_batch_eigen.device(*place) = - in_g_batch_eigen / - (norm_tmp_eigen * norm_tmp_eigen).broadcast(broadcast_dim_col); - in_g_batch_eigen.device(*place) = outg_batch_eigen - in_g_batch_eigen; - // outg_batch_eigen + (in_g_batch_eigen * -1); - in_g_batch_eigen.device(*place) = - in_g_batch_eigen / norm_tmp_eigen.broadcast(broadcast_dim_col); - Eigen::array broadcast_dim_row; - broadcast_dim_row[1] = fea_len; - broadcast_dim_row[0] = 1; - in_g_batch_eigen.device(*place) = - in_g_batch_eigen * (scale_eigen.broadcast(broadcast_dim_row)); - } + void Compute(const framework::ExecutionContext& ctx) const override { + auto* in_x = ctx.Input("X"); + auto* in_norm = ctx.Input("Norm"); + auto* in_dy = ctx.Input(framework::GradVarName("Out")); + auto* out_dx = ctx.Output(framework::GradVarName("X")); + out_dx->mutable_data(ctx.GetPlace()); + + auto xdim = in_x->dims(); + int axis = ctx.Attr("axis"); + if (axis < 0) axis = xdim.size() + axis; + int pre, n, post; + GetDims(xdim, axis, &pre, &n, &post); + + auto* place = ctx.template device_context().eigen_device(); + + auto x_e = framework::EigenVector::Flatten(*in_x); + auto dy_e = framework::EigenVector::Flatten(*in_dy); + auto norm_e = framework::EigenVector::Flatten(*in_norm); + auto dx_e = framework::EigenVector::Flatten(*out_dx); + + Eigen::DSizes shape(pre, n, post); + Eigen::DSizes norm_shape(pre, post); + auto x = x_e.reshape(shape); + auto dy = dy_e.reshape(shape); + auto norm = norm_e.reshape(norm_shape); + auto dx = dx_e.reshape(shape); + + framework::Tensor rsum; + rsum.mutable_data({pre, post}, ctx.GetPlace()); + auto sum = framework::EigenTensor::From(rsum); + + Eigen::DSizes rdim(1); + Eigen::DSizes bcast(1, n, 1); + Eigen::DSizes rshape(pre, 1, post); + + // dx = ( dy/sqrt(sum(x*x)) ) * [1 - x*sum(x) / (sum(x*x) + e)] + // = [dy - dy * x * sum(x) / (sum(x*x) + e)] / sqrt(sum(x*x)) + // = [dy - x * sum(x*dy) / (sum(x*x) + e)] / sqrt(sum(x*x)) + // 1. sum = sum(x*dy) + sum.device(*place) = (x * dy).sum(rdim); + // 2. dx = x * sum + dx.device(*place) = sum.reshape(rshape).broadcast(bcast) * x; + // 3. dx / (sum(x*x) + e) + // where, norm.pow(2) = sum(x*x) + e, which is calculated in forward. + dx.device(*place) = dx / norm.pow(2).broadcast(bcast); + // 4. [dy - dx] / sqrt(sum(x*x)) + dx.device(*place) = (dy - dx) / norm.broadcast(bcast); } }; } // namespace operators diff --git a/paddle/fluid/operators/pool_mkldnn_op.cc b/paddle/fluid/operators/pool_mkldnn_op.cc index a045f9e98dd7348973c3c4506f44d3e261599a14..5341187d1ce9400ac34750ab691608e76158ae0d 100644 --- a/paddle/fluid/operators/pool_mkldnn_op.cc +++ b/paddle/fluid/operators/pool_mkldnn_op.cc @@ -18,9 +18,14 @@ limitations under the License. */ namespace paddle { namespace operators { -using mkldnn::memory; // Note: paddle has also "memory" namespace -using mkldnn::pooling_forward; +using framework::DataLayout; +using mkldnn::memory; using mkldnn::pooling_backward; +using mkldnn::pooling_forward; +using mkldnn::primitive; +using mkldnn::reorder; +using mkldnn::stream; +using platform::to_void_cast; // Generate keys for storing/retriving primitives for this operator // TODO(jczaja): Make hashing function more optimial @@ -55,8 +60,9 @@ class PoolMKLDNNOpKernel : public paddle::framework::OpKernel { const Tensor* input = ctx.Input("X"); Tensor* output = ctx.Output("Out"); - // Get an unique name from "argument" name of "Out" variable - // This name will be used as key when saving info into device context + PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN && + input->format() != memory::format::format_undef, + "Wrong layout/format set for Input tensor"); std::string pooling_type = ctx.Attr("pooling_type"); std::vector ksize = ctx.Attr>("ksize"); @@ -82,6 +88,9 @@ class PoolMKLDNNOpKernel : public paddle::framework::OpKernel { std::vector src_tz = paddle::framework::vectorize2int(input->dims()); std::vector dst_tz = paddle::framework::vectorize2int(output->dims()); + auto input_format = input->format(); + memory::format output_format{memory::format::format_undef}; + const std::string key = gethash(src_tz, pooling_type, ksize, strides, paddings, ctx.op().Output("Out")); const std::string key_pool_p = key + "@pool_p"; @@ -94,16 +103,17 @@ class PoolMKLDNNOpKernel : public paddle::framework::OpKernel { auto pool_p = std::static_pointer_cast(dev_ctx.GetBlob(key_pool_p)); if (pool_p == nullptr) { - // TODO(pzelazko-intel): support more formats + auto src_md = platform::MKLDNNMemDesc( + src_tz, platform::MKLDNNGetDataType(), input_format); - auto src_md = - platform::MKLDNNMemDesc(src_tz, platform::MKLDNNGetDataType(), - mkldnn::memory::format::nchw); - auto dst_md = - platform::MKLDNNMemDesc(dst_tz, platform::MKLDNNGetDataType(), - mkldnn::memory::format::nchw); + /* create memory descriptor for pooling without specified format + * ('any') which lets a primitive (pooling in this case) choose + * the memory format preferred for best performance + */ + auto dst_md = platform::MKLDNNMemDesc(dst_tz, mkldnn::memory::f32, + mkldnn::memory::format::any); - std::shared_ptr pool_pd = + std::shared_ptr pool_pd = CreatePrimitiveDesc(src_md, dst_md, strides, paddings, ksize, pooling_type, mkldnn_engine); @@ -116,20 +126,22 @@ class PoolMKLDNNOpKernel : public paddle::framework::OpKernel { // save pool_workspace_memory to be referred in backward path dev_ctx.SetBlob(key_pool_workspace_memory, workspace_memory); - auto pool_src_memory_p = std::make_shared( - memory::primitive_desc{src_md, mkldnn_engine}, - static_cast(const_cast(input_data))); - dev_ctx.SetBlob(key_pool_src_mem_p, pool_src_memory_p); + auto src_memory = std::make_shared(pool_pd->src_primitive_desc(), + to_void_cast(input_data)); + auto dst_memory = + std::make_shared(pool_pd->dst_primitive_desc(), output_data); - auto pool_dst_memory_p = std::make_shared( - memory::primitive_desc{dst_md, mkldnn_engine}, - static_cast(output_data)); - dev_ctx.SetBlob(key_pool_dst_mem_p, pool_dst_memory_p); + dev_ctx.SetBlob(key_pool_src_mem_p, src_memory); + dev_ctx.SetBlob(key_pool_dst_mem_p, dst_memory); + + pool_p = std::make_shared(*pool_pd, *(src_memory.get()), + *(dst_memory.get()), + *workspace_memory); - pool_p = std::make_shared( - *pool_pd, *(pool_src_memory_p.get()), *(pool_dst_memory_p.get()), - *workspace_memory); dev_ctx.SetBlob(key_pool_p, pool_p); + + output_format = + (memory::format)dst_memory->get_primitive_desc().desc().data.format; } else { // Primitives already exist auto pool_src_memory_p = @@ -140,14 +152,20 @@ class PoolMKLDNNOpKernel : public paddle::framework::OpKernel { std::static_pointer_cast(dev_ctx.GetBlob(key_pool_dst_mem_p)); PADDLE_ENFORCE(pool_dst_memory_p != nullptr, "Fail to find pooling dst mem_p in device context"); - pool_src_memory_p->set_data_handle( - reinterpret_cast(const_cast(input_data))); + pool_src_memory_p->set_data_handle(to_void_cast(input_data)); pool_dst_memory_p->set_data_handle(output_data); + + output_format = (memory::format)pool_dst_memory_p->get_primitive_desc() + .desc() + .data.format; } // push primitive to stream and wait until it's executed std::vector pipeline{*(pool_p.get())}; - mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait(); + stream(stream::kind::eager).submit(pipeline).wait(); + + output->set_layout(DataLayout::kMKLDNN); + output->set_format(output_format); } private: @@ -194,6 +212,13 @@ class PoolMKLDNNGradOpKernel : public paddle::framework::OpKernel { const Tensor* out_grad = ctx.Input(framework::GradVarName("Out")); Tensor* in_x_grad = ctx.Output(framework::GradVarName("X")); + PADDLE_ENFORCE(in_x->layout() == DataLayout::kMKLDNN && + in_x->format() != memory::format::format_undef, + "Wrong layout/format set for Input X tensor"); + PADDLE_ENFORCE(out_grad->layout() == DataLayout::kMKLDNN && + out_grad->format() != memory::format::format_undef, + "Wrong layout/format set for Input output_grad tensor"); + std::string pooling_type = ctx.Attr("pooling_type"); std::vector ksize = ctx.Attr>("ksize"); std::vector strides = ctx.Attr>("strides"); @@ -212,6 +237,7 @@ class PoolMKLDNNGradOpKernel : public paddle::framework::OpKernel { const T* out_grad_data = out_grad->data(); T* in_x_grad_data = in_x_grad->mutable_data(ctx.GetPlace()); + memory::format in_x_grad_format{memory::format::format_undef}; std::vector diff_src_tz = paddle::framework::vectorize2int(in_x_grad->dims()); @@ -225,39 +251,48 @@ class PoolMKLDNNGradOpKernel : public paddle::framework::OpKernel { const std::string key_pool_bwd_p = key + "@pool_bwd_p"; const std::string key_pool_diff_src_mem_p = key + "@pool_diff_src_mem_p"; const std::string key_pool_diff_dst_mem_p = key + "@pool_diff_dst_mem_p"; + const std::string key_pool_src_mem_p = key + "@pool_src_mem_p"; + const std::string key_pool_dst_mem_p = key + "@pool_dst_mem_p"; const std::string key_pool_pd = key + "@pool_pd"; const std::string key_pool_workspace_memory = key + "@pool_workspace_memory"; + auto user_diff_dst_memory = + memory({{{diff_dst_tz}, memory::data_type::f32, out_grad->format()}, + mkldnn_engine}, + to_void_cast(out_grad_data)); + + std::shared_ptr diff_src_memory; + std::shared_ptr diff_dst_memory; + auto dst_memory = + std::static_pointer_cast(dev_ctx.GetBlob(key_pool_dst_mem_p)); + PADDLE_ENFORCE(dst_memory != nullptr, + "Fail to find dst_memory in device context"); + + primitive reorder_diff_dst; + bool is_diff_dst_reordered = false; auto pool_bwd_p = std::static_pointer_cast( dev_ctx.GetBlob(key_pool_bwd_p)); if (pool_bwd_p == nullptr) { - auto diff_src_md = - platform::MKLDNNMemDesc(diff_src_tz, platform::MKLDNNGetDataType(), - mkldnn::memory::format::nchw); - auto diff_dst_md = - platform::MKLDNNMemDesc(diff_dst_tz, platform::MKLDNNGetDataType(), - mkldnn::memory::format::nchw); + // Retrieve src_memory/dst_memory saved in forward pass + auto src_memory = + std::static_pointer_cast(dev_ctx.GetBlob(key_pool_src_mem_p)); + PADDLE_ENFORCE(src_memory != nullptr, + "Fail to find src_memory in device context"); // Retrieve pool_pd/pool_workspace_memory from device context auto pool_pd = std::static_pointer_cast( dev_ctx.GetBlob(key_pool_pd)); PADDLE_ENFORCE(pool_pd != nullptr, "Fail to find pool_pd in device context"); - - auto workspace_memory = std::static_pointer_cast( + auto workspace_memory = std::static_pointer_cast( dev_ctx.GetBlob(key_pool_workspace_memory)); PADDLE_ENFORCE(workspace_memory != nullptr, "Fail to find workspace_memory in device context"); - auto pool_diff_src_memory_p = std::make_shared(memory( - {diff_src_md, mkldnn_engine}, static_cast(in_x_grad_data))); - dev_ctx.SetBlob(key_pool_diff_src_mem_p, pool_diff_src_memory_p); - - auto pool_diff_dst_memory_p = std::make_shared( - memory({diff_dst_md, mkldnn_engine}, - static_cast(const_cast(out_grad_data)))); - dev_ctx.SetBlob(key_pool_diff_dst_mem_p, pool_diff_dst_memory_p); + // create memory descriptors for pooling + auto diff_src_md = src_memory.get()->get_primitive_desc().desc(); + auto diff_dst_md = dst_memory.get()->get_primitive_desc().desc(); auto pool_bwd_desc = mkldnn::pooling_backward::desc( pooling_type == "max" ? mkldnn::algorithm::pooling_max @@ -267,35 +302,74 @@ class PoolMKLDNNGradOpKernel : public paddle::framework::OpKernel { auto pool_bwd_pd = mkldnn::pooling_backward::primitive_desc( pool_bwd_desc, mkldnn_engine, *pool_pd); + // reorder between user_diff_dst and pool diff_dst if needed + diff_dst_memory = std::make_shared(user_diff_dst_memory); + if (memory::primitive_desc(dst_memory->get_primitive_desc()) != + user_diff_dst_memory.get_primitive_desc()) { + diff_dst_memory = + std::make_shared(dst_memory.get()->get_primitive_desc()); + reorder_diff_dst = reorder(user_diff_dst_memory, *diff_dst_memory); + is_diff_dst_reordered = true; + } + + diff_src_memory = std::make_shared( + pool_bwd_pd.diff_src_primitive_desc(), in_x_grad_data); + + dev_ctx.SetBlob(key_pool_diff_src_mem_p, diff_src_memory); + dev_ctx.SetBlob(key_pool_diff_dst_mem_p, diff_dst_memory); + pool_bwd_p = std::make_shared( - pool_bwd_pd, *(pool_diff_dst_memory_p.get()), *workspace_memory, - *(pool_diff_src_memory_p)); + pool_bwd_pd, *(diff_dst_memory.get()), *workspace_memory, + *(diff_src_memory)); dev_ctx.SetBlob(key_pool_bwd_p, pool_bwd_p); + } else { // Primitives already exist - auto pool_diff_src_memory_p = std::static_pointer_cast( + diff_src_memory = std::static_pointer_cast( dev_ctx.GetBlob(key_pool_diff_src_mem_p)); - PADDLE_ENFORCE(pool_diff_src_memory_p != nullptr, + PADDLE_ENFORCE(diff_src_memory != nullptr, "Fail to find pooling src mem_p in device context"); - auto pool_diff_dst_memory_p = std::static_pointer_cast( + diff_dst_memory = std::static_pointer_cast( dev_ctx.GetBlob(key_pool_diff_dst_mem_p)); - PADDLE_ENFORCE(pool_diff_dst_memory_p != nullptr, + PADDLE_ENFORCE(diff_dst_memory != nullptr, "Fail to find pooling dst mem_p in device context"); - pool_diff_src_memory_p->set_data_handle( - reinterpret_cast(in_x_grad_data)); - pool_diff_dst_memory_p->set_data_handle(const_cast(out_grad_data)); + + diff_src_memory->set_data_handle(reinterpret_cast(in_x_grad_data)); + diff_dst_memory->set_data_handle(const_cast(out_grad_data)); + + // reorder between user_diff_dst and pool diff_dst if needed + if (memory::primitive_desc(dst_memory->get_primitive_desc()) != + user_diff_dst_memory.get_primitive_desc()) { + diff_dst_memory = + std::make_shared(dst_memory.get()->get_primitive_desc()); + reorder_diff_dst = reorder(user_diff_dst_memory, *diff_dst_memory); + is_diff_dst_reordered = true; + } } + in_x_grad_format = (memory::format)diff_src_memory->get_primitive_desc() + .desc() + .data.format; + // push primitive to stream and wait until it's executed - std::vector pipeline{*(pool_bwd_p.get())}; + std::vector pipeline; + if (is_diff_dst_reordered) { + pipeline.push_back(reorder_diff_dst); + } + pipeline.push_back(*(pool_bwd_p.get())); mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait(); + + in_x_grad->set_layout(DataLayout::kMKLDNN); + in_x_grad->set_format(in_x_grad_format); } // Compute() }; } // namespace operators } // namespace paddle +namespace ops = paddle::operators; + REGISTER_OP_KERNEL(pool2d, MKLDNN, ::paddle::platform::CPUPlace, - paddle::operators::PoolMKLDNNOpKernel); + ops::PoolMKLDNNOpKernel); REGISTER_OP_KERNEL(pool2d_grad, MKLDNN, ::paddle::platform::CPUPlace, - paddle::operators::PoolMKLDNNGradOpKernel); + ops::PoolMKLDNNGradOpKernel); diff --git a/paddle/fluid/operators/pool_op.cc b/paddle/fluid/operators/pool_op.cc index 18aa2bd352c5d184b5748e57b4af17c1ae0d7a82..6707cdded4020fe3e2b01ba399dfc279a9da677d 100644 --- a/paddle/fluid/operators/pool_op.cc +++ b/paddle/fluid/operators/pool_op.cc @@ -151,7 +151,8 @@ void Pool2dOpMaker::Make() { "The format of output tensor is also NCHW, " "where N is batch size, C is the number of channels, " "H is the height of the feature, " - "and W is the width of the feature."); + "and W is the width of the feature.") + .Reuse("X"); AddAttr("pooling_type", "(string), pooling type, can be \"max\" for max-pooling " @@ -244,7 +245,8 @@ void Pool3dOpMaker::Make() { "The format of output tensor is also NCDHW, " "where N is batch size, C is " "the number of channels, and D, H and W is the depth, height and " - "width of the feature, respectively."); + "width of the feature, respectively.") + .Reuse("X"); AddAttr("pooling_type", "(string) Pooling type, can be \"max\" for max-pooling " diff --git a/paddle/fluid/operators/prefetch_op.cc b/paddle/fluid/operators/prefetch_op.cc index d96359d6befa68bdd0c255dde9c63bfc7fffc0a5..f71ba84b318c1f8b0604310f3db8a0826124e207 100644 --- a/paddle/fluid/operators/prefetch_op.cc +++ b/paddle/fluid/operators/prefetch_op.cc @@ -18,7 +18,7 @@ limitations under the License. */ #include "paddle/fluid/framework/data_type.h" #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/op_registry.h" -#include "paddle/fluid/operators/detail/grpc_client.h" +#include "paddle/fluid/operators/detail/macros.h" #include "paddle/fluid/operators/send_recv_util.h" namespace paddle { @@ -42,7 +42,7 @@ class PrefetchOp : public framework::OperatorBase { auto& ctx = *pool.Get(place); detail::RPCClient* rpc_client = - detail::RPCClient::GetInstance(); + detail::RPCClient::GetInstance(); for (size_t i = 0; i < ins.size(); i++) { if (NeedSend(scope, ins[i])) { diff --git a/paddle/fluid/operators/random_crop_op.cc b/paddle/fluid/operators/random_crop_op.cc index b14b559e31dd422f8ebe4002988a9746dfdf28a2..528a6e4a1b68fe611d104f21bafe970762611a03 100644 --- a/paddle/fluid/operators/random_crop_op.cc +++ b/paddle/fluid/operators/random_crop_op.cc @@ -20,7 +20,6 @@ class RandomCropOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; - protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( @@ -36,11 +35,11 @@ class RandomCropOpMaker : public framework::OpProtoAndCheckerMaker { AddInput("Seed", "The random seed."); AddOutput("Out", "The cropped instance batch."); AddOutput("SeedOut", "The random seed after random cropping.") - .AsDispensable(); + .AsIntermediate(); AddAttr>("shape", "The shape of a cropped instance."); AddComment(R"DOC( - This operator takes a batch of instance, and do random cropping on each instance. - It means that cropping positions differs on each instance, which is determined + This operator takes a batch of instance, and do random cropping on each instance. + It means that cropping positions differs on each instance, which is determined by an uniform random generator. All cropped instances have the same shape, which is determined by the operator's attribute 'shape'. )DOC"); diff --git a/paddle/fluid/operators/recv_op.cc b/paddle/fluid/operators/recv_op.cc index 1ea1cc458b2a20017cc36457af81387a8c808642..15dfb5469bf51330b98d6699fb3ce708222212ed 100644 --- a/paddle/fluid/operators/recv_op.cc +++ b/paddle/fluid/operators/recv_op.cc @@ -19,8 +19,7 @@ limitations under the License. */ #include "paddle/fluid/framework/framework.pb.h" #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/op_registry.h" - -#include "paddle/fluid/operators/detail/grpc_client.h" +#include "paddle/fluid/operators/detail/macros.h" #include "paddle/fluid/platform/profiler.h" namespace paddle { @@ -45,7 +44,7 @@ class RecvOp : public framework::OperatorBase { platform::RecordEvent record_event(Type(), &ctx); detail::RPCClient* rpc_client = - detail::RPCClient::GetInstance(); + detail::RPCClient::GetInstance(); for (size_t i = 0; i < outs.size(); i++) { VLOG(3) << "getting " << outs[i] << " from " << epmap[i]; @@ -78,9 +77,15 @@ This operator can get variables from server side. } }; +class RecvOpShapeInference : public framework::InferShapeBase { + public: + void operator()(framework::InferShapeContext* ctx) const override {} +}; + } // namespace operators } // namespace paddle namespace ops = paddle::operators; -REGISTER_OPERATOR(recv, ops::RecvOp, ops::RecvOpMaker); +REGISTER_OPERATOR(recv, ops::RecvOp, paddle::framework::EmptyGradOpMaker, + ops::RecvOpMaker, ops::RecvOpShapeInference); diff --git a/paddle/fluid/operators/send_barrier_op.cc b/paddle/fluid/operators/send_barrier_op.cc index 511ad753876dd26a4d6bc8c2c727c7c9253ce59c..c6c975a23ce846464388c72af5d8902144ceb16a 100644 --- a/paddle/fluid/operators/send_barrier_op.cc +++ b/paddle/fluid/operators/send_barrier_op.cc @@ -19,8 +19,8 @@ limitations under the License. */ #include "paddle/fluid/framework/framework.pb.h" #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/op_registry.h" +#include "paddle/fluid/operators/detail/macros.h" -#include "paddle/fluid/operators/detail/grpc_client.h" #include "paddle/fluid/platform/profiler.h" namespace paddle { @@ -45,7 +45,7 @@ class SendBarrierOp : public framework::OperatorBase { platform::RecordEvent record_event(Type(), &ctx); detail::RPCClient* rpc_client = - detail::RPCClient::GetInstance(); + detail::RPCClient::GetInstance(); VLOG(3) << "SendBarrierOp sync_mode:" << sync_mode; diff --git a/paddle/fluid/operators/send_op.cc b/paddle/fluid/operators/send_op.cc index 9697579707f1a510ba7db8a1a9616b59918b971b..84ec36625314572d16e5c537884b6efec420cc60 100644 --- a/paddle/fluid/operators/send_op.cc +++ b/paddle/fluid/operators/send_op.cc @@ -16,10 +16,9 @@ limitations under the License. */ #include #include "paddle/fluid/framework/data_type.h" -#include "paddle/fluid/framework/framework.pb.h" #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/op_registry.h" -#include "paddle/fluid/operators/detail/grpc_client.h" +#include "paddle/fluid/operators/detail/macros.h" #include "paddle/fluid/operators/send_recv_util.h" #include "paddle/fluid/platform/profiler.h" @@ -36,12 +35,9 @@ class SendOp : public framework::OperatorBase { void RunImpl(const framework::Scope& scope, const platform::Place& place) const override { auto ins = Inputs("X"); - auto outs = Outputs("Out"); - std::vector epmap = Attr>("epmap"); - std::vector endpoints = - Attr>("endpoints"); - bool sync_mode = Attr("sync_mode"); + std::vector epmap = Attr>("epmap"); + int sync_send = Attr("sync_mode"); platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); auto& ctx = *pool.Get(place); @@ -50,37 +46,19 @@ class SendOp : public framework::OperatorBase { platform::RecordEvent record_event(Type(), &ctx); detail::RPCClient* rpc_client = - detail::RPCClient::GetInstance(); + detail::RPCClient::GetInstance(); for (size_t i = 0; i < ins.size(); i++) { if (NeedSend(scope, ins[i])) { VLOG(3) << "sending " << ins[i] << " to " << epmap[i]; + // TODO(Yancey1989): we need to use an IO threadpool which has + // a larger number of threads than the computing threadpool. rpc_client->AsyncSendVar(epmap[i], ctx, scope, ins[i]); } else { VLOG(3) << "don't send no-initialied variable: " << ins[i]; } } - rpc_client->Wait(); - - if (sync_mode) { - for (auto& ep : endpoints) { - VLOG(3) << "batch barrier, ep: " << ep; - rpc_client->AsyncSendBatchBarrier(ep); - } - rpc_client->Wait(); - } - - if (outs.size() > 0) { - for (size_t i = 0; i < outs.size(); i++) { - VLOG(2) << "getting " << outs[i] << " from " << epmap[i]; - rpc_client->AsyncGetVar(epmap[i], ctx, scope, outs[i]); - } - rpc_client->Wait(); - // tell pservers that current trainer have called fetch - for (auto& ep : endpoints) { - VLOG(2) << "send fetch barrier, ep: " << ep; - rpc_client->AsyncSendFetchBarrier(ep); - } + if (sync_send) { rpc_client->Wait(); } } @@ -89,26 +67,22 @@ class SendOp : public framework::OperatorBase { class SendOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() { - AddInput("X", "(Tensor) Input tensor to be sent").AsDuplicable(); - AddOutput("Out", "(Tensor) Output tensor to be received from server") + AddInput("X", "(Tensor, SelectedRows) Input variables to be sent") .AsDuplicable(); AddComment(R"DOC( Send operator -This operator will send tensor to recv_op at the parameter server. +This operator will send variables to listen_and_serve op at the parameter server. )DOC"); - // TODO(typhoonzero): remove this attr generate de-duplicated vector from - // epmap when initializing. - AddAttr>("endpoints", - "(string vector, default 127.0.0.1:6164)" - "Server endpoints to send variables to.") - .SetDefault({}); + AddAttr("sync_mode", + "(int, default 0)" + "sync send or async send.") + .SetDefault(0); AddAttr>("epmap", "(string vector, default 127.0.0.1:6164)" "Server endpoints in the order of input " "variables for mapping") - .SetDefault({}); - AddAttr("sync_mode", "work in sync_mode or not").SetDefault(true); + .SetDefault({"127.0.0.1:6164"}); } }; diff --git a/paddle/fluid/operators/send_vars_op.cc b/paddle/fluid/operators/send_vars_op.cc deleted file mode 100644 index 564e40461f8f894cffab11e26cc538b7964b6f19..0000000000000000000000000000000000000000 --- a/paddle/fluid/operators/send_vars_op.cc +++ /dev/null @@ -1,101 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. */ - -#include // NOLINT -#include - -#include "paddle/fluid/framework/data_type.h" -#include "paddle/fluid/framework/lod_tensor.h" -#include "paddle/fluid/framework/op_registry.h" -#include "paddle/fluid/operators/detail/grpc_client.h" -#include "paddle/fluid/operators/send_recv_util.h" -#include "paddle/fluid/platform/profiler.h" - -namespace paddle { -namespace operators { - -class SendVarsOp : public framework::OperatorBase { - public: - SendVarsOp(const std::string& type, const framework::VariableNameMap& inputs, - const framework::VariableNameMap& outputs, - const framework::AttributeMap& attrs) - : OperatorBase(type, inputs, outputs, attrs) {} - - void RunImpl(const framework::Scope& scope, - const platform::Place& place) const override { - auto ins = Inputs("X"); - - std::vector epmap = Attr>("epmap"); - int sync_send = Attr("sync_send"); - - platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); - auto& ctx = *pool.Get(place); - - // For profiling - platform::RecordEvent record_event(Type(), &ctx); - - detail::RPCClient* rpc_client = - detail::RPCClient::GetInstance(); - - for (size_t i = 0; i < ins.size(); i++) { - if (NeedSend(scope, ins[i])) { - VLOG(3) << "sending " << ins[i] << " to " << epmap[i]; - // TODO(Yancey1989): we need to use an IO threadpool which has - // a larger number of threads than the computing threadpool. - rpc_client->AsyncSendVar(epmap[i], ctx, scope, ins[i]); - } else { - VLOG(3) << "don't send no-initialied variable: " << ins[i]; - } - } - if (sync_send) { - rpc_client->Wait(); - } - } -}; - -class SendVarsOpMaker : public framework::OpProtoAndCheckerMaker { - public: - void Make() { - AddInput("X", "(Tensor, SelectedRows) Input variables to be sent") - .AsDuplicable(); - AddComment(R"DOC( -Send operator - -This operator will send variables to listen_and_serve op at the parameter server. -)DOC"); - AddAttr("sync_send", - "(int, default 0)" - "sync send or async send.") - .SetDefault(0); - AddAttr>("epmap", - "(string vector, default 127.0.0.1:6164)" - "Server endpoints in the order of input " - "variables for mapping") - .SetDefault({"127.0.0.1:6164"}); - } -}; - -class SendVarsOpShapeInference : public framework::InferShapeBase { - public: - void operator()(framework::InferShapeContext* ctx) const override {} -}; - -} // namespace operators -} // namespace paddle - -namespace ops = paddle::operators; - -REGISTER_OPERATOR(send_vars, ops::SendVarsOp, - paddle::framework::EmptyGradOpMaker, ops::SendVarsOpMaker, - ops::SendVarsOpShapeInference); diff --git a/paddle/fluid/operators/sgd_op.cc b/paddle/fluid/operators/sgd_op.cc index 7a2bdeac09d61603f437ff10d58d0542bb3c3689..fef230e42d07a5ed73b7a7a6ab682694675bb9d2 100644 --- a/paddle/fluid/operators/sgd_op.cc +++ b/paddle/fluid/operators/sgd_op.cc @@ -74,7 +74,8 @@ class SGDOpMaker : public framework::OpProtoAndCheckerMaker { AddInput("Grad", "(Tensor or SelectedRows) Input gradient"); AddOutput("ParamOut", "(Tensor or SelectedRows, same with Param) " - "Output parameter, should share the same memory with Param"); + "Output parameter, should share the same memory with Param") + .Reuse("Param"); AddComment(R"DOC( SGD operator diff --git a/paddle/fluid/operators/slice_op.cc b/paddle/fluid/operators/slice_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..61bb445e8b4c6a71e9b1a6a0bcf02a31ab271d0a --- /dev/null +++ b/paddle/fluid/operators/slice_op.cc @@ -0,0 +1,130 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/fluid/operators/slice_op.h" +#include +#include + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; + +class SliceOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + void InferShape(framework::InferShapeContext *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("Input"), + "Input (Input) of slice op should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output (Out) of slice op should not be null."); + + auto in_dims = ctx->GetInputDim("Input"); + PADDLE_ENFORCE(in_dims.size() < 7, + "The rank of input should be less than 7."); + framework::DDim out_dims(in_dims); + auto axes = ctx->Attrs().Get>("axes"); + auto starts = ctx->Attrs().Get>("starts"); + auto ends = ctx->Attrs().Get>("ends"); + + PADDLE_ENFORCE_EQ(starts.size(), ends.size()); + PADDLE_ENFORCE_EQ(starts.size(), axes.size()); + int dim_value, start, end; + for (size_t i = 0; i < axes.size(); ++i) { + dim_value = out_dims[axes[i]]; + start = starts[i] < 0 ? (starts[i] + dim_value) : starts[i]; + end = ends[i] < 0 ? (ends[i] + dim_value) : ends[i]; + start = std::max(start, 0); + end = std::max(end, 0); + start = std::min(start, dim_value); + end = std::min(end, dim_value); + start = std::min(start, end); + out_dims[axes[i]] = end - start; + } + ctx->SetOutputDim("Out", out_dims); + } + + protected: + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext &ctx) const override { + return framework::OpKernelType( + framework::ToDataType(ctx.Input("Input")->type()), + ctx.GetPlace()); + } +}; + +class SliceOpMaker : public framework::OpProtoAndCheckerMaker { + public: + void Make() override { + AddInput("Input", "Tensor of data to extract slices from."); + AddOutput("Out", "Sliced data tensor."); + + AddAttr>( + "axes", + "(list) Axes that `starts` and `ends` apply to. It's optional." + "If not present, will be treated as [0, 1, ..., len(`starts`) - 1]."); + AddAttr>( + "starts", + "(list) Starting indices of corresponding axis in `axes`"); + AddAttr>( + "ends", + "(list) Starting indices of corresponding axis in `axes`."); + + AddComment(R"DOC( +Slice Operator. + +Produces a slice of the input tensor along multiple axes. Similar to numpy: +https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html +Slice uses `axes`, `starts` and `ends` attributes to specify the start and +end dimension for each axis in the list of axes, it uses this information +to slice the input data tensor. If a negative value is passed for any of +the start or end indices, it represents number of elements before the end +of that dimension. If the value passed to start or end is larger than +the n (the number of elements in this dimension), it represents n. +For slicing to the end of a dimension with unknown size, it is recommended +to pass in INT_MAX. If axes are omitted, they are set to [0, ..., ndim-1]. + + Example 1: + Given: + data = [ [1, 2, 3, 4], [5, 6, 7, 8], ] + axes = [0, 1] + starts = [1, 0] + ends = [2, 3] + Then: + result = [ [5, 6, 7], ] + + Example 2: + Given: + data = [ [1, 2, 3, 4], [5, 6, 7, 8], ] + starts = [0, 1] + ends = [-1, 1000] + Then: + result = [ [2, 3, 4], ] +)DOC"); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OPERATOR(slice, ops::SliceOp, ops::SliceOpMaker, + paddle::framework::EmptyGradOpMaker); + +REGISTER_OP_CPU_KERNEL( + slice, ops::SliceKernel, + ops::SliceKernel, + ops::SliceKernel, + ops::SliceKernel); diff --git a/paddle/fluid/operators/slice_op.cu b/paddle/fluid/operators/slice_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..8c1767c70b19d1386af9610ef3405eb487a39878 --- /dev/null +++ b/paddle/fluid/operators/slice_op.cu @@ -0,0 +1,22 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/fluid/operators/slice_op.h" + +namespace ops = paddle::operators; +REGISTER_OP_CUDA_KERNEL( + slice, ops::SliceKernel, + ops::SliceKernel, + ops::SliceKernel, + ops::SliceKernel); diff --git a/paddle/fluid/operators/slice_op.h b/paddle/fluid/operators/slice_op.h new file mode 100644 index 0000000000000000000000000000000000000000..ba231aee176564b91a642912ce0b32bcdef8cfc1 --- /dev/null +++ b/paddle/fluid/operators/slice_op.h @@ -0,0 +1,88 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include +#include +#include "paddle/fluid/framework/op_registry.h" + +namespace paddle { +namespace operators { + +template +class SliceKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + int rank = ctx.Input("Input")->dims().size(); + switch (rank) { + case 1: + SliceCompute<1>(ctx); + break; + case 2: + SliceCompute<2>(ctx); + break; + case 3: + SliceCompute<3>(ctx); + break; + case 4: + SliceCompute<4>(ctx); + break; + case 5: + SliceCompute<5>(ctx); + break; + case 6: + SliceCompute<6>(ctx); + break; + } + } + + private: + template + void SliceCompute(const framework::ExecutionContext& context) const { + auto& place = + *context.template device_context().eigen_device(); + auto in = context.Input("Input"); + auto out = context.Output("Out"); + out->mutable_data(context.GetPlace()); + auto out_dims = out->dims(); + auto in_dims = in->dims(); + auto axes = context.Attr>("axes"); + auto starts = context.Attr>("starts"); + + auto offsets = Eigen::array(); + auto extents = Eigen::array(); + for (size_t i = 0; i < D; ++i) { + offsets[i] = 0; + extents[i] = out_dims[i]; + } + int start; + for (size_t i = 0; i < axes.size(); ++i) { + start = starts[i]; + if (start < 0) { + start = (start + in_dims[axes[i]]); + } + start = std::max(start, 0); + offsets[axes[i]] = start; + } + auto in_t = + framework::EigenTensor::From( + *in); + auto out_t = + framework::EigenTensor::From( + *out); + out_t.device(place) = in_t.slice(offsets, extents); + } +}; +} // namespace operators +} // namespace paddle diff --git a/paddle/fluid/operators/softmax_op.cc b/paddle/fluid/operators/softmax_op.cc index c90a3be964a3a309a182d3620abec619c366dd84..847b3cbd1bd416ae1326211c98ba9d145c103298 100644 --- a/paddle/fluid/operators/softmax_op.cc +++ b/paddle/fluid/operators/softmax_op.cc @@ -83,7 +83,8 @@ class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker { AddInput("X", "The input tensor of softmax. " "2-D with shape [batch_size, input_feature_dimensions]."); - AddOutput("Out", "The normalized values with the same shape as X."); + AddOutput("Out", "The normalized values with the same shape as X.") + .Reuse("X"); AddAttr( "use_cudnn", "(bool, default false) Only used in cudnn kernel, need install cudnn") diff --git a/paddle/fluid/operators/sum_op.cc b/paddle/fluid/operators/sum_op.cc index bcc5e22d4a77349e7cde9a43b83f23d4c867d994..863baba9ea7663d0b21875e0b423dc4a6ce2d59a 100644 --- a/paddle/fluid/operators/sum_op.cc +++ b/paddle/fluid/operators/sum_op.cc @@ -115,7 +115,7 @@ class SumOpMaker : public framework::OpProtoAndCheckerMaker { void Make() override { AddInput("X", "(vector) The input tensors of sum operator.") .AsDuplicable(); - AddOutput("Out", "(Tensor) The output tensor of sum operator."); + AddOutput("Out", "(Tensor) The output tensor of sum operator.").Reuse("X"); AddComment(R"DOC( Sum operator. diff --git a/paddle/fluid/operators/test_send_nccl_id.cc b/paddle/fluid/operators/test_send_nccl_id.cc index a01a75cbb070f7f835b93f5ddc62f5aad5a5e667..5015b1005569ba70b147ebb795243e24ab81ea5c 100644 --- a/paddle/fluid/operators/test_send_nccl_id.cc +++ b/paddle/fluid/operators/test_send_nccl_id.cc @@ -20,8 +20,7 @@ limitations under the License. */ #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/framework/program_desc.h" -#include "paddle/fluid/operators/detail/grpc_client.h" -#include "paddle/fluid/operators/detail/grpc_server.h" +#include "paddle/fluid/operators/detail/macros.h" #include "paddle/fluid/operators/detail/request_handler_impl.h" #include "paddle/fluid/operators/listen_and_serv_op.h" #include "paddle/fluid/operators/math/math_function.h" @@ -29,6 +28,10 @@ limitations under the License. */ #include "paddle/fluid/platform/nccl_helper.h" #include "paddle/fluid/string/printf.h" +#ifdef PADDLE_WITH_GRPC +#include "paddle/fluid/operators/send_recv_util.h" +#endif + USE_NO_KERNEL_OP(listen_and_serv); namespace f = paddle::framework; @@ -37,7 +40,7 @@ namespace m = paddle::operators::math; namespace detail = paddle::operators::detail; namespace string = paddle::string; -std::unique_ptr g_rpc_service; +std::unique_ptr g_rpc_service; std::unique_ptr g_req_handler; void StartServer() { @@ -58,7 +61,7 @@ void StartServer() { g_req_handler->SetRPCServer(g_rpc_service.get()); std::thread server_thread( - std::bind(&detail::AsyncGRPCServer::StartServer, g_rpc_service.get())); + std::bind(&detail::RPCServer::StartServer, g_rpc_service.get())); g_rpc_service->SetCond(detail::kRequestSend); g_rpc_service->WaitBarrier(detail::kRequestSend); @@ -68,9 +71,9 @@ void StartServer() { server_thread.join(); } -TEST(SendNcclId, GrpcServer) { +TEST(SendNcclId, RPCServer) { g_req_handler.reset(new detail::RequestSendHandler(true)); - g_rpc_service.reset(new detail::AsyncGRPCServer("127.0.0.1:0", 1)); + g_rpc_service.reset(new RPCSERVER_T("127.0.0.1:0", 1)); std::thread server_thread(StartServer); g_rpc_service->WaitServerReady(); @@ -87,8 +90,9 @@ TEST(SendNcclId, GrpcServer) { int port = g_rpc_service->GetSelectedPort(); std::string ep = string::Sprintf("127.0.0.1:%d", port); - detail::RPCClient* client = - detail::RPCClient::GetInstance(); + + detail::RPCClient* client = detail::RPCClient::GetInstance(); + LOG(INFO) << "connect to server" << ep; client->AsyncSendVar(ep, dev_ctx, scope, NCCL_ID_VARNAME); client->Wait(); diff --git a/paddle/fluid/operators/top_k_op.cc b/paddle/fluid/operators/top_k_op.cc index c17d1afc309c65035063348d4934ea1783b018ed..4a8ac441cfaf642fde58ee30865a22e83c065498 100644 --- a/paddle/fluid/operators/top_k_op.cc +++ b/paddle/fluid/operators/top_k_op.cc @@ -50,7 +50,7 @@ class TopkOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "(Tensor) The input of Topk op"); - AddOutput("Out", "(Tensor) The output tensor of Topk op"); + AddOutput("Out", "(Tensor) The output tensor of Topk op").Reuse("X"); AddOutput("Indices", "(Tensor) The indices of Topk elements of input"); AddComment(R"DOC( Top K operator diff --git a/paddle/fluid/platform/device_context.h b/paddle/fluid/platform/device_context.h index 6b82d93237b6baa20703c5b54b56f5381dd858df..292ffef1aef12732812b8c5b0020cad73b1d06fc 100644 --- a/paddle/fluid/platform/device_context.h +++ b/paddle/fluid/platform/device_context.h @@ -11,6 +11,7 @@ limitations under the License. */ #pragma once #include +#include // NOLINT #include #include #include @@ -100,6 +101,7 @@ class CUDADeviceContext : public DeviceContext { template void RecordEvent(cudaEvent_t ev, Callback callback) { + std::lock_guard guard(mtx_); callback(); PADDLE_ENFORCE(cudaEventRecord(ev, stream_)); } @@ -116,6 +118,8 @@ class CUDADeviceContext : public DeviceContext { int compute_capability; int multi_process; int max_threads_per_mp; + + std::mutex mtx_; }; template <> diff --git a/paddle/fluid/pybind/pybind.cc b/paddle/fluid/pybind/pybind.cc index 669d1bdaa3ec194be817cdc5e1f8484770c70c68..c88fbef63cf26c671246b15ea9872da0e7a92c1a 100644 --- a/paddle/fluid/pybind/pybind.cc +++ b/paddle/fluid/pybind/pybind.cc @@ -509,10 +509,10 @@ All parameter, weight, gradient are variables in Paddle. self.num_threads_ = num_threads; }) .def_property( - "use_event", - [](const ExecutionStrategy &self) { return self.use_event_; }, - [](ExecutionStrategy &self, bool use_event) { - self.use_event_ = use_event; + "use_cuda", + [](const ExecutionStrategy &self) { return self.use_cuda_; }, + [](ExecutionStrategy &self, bool use_cuda) { + self.use_cuda_ = use_cuda; }) .def_property( "allow_op_delay", diff --git a/paddle/scripts/paddle_build.sh b/paddle/scripts/paddle_build.sh index 55959197e7cd82253fb0c604604b4302ca0a3dc7..c6eef8683de8a4ab6c29940351ae914456a0c66f 100755 --- a/paddle/scripts/paddle_build.sh +++ b/paddle/scripts/paddle_build.sh @@ -181,6 +181,7 @@ function build() { ============================================ EOF make clean + make -j `nproc` make install -j `nproc` } diff --git a/paddle/testing/paddle_gtest_main.cc b/paddle/testing/paddle_gtest_main.cc index 586ec48477f085a14d2f15b265a95d596705694f..507479c8622c8d33722e08bba018ad1ba5452e15 100644 --- a/paddle/testing/paddle_gtest_main.cc +++ b/paddle/testing/paddle_gtest_main.cc @@ -30,7 +30,7 @@ int main(int argc, char** argv) { new_argv.push_back( strdup("--tryfromenv=fraction_of_gpu_memory_to_use,use_pinned_memory")); #else - new_argv.push_back(strdup("--tryfromenv=use_pinned_memory")); + new_argv.push_back(strdup("--tryfromenv=use_pinned_memory,use_mkldnn")); #endif int new_argc = static_cast(new_argv.size()); char** new_argv_address = new_argv.data(); diff --git a/python/paddle/dataset/flowers.py b/python/paddle/dataset/flowers.py index f082e33be3357fbe405ab1a1ef5e0e601108a363..527044b415533cc640e3cfc5837c08ab0f8b74b1 100644 --- a/python/paddle/dataset/flowers.py +++ b/python/paddle/dataset/flowers.py @@ -119,7 +119,8 @@ def reader_creator(data_file, yield sample, int(label) - 1 if use_xmap: - return xmap_readers(mapper, reader, cpu_count(), buffered_size) + cpu_num = int(os.environ.get('CPU_NUM', cpu_count())) + return xmap_readers(mapper, reader, cpu_num, buffered_size) else: return map_readers(mapper, reader) diff --git a/python/paddle/fluid/__init__.py b/python/paddle/fluid/__init__.py index c4fad620f0c49bb6b0ad3be22a564c16619efb0b..bd985ad733aa8eece2f8374d033f452a0175a011 100644 --- a/python/paddle/fluid/__init__.py +++ b/python/paddle/fluid/__init__.py @@ -26,6 +26,7 @@ from trainer import BeginEpochEvent from trainer import EndEpochEvent from trainer import BeginStepEvent from trainer import EndStepEvent +from trainer import CheckpointConfig import inferencer from inferencer import Inferencer @@ -116,7 +117,7 @@ def __bootstrap__(): read_env_flags = [ 'use_pinned_memory', 'check_nan_inf', 'benchmark', 'warpctc_dir', - 'eager_delete_scope' + 'eager_delete_scope', 'use_mkldnn' ] if core.is_compiled_with_cuda(): read_env_flags += [ diff --git a/python/paddle/fluid/data_feeder.py b/python/paddle/fluid/data_feeder.py index 7940dabcfb03cc9eb46f678365685a6e99bcceec..e2013137b14f73bb0fcfb57b4bdc35fcc043bdc0 100644 --- a/python/paddle/fluid/data_feeder.py +++ b/python/paddle/fluid/data_feeder.py @@ -15,6 +15,7 @@ from __future__ import print_function import core import numpy +import os import six.moves as six import multiprocessing @@ -150,7 +151,9 @@ class DataFeeder(object): elif isinstance(self.place, core.CUDAPlace): return core.get_cuda_device_count() else: - return multiprocessing.cpu_count() + cpu_num = int( + os.environ.get('CPU_NUM', multiprocessing.cpu_count())) + return cpu_num def decorate_reader(self, reader, diff --git a/python/paddle/fluid/framework.py b/python/paddle/fluid/framework.py index 9dc9038f4465e22c2e1bac60e18c36214f6414d5..bbd35aaecba27ea9fd66b9be585a972690980ab8 100644 --- a/python/paddle/fluid/framework.py +++ b/python/paddle/fluid/framework.py @@ -363,6 +363,13 @@ class OpProtoHolder(object): raise ValueError("Operator \"%s\" has not been registered." % type) return self.op_proto_map[type] + @staticmethod + def generated_op_attr_names(): + return { + core.op_proto_and_checker_maker.kOpRoleAttrName(), + core.op_proto_and_checker_maker.kOpRoleVarAttrName() + } + class Operator(object): """ diff --git a/python/paddle/fluid/inferencer.py b/python/paddle/fluid/inferencer.py index 9f242cf29a56573349f192307a68e135a409a4be..6baac00905713594acd59bb3819038576fab0674 100644 --- a/python/paddle/fluid/inferencer.py +++ b/python/paddle/fluid/inferencer.py @@ -56,6 +56,8 @@ class Inferencer(object): else: self.exe = executor.Executor(self.place) + self.inference_program = self.inference_program.clone(for_test=True) + def infer(self, inputs, return_numpy=True): """ :param inputs: a map of {"input_name": input_var} that will be feed into the inference program diff --git a/python/paddle/fluid/io.py b/python/paddle/fluid/io.py index 8e58e5eb794e1bb507ab05394a1f7b57a1d2ed42..6323c9899e0080b436a52f852c647466b8f94bc1 100644 --- a/python/paddle/fluid/io.py +++ b/python/paddle/fluid/io.py @@ -24,7 +24,8 @@ __all__ = [ 'save_vars', 'save_params', 'save_persistables', 'load_vars', 'load_params', 'load_persistables', 'save_inference_model', 'load_inference_model', 'get_inference_program', 'save_checkpoint', 'load_checkpoint', - 'clean_checkpoint' + 'clean_checkpoint', 'load_persist_vars_without_grad', + 'save_persist_vars_without_grad', 'get_latest_checkpoint_serial' ] @@ -457,95 +458,161 @@ def get_parameter_value_by_name(name, executor, program=None): SUCCESS_MARK_FILENAME = "_SUCCESS" CHECKPOINT_PREFIX = "checkpoint" +MODEL_DIR = "__model__" +TRAINER_PREFIX = "trainer" CHECKPOINT_SEPARATOR = "_" def save_checkpoint(executor, - checkpoint_dir=None, - max_num_checkpoints=3, - save_interval_secs=600, - main_program=None): + checkpoint_dir, + trainer_id, + trainer_args=None, + main_program=None, + max_num_checkpoints=3): """ Save Checkpoint will save persistable LodTensor variables from main_program in checkpoint directory, the directory named by serial number from 0 to (n -1), save_checkpoint use LRU strategy to keep numbers of checkpoint directory, the numbers of checkpoint directory are max_num_checkpoints at most, The interval between two saved checkpoints must greater than save_interval_secs. - :param executor - :param checkpoint_dir - :param max_num_checkpoints - :param save_interval_secs - :param main_program + :param executor executor for save the value + :param checkpoint_dir the checkpoint directory + :param trainer_id currect trainer id, if id is equal to 0, the trainer is chief + :param main_program will save all variables in program + :param max_num_checkpoints will keep numbers of checkpoint serials not bigger than max_num_checkpoints """ if checkpoint_dir is None: - checkpoint_dir = os.getcwd() + raise ValueError("'checkpoint_dir' should not be None") + + if trainer_args: + assert isinstance(trainer_args, dict) if not os.path.isdir(checkpoint_dir): os.makedirs(checkpoint_dir) - serial = _get_lastest_checkpoint_dir(checkpoint_dir) - if serial >= 0 and not _interval_secs_exceed( - _get_serial_dir(serial, checkpoint_dir), save_interval_secs): - return + serial = get_latest_checkpoint_serial(checkpoint_dir) + 1 + cur_dir = _get_serial_dir(checkpoint_dir, serial) - serial += 1 - cur_dir = _get_serial_dir(serial, checkpoint_dir) + save_trainer_args(cur_dir, trainer_id, trainer_args) - save_vars( - executor, - dirname=cur_dir, - main_program=main_program, - vars=None, - predicate=_is_checkpoint_var, - filename=None) - _write_success(cur_dir) - _lru_delete(checkpoint_dir, max_num_checkpoints) + if trainer_id == 0: + save_persist_vars_without_grad(executor, cur_dir, main_program) + + _scroll_delete(checkpoint_dir, max_num_checkpoints) -def load_checkpoint(executor, checkpoint_dir=None, main_program=None): +def load_checkpoint(executor, checkpoint_dir, serial, main_program): """ Load checkpoint from a directory by executor, it will find the most recent saved checkpoint file and load it auto. - :param executor - :param checkpoint_dir - :param main_program + :param executor executor for load the value + :param checkpoint_dir the checkpoint directory + :param serial the serial folder in checkpoint directory will be load + :param main_program will load all variables in program """ if checkpoint_dir is None: - checkpoint_dir = os.getcwd() + raise ValueError("'checkpoint_dir' should not be None") - serial = _get_lastest_checkpoint_dir(checkpoint_dir) + if serial is None or serial < 0: + raise ValueError("'serial' should not be None or <0 ") - if serial < 0: - return + if main_program is None: + raise ValueError('main_program should not be None.') - cur_dir = _get_serial_dir(serial, checkpoint_dir) - - load_vars( - executor, - dirname=cur_dir, - main_program=main_program, - predicate=_is_checkpoint_var, - filename=None) + cur_dir = _get_serial_dir(checkpoint_dir, serial) + load_persist_vars_without_grad(executor, cur_dir, main_program, True) def clean_checkpoint(checkpoint_dir, delete_dir=False): """ clean the checkpoint dir, when the train exits normally, the trainer will call clean_checkpoint to delete checkpoint directory saved before. delete_dir only works when the directory is empty, otherwise, OSError is raised. + + :param checkpoint_dir + :param delete_dir """ + if checkpoint_dir is None: - checkpoint_dir = os.getcwd() - _lru_delete(checkpoint_dir, max_num_checkpoints=0) + raise ValueError("'checkpoint_dir' should not be None") + _scroll_delete(checkpoint_dir, max_num_checkpoints=0) if delete_dir and not os.listdir(checkpoint_dir): os.rmdir(checkpoint_dir) -def _get_serial_dir(serial, checkpoint_dir): - serial_folder = CHECKPOINT_PREFIX + CHECKPOINT_SEPARATOR + str(serial) - return os.path.join(checkpoint_dir, serial_folder) +def load_persist_vars_without_grad(executor, + dirname, + program, + has_model_dir=False): + """ + load_persist_vars_without_grad will load variables from a directory by an executor, + the variable named end with "@GRAD" will not be loaded. + + :param executor executor for load the value + :param dirname the checkpoint directory + :param program will load all variables in program + :param has_model_dir if has_model_dir is True, will load variables from sub directory named __model__ + """ + + if has_model_dir: + dirname = _get_model_dir(dirname) + + load_vars( + executor, + dirname=dirname, + main_program=program, + predicate=_is_checkpoint_var, + filename=None) + + +def save_persist_vars_without_grad(executor, dirname, program): + """ + save_persist_vars_without_grad will save variables to a directory by an executor, + the variable named end with "@GRAD" will not be saved. + + :param executor executor for load the value + :param dirname the checkpoint directory + :param program will load all variables in program + """ + cur_dir = _get_model_dir(dirname) + save_vars( + executor, + dirname=cur_dir, + main_program=program, + vars=None, + predicate=_is_checkpoint_var, + filename=None) + _write_success(cur_dir) + + +def save_trainer_args(dirname, trainer_id, trainer_args): + assert isinstance(trainer_args, dict) + + cur_dir = _get_trainer_dir(dirname, trainer_id) + + for name, value in trainer_args.iteritems(): + args_file = os.path.join(cur_dir, name) + with open(args_file, 'w') as f: + f.write(str(value)) + _write_success(cur_dir) + + +def load_trainer_args(checkpoint_dir, serial, trainer_id, trainer_args): + assert isinstance(trainer_args, list) + + cur_dir = _get_serial_dir(checkpoint_dir, serial) + cur_dir = _get_trainer_dir(cur_dir, trainer_id) + + ret_values = [] + + for arg in trainer_args: + cur_file = os.path.join(cur_dir, arg) + with open(cur_file, 'r') as f: + contents = f.read() + ret_values.append(contents.strip()) + return ret_values def _is_checkpoint_var(var): @@ -559,36 +626,74 @@ def _is_checkpoint_var(var): var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \ var.desc.type() == core.VarDesc.VarType.RAW: return False + # @GRAD are named for gradient variables, checkpoint will not save it. + if "@GRAD" in var.name: + return False + # .trainer_ are named for distribute train variables, checkpoint will not save it. + if ".trainer_" in var.name: + return False - if var.name.endswith("@GRAD"): + # .block is named for distribute train variables, checkpoint will not save it. + if ".block" in var.name: return False return var.persistable -def _interval_secs_exceed(dirname, save_interval_secs): - dir_time = os.path.getmtime(dirname) - if save_interval_secs > (time.time() - dir_time): - return False - return True +def _get_dir_serial(dirname): + _, serial = dirname.split(CHECKPOINT_SEPARATOR) + + try: + serial_num = int(serial) + except ValueError: + serial_num = -1 + return serial_num + + +def _get_serial_dir(dirname, serial): + serial_folder = CHECKPOINT_PREFIX + CHECKPOINT_SEPARATOR + str(serial) + serial_dir = os.path.join(dirname, serial_folder) + + if not os.path.isdir(serial_dir): + os.makedirs(serial_dir) + + return serial_dir + +def _get_model_dir(dirname): + model_dir = os.path.join(dirname, MODEL_DIR) -def _lru_delete(dirname, max_num_checkpoints=3): + if not os.path.isdir(model_dir): + os.makedirs(model_dir) + + return model_dir + + +def _get_trainer_dir(dirname, trainer_id): + trainer_folder = TRAINER_PREFIX + CHECKPOINT_SEPARATOR + str(trainer_id) + trainer_dir = os.path.join(dirname, trainer_folder) + + if not os.path.isdir(trainer_dir): + os.makedirs(trainer_dir) + + return trainer_dir + + +def _scroll_delete(dirname, max_num_checkpoints=3): dirs = os.listdir(dirname) - serials = [] + serial_map = {} for serial in dirs: - try: - serials.append(int(serial)) - except ValueError: - continue + serial_num = _get_dir_serial(serial) + serial_map[serial_num] = serial - if len(serials) <= max_num_checkpoints: + if len(serial_map.keys()) <= max_num_checkpoints: return + serials = serial_map.keys() serials.sort(reverse=True) serials = serials[max_num_checkpoints:] for serial in serials: - cur_dir = os.path.join(dirname, str(serial)) + cur_dir = _get_serial_dir(dirname, serial) shutil.rmtree(cur_dir) @@ -604,33 +709,30 @@ def _write_success(dirname): f.write(now) -def _get_lastest_checkpoint_dir(checkpoint_dir): +def get_latest_checkpoint_serial(checkpoint_dir): """ get the latest file in checkpoint directory, the _SUCCESS file must exist in the directory :param checkpoint_dir """ - if not checkpoint_dir.strip(): + if not checkpoint_dir: return -1 def has_success(checkpoint_dir, cur_dir): """ is _SUCCESS in this dir """ - _, serial = cur_dir.split(CHECKPOINT_SEPARATOR) - - try: - int(serial) - except ValueError: - return -1 - if not os.path.isdir(os.path.join(checkpoint_dir, cur_dir)): + serial = _get_dir_serial(cur_dir) + if serial == -1 or not os.path.isdir( + os.path.join(checkpoint_dir, cur_dir)): return -1 success_path = os.path.join( - _get_serial_dir(serial, checkpoint_dir), SUCCESS_MARK_FILENAME) + _get_serial_dir(checkpoint_dir, serial), MODEL_DIR, + SUCCESS_MARK_FILENAME) if os.path.isfile(success_path): - return int(serial) + return serial if not os.path.isdir(checkpoint_dir): return -1 diff --git a/python/paddle/fluid/layers/control_flow.py b/python/paddle/fluid/layers/control_flow.py index d1ea9f148566d20988a43f4c9d421c4452697ef1..80e8ff484a4c04df1b41bbca284d7c604962934c 100644 --- a/python/paddle/fluid/layers/control_flow.py +++ b/python/paddle/fluid/layers/control_flow.py @@ -13,7 +13,7 @@ # limitations under the License. import contextlib -from layer_function_generator import autodoc +from layer_function_generator import autodoc, templatedoc from tensor import assign, fill_constant from .. import core from ..framework import Program, Variable, Operator @@ -721,26 +721,22 @@ def lod_rank_table(x, level=0): return table +@templatedoc() def max_sequence_len(rank_table): - """Max Sequence Len Operator. Given a LoDRankTable object, this layer - returns the max length of a batch of sequences. In fact, a LoDRankTable - object contains a list of tuples() and - the list is already sorted by sequence length in descending order, so the - operator just returns the sequence length of the first tuple element. + """ + ${comment} + + >>> import paddle.fluid as fluid + >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32', + >>> lod_level=1) + >>> rank_table = layers.lod_rank_table(x=x, level=0) + >>> max_seq_len = layers.max_sequence_len(rank_table) Args: - rank_table (Variable): Input variable which is a LoDRankTable object. + rank_table(${rank_table_type}): ${rank_table_comment}. Returns: - Variable: The max length of sequence. - - Examples: - .. code-block:: python - - x = fluid.layers.data(name='x', shape=[10], - dtype='float32', lod_level=1) - rank_table = layers.lod_rank_table(x=x, level=0) - max_seq_len = layers.max_sequence_len(rank_table) + ${out_comment}. """ helper = LayerHelper("max_seqence_len", **locals()) res = helper.create_tmp_variable(dtype="int64") diff --git a/python/paddle/fluid/layers/io.py b/python/paddle/fluid/layers/io.py index a56f3ea9db6b9fabf9d78f102d394a0817a44a98..9de88e2c3205ace74beff43df7ae8956897d965a 100644 --- a/python/paddle/fluid/layers/io.py +++ b/python/paddle/fluid/layers/io.py @@ -19,11 +19,12 @@ from ..unique_name import generate as unique_name from control_flow import BlockGuard from ..layer_helper import LayerHelper from ..executor import global_scope +from layer_function_generator import generate_layer_fn, templatedoc __all__ = [ 'data', 'BlockGuardServ', 'ListenAndServ', 'Send', 'open_recordio_file', 'open_files', 'read_file', 'shuffle', 'batch', 'double_buffer', - 'random_data_generator', 'Preprocessor' + 'random_data_generator', 'Preprocessor', 'load' ] @@ -662,3 +663,29 @@ class Preprocessor(object): "sink_var_names": self.sink_var_names }) return monkey_patch_reader_methods(self.reader) + + +@templatedoc() +def load(out, file_path, load_as_fp16=None): + """ + ${comment} + + >>> import paddle.fluid as fluid + >>> tmp_tensor = fluid.layers.create_tensor(dtype='float32') + >>> fluid.layers.load(tmp_tensor, "./tmp_tensor.bin") + + Args: + out(${out_type}): ${out_comment}. + + file_path(${file_path_type}): ${file_path_comment}. + + load_as_fp16(${load_as_fp16_type}): ${load_as_fp16_comment}. + + Returns: + None + """ + helper = LayerHelper("load", **locals()) + attrs = {"file_path": file_path} + if load_as_fp16 is not None: + attrs['load_as_fp16'] = load_as_fp16 + helper.append_op(type="load", inputs={}, output={"Out": out}, args=attrs) diff --git a/python/paddle/fluid/layers/layer_function_generator.py b/python/paddle/fluid/layers/layer_function_generator.py index 295d1b7190ec39bcc6efdf72aebede14a99807aa..cb60a3aec9a5a69f1eed281eb017384a621c66a8 100644 --- a/python/paddle/fluid/layers/layer_function_generator.py +++ b/python/paddle/fluid/layers/layer_function_generator.py @@ -15,16 +15,13 @@ import re import cStringIO import functools import warnings +import string from ..proto import framework_pb2 from ..framework import OpProtoHolder, Variable from ..layer_helper import LayerHelper -__all__ = [ - 'deprecated', - 'generate_layer_fn', - 'autodoc', -] +__all__ = ['deprecated', 'generate_layer_fn', 'autodoc', 'templatedoc'] def _convert_(name): @@ -43,6 +40,10 @@ def _convert_(name): return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower() +def _type_to_str_(tp): + return framework_pb2.AttrType.Name(tp) + + def _generate_doc_string_(op_proto): """ Generate docstring by OpProto @@ -54,9 +55,6 @@ def _generate_doc_string_(op_proto): str: the document string """ - def _type_to_str_(tp): - return framework_pb2.AttrType.Name(tp) - if not isinstance(op_proto, framework_pb2.OpProto): raise TypeError("OpProto should be `framework_pb2.OpProto`") @@ -75,7 +73,11 @@ def _generate_doc_string_(op_proto): buf.write(str(each_input.dispensable)) buf.write('\n') + skip_attrs = OpProtoHolder.generated_op_attr_names() + for each_attr in op_proto.attrs: + if each_attr.name in skip_attrs: + continue buf.write(' ') buf.write(each_attr.name) buf.write(' (') @@ -220,3 +222,67 @@ def autodoc(comment=""): return func return __impl__ + + +_inline_math_single_dollar = re.compile(r"\$([^\$]+)\$") + + +def templatedoc(op_type=None): + """ + Decorator of layer function. It will use the docstring from the layer + function as the template. The template arguments are: + + * ${comment}: The operator comment written in CPP. + * ${{name}_comment}: The comment of ${name} written with AddAttr, AddOutput, + and AddInput. The ${name} is Python snake style. i.e., xxx_xxx. + * ${{name}_type}: The type of ${name}. + + Returns: + Decorated function. + """ + + def trim_ending_dot(msg): + return msg.rstrip('.') + + def escape_inline_math(msg): + return _inline_math_single_dollar.sub(repl=r':math:`\1`', string=msg) + + def __impl__(func): + if op_type is None: + op_type_name = func.__name__ + else: + op_type_name = op_type + op_proto = OpProtoHolder.instance().get_op_proto(op_type_name) + tmpl = string.Template(func.__doc__) + + comment_lines = op_proto.comment.split("\n") + comment = "" + for line in comment_lines: + line = line.strip() + if len(line) != 0: + comment += escape_inline_math(line) + comment += " " + elif len(comment) != 0: + comment += "\n \n " + + args = {"comment": trim_ending_dot(comment)} + for each_input in op_proto.inputs: + input_name = _convert_(each_input.name) + args["{0}_comment".format(input_name)] = trim_ending_dot( + each_input.comment) + args["{0}_type".format(input_name)] = "Variable" + for each_attr in op_proto.attrs: + input_name = _convert_(each_attr.name) + args["{0}_comment".format(input_name)] = trim_ending_dot( + each_attr.comment) + args["{0}_type".format(input_name)] = _type_to_str_(each_attr.type) + + for each_opt in op_proto.outputs: + output_name = _convert_(each_opt.name) + args["{0}_comment".format(output_name)] = trim_ending_dot( + each_opt.comment) + args["{0}_type".format(output_name)] = "Variable" + func.__doc__ = tmpl.substitute(args) + return func + + return __impl__ diff --git a/python/paddle/fluid/layers/learning_rate_scheduler.py b/python/paddle/fluid/layers/learning_rate_scheduler.py index d13c54daa5a985e2e1bf9357630fe29d24a17bb4..716cc7824eff0c56cc55a055310fa8b1913ac5e6 100644 --- a/python/paddle/fluid/layers/learning_rate_scheduler.py +++ b/python/paddle/fluid/layers/learning_rate_scheduler.py @@ -11,6 +11,14 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. +""" +When training a model, it's often useful to decay the +learning rate during training process, this is called +learning_rate_decay. There are many strategies to do +this, this module will provide some classical method. +User can also implement their own learning_rate_decay +strategy according to this module. +""" import control_flow import nn @@ -22,14 +30,6 @@ __all__ = [ 'exponential_decay', 'natural_exp_decay', 'inverse_time_decay', 'polynomial_decay', 'piecewise_decay', 'noam_decay' ] -""" -When training a model, it's often useful to decay the -learning rate during training process, this is called -learning_rate_decay. There are many strategies to do -this, this module will provide some classical method. -User can also implement their own learning_rate_decay -strategy according to this module. -""" def _decay_step_counter(begin=0): @@ -41,18 +41,20 @@ def _decay_step_counter(begin=0): def noam_decay(d_model, warmup_steps): - """Apply decay to learning rate. - ```python - lr_value = np.power(d_model, -0.5) * np.min([ - np.power(current_steps, -0.5), - np.power(warmup_steps, -1.5) * current_steps - ]) - ``` + """ + Noam decay method. The numpy implementation of noam decay as follows. + + >>> import numpy as np + >>> lr_value = np.power(d_model, -0.5) * np.min([ + >>> np.power(current_steps, -0.5), + >>> np.power(warmup_steps, -1.5) * current_steps]) + + Please reference `attention is all you need + `_. Args: d_model(Variable): The dimensionality of input and output of model. - Reference: attention is all you need - https://arxiv.org/pdf/1706.03762.pdf + warmup_steps(Variable): A super parameter. Returns: diff --git a/python/paddle/fluid/layers/metric.py b/python/paddle/fluid/layers/metric.py index cab2eb55510542bdd4dd7eca7667601697759181..a1c64ce2771526cbd0baa944f97d01e7878b3ac1 100644 --- a/python/paddle/fluid/layers/metric.py +++ b/python/paddle/fluid/layers/metric.py @@ -64,10 +64,6 @@ def auc(input, label, curve='ROC', num_thresholds=200): topk_indices = helper.create_tmp_variable(dtype="int64") topk_out, topk_indices = nn.topk(input, k=k) auc_out = helper.create_tmp_variable(dtype="float32") - if correct is None: - correct = helper.create_tmp_variable(dtype="int64") - if total is None: - total = helper.create_tmp_variable(dtype="int64") helper.append_op( type="accuracy", inputs={ diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 221f3ddae589d9992ba7fb92975a698ca4306249..9e2c06d26f59981610fc4a787dcd1bd59b2d8f84 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -19,9 +19,10 @@ from ..layer_helper import LayerHelper from ..initializer import Normal, Constant from ..framework import Variable from ..param_attr import ParamAttr -from layer_function_generator import autodoc +from layer_function_generator import autodoc, templatedoc from tensor import concat import utils +import random __all__ = [ 'fc', @@ -801,7 +802,22 @@ def gru_unit(input, return updated_hidden, reset_hidden_pre, gate +@templatedoc() def linear_chain_crf(input, label, param_attr=None): + """ + Linear Chain CRF. + + ${comment} + + Args: + input(${emission_type}): ${emission_comment} + label(${label_type}): ${label_comment} + param_attr(ParamAttr): The attribute of the learnable parameter. + + Returns: + ${log_likelihood_comment} + + """ helper = LayerHelper('linear_chain_crf', **locals()) size = input.shape[1] transition = helper.create_parameter( @@ -827,7 +843,19 @@ def linear_chain_crf(input, label, param_attr=None): return log_likelihood +@templatedoc() def crf_decoding(input, param_attr, label=None): + """ + ${comment} + + Args: + input(${emission_type}): ${emission_comment} + param_attr(ParamAttr): The parameter attribute for training. + label(${label_type}): ${label_comment} + + Returns: + ${viterbi_path_comment} + """ helper = LayerHelper('crf_decoding', **locals()) transition = helper.get_parameter(param_attr.name) viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype()) @@ -2439,19 +2467,21 @@ def l2_normalize(x, axis, epsilon=1e-12, name=None): The l2 normalize layer normalizes `x` along dimension `axis` using an L2 norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes - output = x / sqrt(max(sum(x**2), epsilon)) + .. math:: + y = \frac{x}{ \sqrt{\sum {x^2} + epsion }} For `x` with more dimensions, this layer independently normalizes each 1-D slice along dimension `axis`. Args: x(Variable|list): The input tensor to l2_normalize layer. - axis(int): Dimension along which to normalize the input. - epsilon(float): A lower bound value for `x`'s l2 norm. sqrt(epsilon) will - be used as the divisor if the l2 norm of `x` is less than - sqrt(epsilon). + axis(int): The axis on which to apply normalization. If `axis < 0`, + the dimension to normalization is rank(X) + axis. -1 is the + last dimension. + epsilon(float): The epsilon value is used to avoid division by zero, + the defalut value is 1e-10. name(str|None): A name for this layer(optional). If set None, the layer - will be named automatically. + will be named automatically. Returns: @@ -2470,46 +2500,17 @@ def l2_normalize(x, axis, epsilon=1e-12, name=None): axis = 0 helper = LayerHelper("l2_normalize", **locals()) - square = helper.create_tmp_variable(dtype=x.dtype) - helper.append_op(type="square", inputs={"X": x}, outputs={"Out": square}) - - reduced_sum = helper.create_tmp_variable(dtype=x.dtype) + out = helper.create_tmp_variable(dtype=x.dtype) + norm = helper.create_tmp_variable(dtype=x.dtype) helper.append_op( - type="reduce_sum", - inputs={"X": square}, - outputs={"Out": reduced_sum}, + type="norm", + inputs={"X": x}, + outputs={"Out": out, + "Norm": norm}, attrs={ - "dim": [1] if axis is None else [axis], - "keep_dim": True, - "reduce_all": False + "axis": 1 if axis is None else axis, + "epsilon": epsilon, }) - - # TODO(caoying) A lower bound value epsilon for the norm is needed to - # imporve the numeric stability of reciprocal. This requires a maximum_op. - rsquare = helper.create_tmp_variable(dtype=x.dtype) - helper.append_op( - type="reciprocal", inputs={"X": reduced_sum}, outputs={"Out": rsquare}) - - # TODO(caoying) the current elementwise_mul operator does not support a - # general broadcast rule which broadcasts input(Y) to have the same - # dimension with Input(X) starting from a specified dimension. So this - # exanpsion is requred. Once a general broadcast rule is spported, this - # expanding canbe removed. - rsquare_expanded = helper.create_tmp_variable(dtype=x.dtype) - expand_times = [1] * len(x.shape) - expand_times[axis] = int(x.shape[axis]) - helper.append_op( - type="expand", - inputs={"X": rsquare}, - outputs={"Out": rsquare_expanded}, - attrs={"expand_times": expand_times}) - - out = helper.create_tmp_variable(dtype=x.dtype) - helper.append_op( - type="elementwise_mul", - inputs={"X": x, - "Y": rsquare_expanded}, - outputs={"Out": out}) return out @@ -4009,18 +4010,25 @@ def image_resize(input, return out +@templatedoc(op_type="bilinear_interp") def resize_bilinear(input, out_shape=None, scale=None, name=None): """ - This is an alias of layer 'image_resize' with bilinear interpolation. + ${comment} + + Args: + input(${x_type}): ${x_comment}. + + out_shape(${out_size_type}): ${out_size_comment}. + + scale(float|None): The multiplier for the input height or width. At + least one of out_shape or scale must be set. And out_shape has + a higher priority than scale. Default: None. + + name(str|None): The output variable name. - The mathematical meaning of resize bilinear layer is - Bilinear interpolation. - Bilinear interpolation is an extension of linear interpolation for - interpolating functions of two variables (e.g. H-direction and - W-direction in this layer) on a rectilinear 2D grid. + Returns: - For details, please refer to Wikipedia: - https://en.wikipedia.org/wiki/Bilinear_interpolation + ${out_comment}. """ return image_resize(input, out_shape, scale, name, 'BILINEAR') @@ -4107,10 +4115,31 @@ def gather(input, index): return out -def random_crop(input, shape, seed=1): +@templatedoc() +def random_crop(x, shape, seed=None): + """ + ${comment} + + Examples: + >>> img = fluid.layers.data("img", [3, 256, 256]) + >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224]) + + Args: + x(${x_type}): ${x_comment} + shape(${shape_type}): ${shape_comment} + seed(int|${seed_type}|None): ${seed_comment} By default, the seed will + get from `random.randint(-65536, 65535)`. + + Returns: + ${out_comment} + + """ helper = LayerHelper("random_crop", **locals()) dtype = helper.input_dtype() out = helper.create_tmp_variable(dtype) + if seed is None: + seed = random.randint(-65536, 65535) + if isinstance(seed, int): seed_value = seed seed = helper.create_tmp_variable(dtype="int64") diff --git a/python/paddle/fluid/layers/ops.py b/python/paddle/fluid/layers/ops.py index 69cfde852dd087bb9192da1f7582f925582dbce4..98f169e8f0881fbba6aecb45b43a52c8fd51132d 100644 --- a/python/paddle/fluid/layers/ops.py +++ b/python/paddle/fluid/layers/ops.py @@ -71,8 +71,10 @@ __all__ = [ 'cumsum', 'scatter', 'sum', + 'slice', 'polygon_box_transform', 'shape', + 'maxout', ] + __activations__ for _OP in set(__all__): diff --git a/python/paddle/fluid/layers/tensor.py b/python/paddle/fluid/layers/tensor.py index 75d3bf879703a1db1108eae45d879164e0024156..62b01d595a812ee8fc094e40b6dfb5c3f56cd012 100644 --- a/python/paddle/fluid/layers/tensor.py +++ b/python/paddle/fluid/layers/tensor.py @@ -18,6 +18,7 @@ from ..framework import convert_np_dtype_to_dtype_ from ..framework import Variable from ..initializer import Constant, force_init_on_cpu from ..core import VarDesc +from layer_function_generator import templatedoc import numpy __all__ = [ @@ -30,6 +31,8 @@ __all__ = [ 'assign', 'fill_constant_batch_size_like', 'fill_constant', + 'argmin', + 'argmax', 'ones', 'zeros', ] @@ -266,6 +269,7 @@ def fill_constant(shape, dtype, value, force_cpu=False, out=None): return out +@templatedoc() def fill_constant_batch_size_like(input, shape, dtype, @@ -273,30 +277,28 @@ def fill_constant_batch_size_like(input, input_dim_idx=0, output_dim_idx=0): """ - **fill_constant_batch_size_like** - - This function creates a tensor of specified *shape*, *dtype* and batch size, - and initializes this with a constant supplied in *value*. The batch size is - obtained from the `input` tensor. + ${comment} It also sets *stop_gradient* to True. + >>> data = fluid.layers.fill_constant_batch_size_like( + >>> input=like, shape=[1], value=0, dtype='int64') + Args: - input(Variable): Tensor whose dimensions will be used to get batch size - shape(tuple|list|None): Shape of output tensor - dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor - value(float): Constant value to initialize the output tensor - input_dim_idx(int): Index of input's batch size dimension - output_dim_idx(int): Index of output's batch size dimension + input(${input_type}): ${input_comment}. - Returns: - Variable: The tensor variable storing the output + shape(${shape_type}): ${shape_comment}. - Examples: - .. code-block:: python + dtype(${dtype_type}): ${dtype_comment}. + + value(${value_type}): ${value_comment}. + + input_dim_idx(${input_dim_idx_type}): ${input_dim_idx_comment}. + + output_dim_idx(${output_dim_idx_type}): ${output_dim_idx_comment}. - data = fluid.layers.fill_constant_batch_size_like( - input=like, shape=[1], value=0, dtype='int64') + Returns: + ${out_comment}. """ helper = LayerHelper("fill_constant_batch_size_like", **locals()) out = helper.create_tmp_variable(dtype=dtype) @@ -315,6 +317,68 @@ def fill_constant_batch_size_like(input, return out +def argmin(x, axis=0): + """ + **argmin** + + This function computes the indices of the min elements + of the input tensor's element along the provided axis. + + Args: + x(Variable): The input to compute the indices of + the min elements. + axis(int): Axis to compute indices along. + + Returns: + Variable: The tensor variable storing the output + + Examples: + .. code-block:: python + + out = fluid.layers.argmin(x=in, axis=0) + out = fluid.layers.argmin(x=in, axis=-1) + """ + helper = LayerHelper("arg_min", **locals()) + out = helper.create_tmp_variable(VarDesc.VarType.INT64) + helper.append_op( + type='arg_min', + inputs={'X': x}, + outputs={'Out': [out]}, + attrs={'axis': axis}) + return out + + +def argmax(x, axis=0): + """ + **argmax** + + This function computes the indices of the max elements + of the input tensor's element along the provided axis. + + Args: + x(Variable): The input to compute the indices of + the max elements. + axis(int): Axis to compute indices along. + + Returns: + Variable: The tensor variable storing the output + + Examples: + .. code-block:: python + + out = fluid.layers.argmax(x=in, axis=0) + out = fluid.layers.argmax(x=in, axis=-1) + """ + helper = LayerHelper("arg_max", **locals()) + out = helper.create_tmp_variable(VarDesc.VarType.INT64) + helper.append_op( + type='arg_max', + inputs={'X': x}, + outputs={'Out': [out]}, + attrs={'axis': axis}) + return out + + def ones(shape, dtype, force_cpu=False): """ **ones** @@ -437,22 +501,6 @@ def save_combine(x, file_path, overwrite=True): "overwrite": overwrite}) -def load(out, file_path): - """ - Loads a variable from a given file. - - Args: - out(variable): The variable to be read from the disk file. - file_path(str): The path of the disk file. - """ - helper = LayerHelper("load", **locals()) - helper.append_op( - type="load", - inputs={}, - output={"Out": out}, - args={"file_path": file_path}) - - def load_combine(out, file_path): """ Loads a list of vairables from a single file. diff --git a/python/paddle/fluid/parallel_executor.py b/python/paddle/fluid/parallel_executor.py index 3117dfe00c7a3df1035c439dc31b81e67781d0cc..0fdc9a035292b3390cece6c5821a60b1b281e54d 100644 --- a/python/paddle/fluid/parallel_executor.py +++ b/python/paddle/fluid/parallel_executor.py @@ -18,6 +18,7 @@ import framework import executor import warnings import sys +import os __all__ = ['ParallelExecutor', 'ExecutionStrategy', 'BuildStrategy'] @@ -101,7 +102,9 @@ class ParallelExecutor(object): p.set_place(self._act_places[-1]) self._places.append(p) else: - for i in xrange(multiprocessing.cpu_count()): + cpu_num = int( + os.environ.get('CPU_NUM', multiprocessing.cpu_count())) + for i in xrange(cpu_num): p = core.Place() self._act_places.append(core.CPUPlace()) p.set_place(self._act_places[-1]) @@ -110,19 +113,17 @@ class ParallelExecutor(object): if exec_strategy is None: exec_strategy = ExecutionStrategy() - if use_cuda: - exec_strategy.use_event = True - else: - exec_strategy.use_event = False + exec_strategy.use_cuda = use_cuda if exec_strategy.num_threads == 0: if use_cuda: # Experiments on se-resnext shows that too many threads hurt # performance. Worth tunning for other models in the future. - exec_strategy.num_threads = len(self._places) * 2 + exec_strategy.num_threads = len(self._places) * 4 else: - exec_strategy.num_threads = min( - len(self._places) * 2, multiprocessing.cpu_count()) + cpu_num = int( + os.environ.get('CPU_NUM', multiprocessing.cpu_count())) + exec_strategy.num_threads = cpu_num if build_strategy is None: build_strategy = BuildStrategy() diff --git a/python/paddle/fluid/tests/book/high-level-api/fit_a_line/test_fit_a_line.py b/python/paddle/fluid/tests/book/high-level-api/fit_a_line/test_fit_a_line.py index b3117cf2e5e0513089e5e1146d49702fcc8b7ba6..ad28c9eff560507e5b326451159be3949353f58f 100644 --- a/python/paddle/fluid/tests/book/high-level-api/fit_a_line/test_fit_a_line.py +++ b/python/paddle/fluid/tests/book/high-level-api/fit_a_line/test_fit_a_line.py @@ -38,7 +38,7 @@ def inference_program(): return y_predict -def linear(): +def train_program(): y = fluid.layers.data(name='y', shape=[1], dtype='float32') y_predict = inference_program() @@ -104,7 +104,7 @@ def main(use_cuda): # Directory for saving the trained model params_dirname = "fit_a_line.inference.model" - train(use_cuda, linear, params_dirname) + train(use_cuda, train_program, params_dirname) infer(use_cuda, inference_program, params_dirname) diff --git a/python/paddle/fluid/tests/unittests/CMakeLists.txt b/python/paddle/fluid/tests/unittests/CMakeLists.txt index 673bd728718ca233b426fe2aaae307413d875174..ab683bc101728ba008e01f26ff4d3828b3b99787 100644 --- a/python/paddle/fluid/tests/unittests/CMakeLists.txt +++ b/python/paddle/fluid/tests/unittests/CMakeLists.txt @@ -41,8 +41,8 @@ function(py_test_modules TARGET_NAME) endfunction() list(REMOVE_ITEM TEST_OPS test_warpctc_op) list(REMOVE_ITEM TEST_OPS test_dist_train) -list(REMOVE_ITEM TEST_OPS test_parallel_executor_crf) -list(REMOVE_ITEM TEST_OPS test_parallel_executor_fetch_feed) +#list(REMOVE_ITEM TEST_OPS test_parallel_executor_crf) +#list(REMOVE_ITEM TEST_OPS test_parallel_executor_fetch_feed) # TODO(wuyi): this test hungs on CI, will add it back later list(REMOVE_ITEM TEST_OPS test_listen_and_serv_op) foreach(TEST_OP ${TEST_OPS}) diff --git a/python/paddle/fluid/tests/unittests/parallel_executor_test_base.py b/python/paddle/fluid/tests/unittests/parallel_executor_test_base.py index c9c3c648717814c28c39a401487925824e885946..829c5a1a5fd099543e9e98b9587d4f316a91b587 100644 --- a/python/paddle/fluid/tests/unittests/parallel_executor_test_base.py +++ b/python/paddle/fluid/tests/unittests/parallel_executor_test_base.py @@ -12,6 +12,8 @@ # See the License for the specific language governing permissions and # limitations under the License. +import multiprocessing +import os import unittest import paddle.fluid as fluid import time @@ -23,6 +25,7 @@ __all__ = ['TestParallelExecutorBase'] class TestParallelExecutorBase(unittest.TestCase): def check_network_convergence(self, method, + use_cuda=True, memory_opt=True, iter=50, batch_size=None, @@ -53,7 +56,7 @@ class TestParallelExecutorBase(unittest.TestCase): adam.minimize(loss) if memory_opt: fluid.memory_optimize(main) - place = fluid.CUDAPlace(0) + place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() startup_exe = fluid.Executor(place) startup_exe.run(startup) exec_strategy = fluid.ExecutionStrategy() @@ -64,7 +67,7 @@ class TestParallelExecutorBase(unittest.TestCase): if use_parallel_executor: exe = fluid.ParallelExecutor( - True, + use_cuda, loss_name=loss.name, exec_strategy=exec_strategy, build_strategy=build_strategy) @@ -72,7 +75,9 @@ class TestParallelExecutorBase(unittest.TestCase): exe = fluid.Executor(place=place) if batch_size is not None: - batch_size *= fluid.core.get_cuda_device_count() + batch_size *= fluid.core.get_cuda_device_count( + ) if use_cuda else int( + os.environ.get('CPU_NUM', multiprocessing.cpu_count())) begin = time.time() first_loss, = run_executor( exe=exe, feed=feed_dict, fetch_list=[loss.name]) diff --git a/python/paddle/fluid/tests/unittests/test_arg_min_max_op.py b/python/paddle/fluid/tests/unittests/test_arg_min_max_op.py new file mode 100644 index 0000000000000000000000000000000000000000..e04412f809cdd75d07d28a60f0c2f19041a684f6 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/test_arg_min_max_op.py @@ -0,0 +1,82 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import unittest +import numpy as np +from op_test import OpTest + + +class BaseTestCase(OpTest): + def initTestCase(self): + self.op_type = 'arg_min' + self.dims = (3, 4, 5) + self.dtype = 'float32' + self.axis = 0 + + def setUp(self): + self.initTestCase() + self.x = (1000 * np.random.random(self.dims)).astype(self.dtype) + self.inputs = {'X': self.x} + self.attrs = {'axis': self.axis} + if self.op_type == "arg_min": + self.outputs = {'Out': np.argmin(self.x, axis=self.axis)} + else: + self.outputs = {'Out': np.argmax(self.x, axis=self.axis)} + + def test_check_output(self): + self.check_output() + + +class TestCase0(BaseTestCase): + def initTestCase(self): + self.op_type = 'arg_max' + self.dims = (3, 4, 5) + self.dtype = 'float32' + self.axis = 0 + + +class TestCase1(BaseTestCase): + def initTestCase(self): + self.op_type = 'arg_min' + self.dims = (3, 4) + self.dtype = 'float64' + self.axis = 1 + + +class TestCase2(BaseTestCase): + def initTestCase(self): + self.op_type = 'arg_max' + self.dims = (3, 4) + self.dtype = 'int64' + self.axis = 0 + + +class TestCase3(BaseTestCase): + def initTestCase(self): + self.op_type = 'arg_max' + self.dims = (3, ) + self.dtype = 'int64' + self.axis = 0 + + +class TestCase4(BaseTestCase): + def initTestCase(self): + self.op_type = 'arg_min' + self.dims = (1, ) + self.dtype = 'int32' + self.axis = 0 + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_checkpoint.py b/python/paddle/fluid/tests/unittests/test_checkpoint.py new file mode 100644 index 0000000000000000000000000000000000000000..e22400a045ced16c46b0bf005155f621f249d263 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/test_checkpoint.py @@ -0,0 +1,75 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import paddle.fluid as fluid +import unittest +import os +import tempfile + + +class TestCheckpoint(unittest.TestCase): + def setUp(self): + self.dirname = tempfile.mktemp() + self.max_num_checkpoints = 3 + self.epoch_interval = 1 + self.step_interval = 1 + self.trainer_id = 0 + self.chief = self.trainer_id == 0 + self.place = fluid.CPUPlace() + self.epoch_id = 100 + self.step_id = 20 + + def test_checkpoint(self): + self.save_checkpoint() + serial = fluid.io.get_latest_checkpoint_serial(self.dirname) + self.assertTrue(serial >= 0) + trainer_args = ["epoch_id", "step_id"] + epoch_id, step_id = fluid.io.load_trainer_args( + self.dirname, serial, self.trainer_id, trainer_args) + self.assertEqual(self.step_id, int(step_id)) + self.assertEqual(self.epoch_id, int(epoch_id)) + + program = fluid.Program() + with fluid.program_guard(program): + exe = fluid.Executor(self.place) + fluid.io.load_checkpoint(exe, self.dirname, serial, program) + + fluid.io.clean_checkpoint(self.dirname, delete_dir=True) + self.assertFalse(os.path.isdir(self.dirname)) + + def save_checkpoint(self): + config = fluid.CheckpointConfig(self.dirname, self.max_num_checkpoints, + self.epoch_interval, self.step_interval) + + trainer_args = {} + trainer_args["epoch_id"] = self.epoch_id + trainer_args["step_id"] = self.step_id + + program = fluid.Program() + with fluid.program_guard(program): + program.global_block().create_var( + name="scale_0", + psersistable=True, + dtype="float32", + shape=[32, 32]) + + exe = fluid.Executor(self.place) + for i in xrange(10): + fluid.io.save_checkpoint(exe, config.checkpoint_dir, + self.trainer_id, trainer_args, program, + config.max_num_checkpoints) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_crop_op.py b/python/paddle/fluid/tests/unittests/test_crop_op.py index 20cc3a643f1adfc04faad15e1b7baad3e22d9d29..4016089c01644f0389855ab114360f90c50a1bbe 100644 --- a/python/paddle/fluid/tests/unittests/test_crop_op.py +++ b/python/paddle/fluid/tests/unittests/test_crop_op.py @@ -42,9 +42,9 @@ class TestCropOp(OpTest): def setUp(self): self.op_type = "crop" self.crop_by_input = False + self.offset_by_input = False self.attrs = {} self.initTestCase() - self.attrs['offsets'] = self.offsets if self.crop_by_input: self.inputs = { 'X': np.random.random(self.x_shape).astype("float32"), @@ -55,6 +55,10 @@ class TestCropOp(OpTest): self.inputs = { 'X': np.random.random(self.x_shape).astype("float32"), } + if self.offset_by_input: + self.inputs['Offsets'] = np.array(self.offsets).astype('int32') + else: + self.attrs['offsets'] = self.offsets self.outputs = { 'Out': crop(self.inputs['X'], self.offsets, self.crop_shape) } @@ -101,5 +105,22 @@ class TestCase4(TestCropOp): self.crop_by_input = True +class TestCase5(TestCropOp): + def initTestCase(self): + self.x_shape = (3, 4, 5) + self.crop_shape = [2, 2, 3] + self.offsets = [1, 0, 2] + self.offset_by_input = True + + +class TestCase6(TestCropOp): + def initTestCase(self): + self.x_shape = (10, 9, 14) + self.crop_shape = [3, 3, 5] + self.offsets = [3, 5, 4] + self.crop_by_input = True + self.offset_by_input = True + + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_dist_transpiler.py b/python/paddle/fluid/tests/unittests/test_dist_transpiler.py index 32647f9aa81431a3ecc798df6f1360a14fd978af..b4379ad447e01683325dfcbb6a5b322f0b8eac3d 100644 --- a/python/paddle/fluid/tests/unittests/test_dist_transpiler.py +++ b/python/paddle/fluid/tests/unittests/test_dist_transpiler.py @@ -12,6 +12,7 @@ # See the License for the specific language governing permissions and # limitations under the License. +import unittest import paddle.fluid as fluid from paddle.fluid.transpiler.distribute_transpiler import delete_ops @@ -54,10 +55,10 @@ class TestDistTranspiler(TranspilerTest): delete_ops(trainer.global_block(), optimize_ops) ops = [op.type for op in trainer.global_block().ops] + [ - "split_byref", "send_vars", "send_barrier", "recv", "recv", + "split_byref", "send", "send_barrier", "recv", "recv", "fetch_barrier", "concat" ] - ops.insert(ops.index("elementwise_add_grad") + 1, "send_vars") + ops.insert(ops.index("elementwise_add_grad") + 1, "send") return ops diff --git a/python/paddle/fluid/tests/unittests/test_dynrnn_gradient_check.py b/python/paddle/fluid/tests/unittests/test_dynrnn_gradient_check.py index 22329390754d8d010dced0d1aca35617140cd097..95af51f1b2f8cd9492baa9cb14fe31ffa586f2fc 100644 --- a/python/paddle/fluid/tests/unittests/test_dynrnn_gradient_check.py +++ b/python/paddle/fluid/tests/unittests/test_dynrnn_gradient_check.py @@ -30,9 +30,6 @@ class Memory(object): assert val.dtype == self.ex.dtype self.cur = val - def ex(self): - return self.ex - def next(self): self.ex = self.cur self.cur = None diff --git a/python/paddle/fluid/tests/unittests/test_layers.py b/python/paddle/fluid/tests/unittests/test_layers.py index 621a450fa6a6a8f47e3f1c1de609614b2359c33b..f8cf6f4e2d25c0c03a3a73dca8e6bc1990b3b78b 100644 --- a/python/paddle/fluid/tests/unittests/test_layers.py +++ b/python/paddle/fluid/tests/unittests/test_layers.py @@ -387,6 +387,20 @@ class TestBook(unittest.TestCase): self.assertIsNotNone(output) print(str(program)) + def test_l2_normalize(self): + program = Program() + with program_guard(program): + x = layers.data(name='x', shape=[8, 7, 10], dtype="float32") + output = layers.l2_normalize(x, axis=1) + + def test_maxout(self): + program = Program() + with program_guard(program): + data = layers.data(name='x', shape=[8, 6, 6], dtype="float32") + output = layers.maxout(x=data, groups=2) + self.assertIsNotNone(output) + print(str(program)) + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_listen_and_serv_op.py b/python/paddle/fluid/tests/unittests/test_listen_and_serv_op.py index 1226027ddc9c0b9dce9cedc5d1d20c0708647b6f..d1d709551c77908db88be6fda7ac74d4e922138e 100644 --- a/python/paddle/fluid/tests/unittests/test_listen_and_serv_op.py +++ b/python/paddle/fluid/tests/unittests/test_listen_and_serv_op.py @@ -70,17 +70,18 @@ class TestListenAndServOp(OpTest): return p.pid def _wait_ps_ready(self, pid): - retry_times = self.ps_timeout + start_left_time = self.ps_timeout + sleep_time = 0.5 while True: - assert retry_times >= 0, "wait ps ready failed" - time.sleep(0.5) + assert start_left_time >= 0, "wait ps ready failed" + time.sleep(sleep_time) try: # the listen_and_serv_op would touch a file which contains the listen port # on the /tmp directory until it was ready to process all the RPC call. os.stat("/tmp/paddle.%d.port" % pid) return except os.error: - retry_times -= 1 + start_left_time -= sleep_time def test_rpc_interfaces(self): # TODO(Yancey1989): need to make sure the rpc interface correctly. diff --git a/python/paddle/fluid/tests/unittests/test_norm_op.py b/python/paddle/fluid/tests/unittests/test_norm_op.py index 6feda175fb537db894ac7f19e22297f6062a4d61..108a665f37f5cd652ec83f784a56ca52e6b49fe8 100644 --- a/python/paddle/fluid/tests/unittests/test_norm_op.py +++ b/python/paddle/fluid/tests/unittests/test_norm_op.py @@ -17,44 +17,23 @@ import numpy as np from op_test import OpTest -def norm(input, scale, epsilon): - s0, s1, s2, s3 = input.shape - x_square = input * input - for i in xrange(s0): - input_batch = input[i:i + 1, :, :, :] - input_batch = input_batch.reshape(s1, s2 * s3) - x_square_batch = x_square[i:i + 1, :, :, :] - x_square_batch = x_square_batch.reshape(s1, s2 * s3) - square_colsum = x_square_batch.sum(axis=0) + epsilon - tmp = pow(square_colsum, 0.5) - tmp = np.reciprocal(tmp) - tmp_tile = np.tile(tmp, s1) - tmp_tile = tmp_tile.reshape(s1, s2 * s3) - scale_tile = np.tile(scale, (1, s2 * s3)) - scale_tile = scale_tile.reshape(s1, s2 * s3) - out_batch = input_batch * tmp_tile * scale_tile - out_batch = out_batch.reshape(1, s1, s2, s3) - if i == 0: - out = out_batch - else: - out = np.concatenate((out, out_batch), 0) - out.reshape(s0, s1, s2, s3) - return out +def l2_norm(x, axis, epsilon): + x2 = x**2 + s = np.sum(x2, axis=axis, keepdims=True) + r = np.sqrt(s + epsilon) + y = x / np.broadcast_to(r, x.shape) + return y, r class TestNormOp(OpTest): def setUp(self): self.op_type = "norm" self.init_test_case() - input = np.random.random(self.shape).astype("float32") - scale = np.array([10, 10, 10]) - self.inputs = { - 'X': input.astype('float32'), - 'Scale': scale.astype('float32') - } - self.attrs = {'epsilon': self.epsilon} - output = norm(input, scale, self.epsilon) - self.outputs = {'Out': output.astype('float32')} + x = np.random.random(self.shape).astype("float64") + y, norm = l2_norm(x, self.axis, self.epsilon) + self.inputs = {'X': x} + self.attrs = {'epsilon': self.epsilon, 'axis': self.axis} + self.outputs = {'Out': y, 'Norm': norm} def test_check_output(self): self.check_output() @@ -63,8 +42,23 @@ class TestNormOp(OpTest): self.check_grad(['X'], 'Out') def init_test_case(self): - self.shape = [2, 3, 2, 2] - self.epsilon = 1e-6 + self.shape = [2, 3, 4, 4] + self.axis = 1 + self.epsilon = 1e-8 + + +class TestNormOp2(TestNormOp): + def init_test_case(self): + self.shape = [5, 3, 9, 7] + self.axis = 0 + self.epsilon = 1e-8 + + +class TestNormOp3(TestNormOp): + def init_test_case(self): + self.shape = [5, 3, 2, 7] + self.axis = -1 + self.epsilon = 1e-8 if __name__ == '__main__': diff --git a/python/paddle/fluid/tests/unittests/test_normalization_wrapper.py b/python/paddle/fluid/tests/unittests/test_normalization_wrapper.py index ef34893943d8f6bf91b1eb14378e463c178de84d..198c68866d399023c51c2a43b588aa8ec49c3c9a 100644 --- a/python/paddle/fluid/tests/unittests/test_normalization_wrapper.py +++ b/python/paddle/fluid/tests/unittests/test_normalization_wrapper.py @@ -70,8 +70,9 @@ class TestNormalization(unittest.TestCase): def l2_normalize(self, data, axis, epsilon): """ Compute the groundtruth. """ - output = data * np.reciprocal( - np.sum(np.square(data), axis=axis, keepdims=True)) + output = data / np.broadcast_to( + np.sqrt(np.sum(np.square(data), axis=axis, keepdims=True)), + data.shape) return output def test_l2_normalize(self): diff --git a/python/paddle/fluid/tests/unittests/test_parallel_executor_crf.py b/python/paddle/fluid/tests/unittests/test_parallel_executor_crf.py index 66e138b03f3b170aca4fb2207438eb9af1783c33..163975555ec2cea5c169cc1da3c4324d91ba3616 100644 --- a/python/paddle/fluid/tests/unittests/test_parallel_executor_crf.py +++ b/python/paddle/fluid/tests/unittests/test_parallel_executor_crf.py @@ -17,6 +17,7 @@ import paddle.fluid as fluid import unittest import paddle import numpy as np +import os word_dict, verb_dict, label_dict = conll05.get_dict() word_dict_len = len(word_dict) @@ -101,7 +102,11 @@ def db_lstm(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark, class TestCRFModel(unittest.TestCase): - def check_network_convergence(self, is_sparse, build_strategy=None): + def check_network_convergence(self, + is_sparse, + build_strategy=None, + use_cuda=True): + os.environ['CPU_NUM'] = str(4) main = fluid.Program() startup = fluid.Program() with fluid.program_guard(main, startup): @@ -145,12 +150,12 @@ class TestCRFModel(unittest.TestCase): paddle.dataset.conll05.test(), buf_size=8192), batch_size=16) - place = fluid.CUDAPlace(0) + place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(startup) pe = fluid.ParallelExecutor( - use_cuda=True, + use_cuda=use_cuda, loss_name=avg_cost.name, build_strategy=build_strategy) @@ -172,25 +177,33 @@ class TestCRFModel(unittest.TestCase): build_strategy = fluid.BuildStrategy() build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.AllReduce self.check_network_convergence( - is_sparse=True, build_strategy=build_strategy) + is_sparse=True, build_strategy=build_strategy, use_cuda=True) + self.check_network_convergence( + is_sparse=True, build_strategy=build_strategy, use_cuda=False) def test_update_dense_parameter_all_reduce(self): build_strategy = fluid.BuildStrategy() build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.AllReduce self.check_network_convergence( - is_sparse=False, build_strategy=build_strategy) + is_sparse=False, build_strategy=build_strategy, use_cuda=True) + self.check_network_convergence( + is_sparse=False, build_strategy=build_strategy, use_cuda=False) def test_update_sparse_parameter_reduce(self): build_strategy = fluid.BuildStrategy() build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce self.check_network_convergence( - is_sparse=True, build_strategy=build_strategy) + is_sparse=True, build_strategy=build_strategy, use_cuda=True) + self.check_network_convergence( + is_sparse=True, build_strategy=build_strategy, use_cuda=False) def test_update_dense_parameter_reduce(self): build_strategy = fluid.BuildStrategy() build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce self.check_network_convergence( - is_sparse=False, build_strategy=build_strategy) + is_sparse=False, build_strategy=build_strategy, use_cuda=True) + self.check_network_convergence( + is_sparse=False, build_strategy=build_strategy, use_cuda=False) if __name__ == '__main__': diff --git a/python/paddle/fluid/tests/unittests/test_parallel_executor_fetch_feed.py b/python/paddle/fluid/tests/unittests/test_parallel_executor_fetch_feed.py index 24f8d28c0304a77a99213374b25d0db728eca265..79702475cca86ca22107d4b1824fda277dd83157 100644 --- a/python/paddle/fluid/tests/unittests/test_parallel_executor_fetch_feed.py +++ b/python/paddle/fluid/tests/unittests/test_parallel_executor_fetch_feed.py @@ -18,6 +18,7 @@ import paddle.fluid as fluid import unittest import numpy as np import paddle +import os def Lenet(data, class_dim): @@ -35,7 +36,7 @@ def Lenet(data, class_dim): class TestFetchOp(unittest.TestCase): - def parallel_exe(self, train_inputs, seed): + def parallel_exe(self, train_inputs, seed, use_cuda): main = fluid.Program() startup = fluid.Program() startup.random_seed = seed @@ -59,13 +60,13 @@ class TestFetchOp(unittest.TestCase): # conv2d_1.b_0@GRAD. Those variables should not be pruned. # fluid.memory_optimize(main) - place = fluid.CUDAPlace(0) + place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(startup) feeder = fluid.DataFeeder(place=place, feed_list=[data, label]) pe = fluid.ParallelExecutor( - use_cuda=True, loss_name=loss.name, main_program=main) + use_cuda=use_cuda, loss_name=loss.name, main_program=main) fetch_list = [] all_vars = main.global_block().vars @@ -88,14 +89,16 @@ class TestFetchOp(unittest.TestCase): for i in range(iters): train_inputs.append(tst_reader_iter.next()) - self.parallel_exe(train_inputs, seed=1) + os.environ['CPU_NUM'] = str(4) + self.parallel_exe(train_inputs, seed=1, use_cuda=True) + self.parallel_exe(train_inputs, seed=1, use_cuda=False) class TestFeedParallel(unittest.TestCase): - def test_main(self): + def parallel_exe(self, use_cuda, seed): main = fluid.Program() startup = fluid.Program() - startup.random_seed = 1 + startup.random_seed = seed with fluid.scope_guard(fluid.core.Scope()): with fluid.program_guard(main, startup): data = fluid.layers.data( @@ -111,15 +114,18 @@ class TestFeedParallel(unittest.TestCase): regularization=fluid.regularizer.L2Decay(1e-4)) opt.minimize(loss) - place = fluid.CUDAPlace(0) + + place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() feeder = fluid.DataFeeder(place=place, feed_list=[data, label]) reader = feeder.decorate_reader( paddle.batch( flowers.train(), batch_size=16), multi_devices=True) + exe = fluid.Executor(place) exe.run(startup) + pe = fluid.ParallelExecutor( - use_cuda=True, loss_name=loss.name, main_program=main) + use_cuda=use_cuda, loss_name=loss.name, main_program=main) for batch_id, data in enumerate(reader()): loss_np = np.array(pe.run(feed=data, fetch_list=[loss.name])[0]) @@ -127,6 +133,11 @@ class TestFeedParallel(unittest.TestCase): if batch_id == 2: break + def test_feed_op(self): + os.environ['CPU_NUM'] = str(4) + self.parallel_exe(use_cuda=True, seed=1) + self.parallel_exe(use_cuda=False, seed=1) + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_parallel_executor_mnist.py b/python/paddle/fluid/tests/unittests/test_parallel_executor_mnist.py index 015703c3e25f4e11e64ab6a7de99da12bee608f6..a801d99aa1ced35eb7f081fde63ad541f0eb2589 100644 --- a/python/paddle/fluid/tests/unittests/test_parallel_executor_mnist.py +++ b/python/paddle/fluid/tests/unittests/test_parallel_executor_mnist.py @@ -18,6 +18,7 @@ import numpy as np import paddle import paddle.dataset.mnist as mnist import unittest +import os MNIST_RECORDIO_FILE = "./mnist_test_pe.recordio" @@ -85,6 +86,7 @@ def fc_with_batchnorm(use_feed): class TestMNIST(TestParallelExecutorBase): @classmethod def setUpClass(cls): + os.environ['CPU_NUM'] = str(4) # Convert mnist to recordio file with fluid.program_guard(fluid.Program(), fluid.Program()): reader = paddle.batch(mnist.train(), batch_size=4) @@ -99,9 +101,12 @@ class TestMNIST(TestParallelExecutorBase): fluid.recordio_writer.convert_reader_to_recordio_file( MNIST_RECORDIO_FILE, reader, feeder) - def check_simple_fc_convergence(self, balance_parameter_opt_between_cards): - self.check_network_convergence(simple_fc_net) - self.check_network_convergence(simple_fc_net, allow_op_delay=True) + def check_simple_fc_convergence(self, + balance_parameter_opt_between_cards, + use_cuda=True): + self.check_network_convergence(simple_fc_net, use_cuda=use_cuda) + self.check_network_convergence( + simple_fc_net, use_cuda=use_cuda, allow_op_delay=True) img = np.zeros(shape=[32, 784], dtype='float32') label = np.ones(shape=[32, 1], dtype='int64') @@ -109,17 +114,21 @@ class TestMNIST(TestParallelExecutorBase): simple_fc_net, feed_dict={"image": img, "label": label}, + use_cuda=use_cuda, balance_parameter_opt_between_cards=balance_parameter_opt_between_cards ) def test_simple_fc(self): - self.check_simple_fc_convergence(False) + self.check_simple_fc_convergence(False, use_cuda=True) + self.check_simple_fc_convergence(False, use_cuda=False) def test_simple_fc_with_new_strategy(self): - self.check_simple_fc_convergence(True) + self.check_simple_fc_convergence(True, use_cuda=True) + self.check_simple_fc_convergence(True, use_cuda=False) def check_simple_fc_parallel_accuracy(self, - balance_parameter_opt_between_cards): + balance_parameter_opt_between_cards, + use_cuda=True): img = np.zeros(shape=[32, 784], dtype='float32') label = np.ones(shape=[32, 1], dtype='int64') single_first_loss, single_last_loss = self.check_network_convergence( @@ -127,12 +136,14 @@ class TestMNIST(TestParallelExecutorBase): seed=1000, feed_dict={"image": img, "label": label}, + use_cuda=use_cuda, use_parallel_executor=False) parallel_first_loss, parallel_last_loss = self.check_network_convergence( method=simple_fc_net, seed=1000, feed_dict={"image": img, "label": label}, + use_cuda=use_cuda, use_parallel_executor=True, balance_parameter_opt_between_cards=balance_parameter_opt_between_cards ) @@ -143,28 +154,33 @@ class TestMNIST(TestParallelExecutorBase): self.assertAlmostEquals(p_l, single_last_loss[0], delta=1e-6) def test_simple_fc_parallel_accuracy(self): - self.check_simple_fc_parallel_accuracy(False) + self.check_simple_fc_parallel_accuracy(False, use_cuda=True) + self.check_simple_fc_parallel_accuracy(False, use_cuda=False) def test_simple_fc_parallel_accuracy_with_new_strategy(self): - self.check_simple_fc_parallel_accuracy(True) + self.check_simple_fc_parallel_accuracy(True, use_cuda=True) + self.check_simple_fc_parallel_accuracy(True, use_cuda=False) - def check_batchnorm_fc_convergence(self, - balance_parameter_opt_between_cards): - self.check_network_convergence(fc_with_batchnorm) + def check_batchnorm_fc_convergence( + self, balance_parameter_opt_between_cards, use_cuda): + self.check_network_convergence(fc_with_batchnorm, use_cuda=use_cuda) img = np.zeros(shape=[32, 784], dtype='float32') label = np.ones(shape=[32, 1], dtype='int64') self.check_network_convergence( fc_with_batchnorm, feed_dict={"image": img, "label": label}, + use_cuda=use_cuda, balance_parameter_opt_between_cards=balance_parameter_opt_between_cards ) def test_batchnorm_fc(self): - self.check_batchnorm_fc_convergence(False) + self.check_batchnorm_fc_convergence(False, use_cuda=True) + self.check_batchnorm_fc_convergence(False, use_cuda=False) def test_batchnorm_fc_with_new_strategy(self): - self.check_batchnorm_fc_convergence(True) + self.check_batchnorm_fc_convergence(True, use_cuda=True) + self.check_batchnorm_fc_convergence(True, use_cuda=False) if __name__ == '__main__': diff --git a/python/paddle/fluid/tests/unittests/test_parallel_executor_seresnext.py b/python/paddle/fluid/tests/unittests/test_parallel_executor_seresnext.py index a3fa140cbb7994a36d2cbee26d598165f1f771d2..066299e6c6f7f6c159cb0886e86d3404b027b698 100644 --- a/python/paddle/fluid/tests/unittests/test_parallel_executor_seresnext.py +++ b/python/paddle/fluid/tests/unittests/test_parallel_executor_seresnext.py @@ -15,6 +15,7 @@ import paddle.fluid as fluid from parallel_executor_test_base import TestParallelExecutorBase import unittest +import os def squeeze_excitation(input, num_channels, reduction_ratio): @@ -130,22 +131,30 @@ def SE_ResNeXt50Small(batch_size=2, use_feed=False): class TestResnet(TestParallelExecutorBase): - def check_resnet_convergence(self, balance_parameter_opt_between_cards): + def check_resnet_convergence(self, + balance_parameter_opt_between_cards, + use_cuda=True, + iter=20): + os.environ['CPU_NUM'] = str(4) + import functools batch_size = 2 self.check_network_convergence( functools.partial( SE_ResNeXt50Small, batch_size=batch_size), - iter=20, + iter=iter, batch_size=batch_size, + use_cuda=use_cuda, balance_parameter_opt_between_cards=balance_parameter_opt_between_cards ) def test_resnet(self): - self.check_resnet_convergence(False) + self.check_resnet_convergence(False, use_cuda=True) + self.check_resnet_convergence(False, use_cuda=False, iter=5) def test_resnet_with_new_strategy(self): - self.check_resnet_convergence(True) + self.check_resnet_convergence(True, use_cuda=True) + self.check_resnet_convergence(True, use_cuda=False, iter=5) if __name__ == '__main__': diff --git a/python/paddle/fluid/tests/unittests/test_parallel_executor_test_while_train.py b/python/paddle/fluid/tests/unittests/test_parallel_executor_test_while_train.py index 93a5f767867d68110cf7b8f441cc740ecd843cf9..31ba8c1d6096c9c89e0695c8eca8e16a5e303a61 100644 --- a/python/paddle/fluid/tests/unittests/test_parallel_executor_test_while_train.py +++ b/python/paddle/fluid/tests/unittests/test_parallel_executor_test_while_train.py @@ -15,6 +15,7 @@ import paddle.fluid as fluid import numpy as np import unittest +import os def simple_fc_net(): @@ -35,7 +36,8 @@ def simple_fc_net(): class ParallelExecutorTestingDuringTraining(unittest.TestCase): - def check_network_convergence(self, build_strategy=None): + def check_network_convergence(self, use_cuda, build_strategy=None): + os.environ['CPU_NUM'] = str(4) main = fluid.Program() startup = fluid.Program() with fluid.program_guard(main, startup): @@ -49,19 +51,19 @@ class ParallelExecutorTestingDuringTraining(unittest.TestCase): image = np.random.normal(size=(batch_size, 784)).astype('float32') label = np.random.randint(0, 10, (batch_size, 1), dtype="int64") - place = fluid.CUDAPlace(0) + place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(startup) feed_dict = {'image': image, 'label': label} train_exe = fluid.ParallelExecutor( - use_cuda=True, + use_cuda=use_cuda, loss_name=loss.name, main_program=main, build_strategy=build_strategy) test_exe = fluid.ParallelExecutor( - use_cuda=True, + use_cuda=use_cuda, main_program=test_program, share_vars_from=train_exe, build_strategy=build_strategy) @@ -81,12 +83,18 @@ class ParallelExecutorTestingDuringTraining(unittest.TestCase): def test_parallel_testing(self): build_strategy = fluid.BuildStrategy() build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.AllReduce - self.check_network_convergence(build_strategy) + self.check_network_convergence( + use_cuda=True, build_strategy=build_strategy) + self.check_network_convergence( + use_cuda=False, build_strategy=build_strategy) def test_parallel_testing_with_new_strategy(self): build_strategy = fluid.BuildStrategy() build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce - self.check_network_convergence(build_strategy) + self.check_network_convergence( + use_cuda=True, build_strategy=build_strategy) + self.check_network_convergence( + use_cuda=False, build_strategy=build_strategy) if __name__ == '__main__': diff --git a/python/paddle/fluid/tests/unittests/test_parallel_executor_transformer.py b/python/paddle/fluid/tests/unittests/test_parallel_executor_transformer.py index c81df66d987f3d3856af0e19fc935df7de2edacc..b6215fddb11bb6b3a76b5a6395e7254d21971c13 100644 --- a/python/paddle/fluid/tests/unittests/test_parallel_executor_transformer.py +++ b/python/paddle/fluid/tests/unittests/test_parallel_executor_transformer.py @@ -19,6 +19,7 @@ from parallel_executor_test_base import TestParallelExecutorBase import unittest import paddle import paddle.dataset.wmt16 as wmt16 +import os WMT16_RECORDIO_FILE = "./wmt16_test_pe.recordio" @@ -149,6 +150,7 @@ def transformer(use_feed): class TestTransformer(TestParallelExecutorBase): @classmethod def setUpClass(cls): + os.environ['CPU_NUM'] = str(4) reader = paddle.batch( wmt16.train(ModelHyperParams.src_vocab_size, ModelHyperParams.trg_vocab_size), @@ -167,7 +169,8 @@ class TestTransformer(TestParallelExecutorBase): @unittest.skip("transformer is buggy in multi gpu") def test_main(self): - self.check_network_convergence(transformer) + self.check_network_convergence(transformer, use_cuda=True) + self.check_network_convergence(transformer, use_cuda=False) if __name__ == '__main__': diff --git a/python/paddle/fluid/tests/unittests/test_simple_dist_transpiler.py b/python/paddle/fluid/tests/unittests/test_simple_dist_transpiler.py index 5ae2844e295194f95701e1cdccd43bf919bf964f..f4aa7426bc315be501348a64e2f15caed6dc8810 100644 --- a/python/paddle/fluid/tests/unittests/test_simple_dist_transpiler.py +++ b/python/paddle/fluid/tests/unittests/test_simple_dist_transpiler.py @@ -59,9 +59,9 @@ class TestSimpleDistTranspiler(TranspilerTest): delete_ops(trainer.global_block(), optimize_ops) ops = [op.type for op in trainer.global_block().ops] + [ - "send_vars", "send_barrier", "recv", "recv", "fetch_barrier" + "send", "send_barrier", "recv", "recv", "fetch_barrier" ] - ops.insert(ops.index("elementwise_add_grad") + 1, "send_vars") + ops.insert(ops.index("elementwise_add_grad") + 1, "send") return ops def _transpiler_instance(self): diff --git a/python/paddle/fluid/tests/unittests/test_slice_op.py b/python/paddle/fluid/tests/unittests/test_slice_op.py new file mode 100644 index 0000000000000000000000000000000000000000..1a48bce3bb7c74551a365fd471f6869b128babac --- /dev/null +++ b/python/paddle/fluid/tests/unittests/test_slice_op.py @@ -0,0 +1,62 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import unittest +import numpy as np +from op_test import OpTest + + +class TestSliceOp(OpTest): + def setUp(self): + self.op_type = "slice" + self.config() + self.inputs = {'Input': self.input} + self.outputs = {'Out': self.out} + self.attrs = { + 'axes': self.axes, + 'starts': self.starts, + 'ends': self.ends + } + + def config(self): + self.input = np.random.random([3, 4, 5, 6]).astype("float32") + self.starts = [1, 0, 2] + self.ends = [3, 3, 4] + self.axes = [0, 1, 2] + self.out = self.input[1:3, 0:3, 2:4, :] + + def test_check_output(self): + self.check_output() + + +class TestCase1(TestSliceOp): + def config(self): + self.input = np.random.random([3, 4, 5, 6]).astype("float32") + self.starts = [-3, 0, 2] + self.ends = [3, 100, -1] + self.axes = [0, 1, 2] + self.out = self.input[-3:3, 0:100, 2:-1, :] + + +class TestCase2(TestSliceOp): + def config(self): + self.input = np.random.random([3, 4, 5, 6]).astype("float32") + self.starts = [-3, 0, 2] + self.ends = [3, 100, -1] + self.axes = [0, 1, 3] + self.out = self.input[-3:3, 0:100, :, 2:-1] + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/fluid/trainer.py b/python/paddle/fluid/trainer.py index cdacb419863518cc0606903ed8eb79f0d2bc9e40..efc28d899304b01a3085891f3ae9396d57c589a1 100644 --- a/python/paddle/fluid/trainer.py +++ b/python/paddle/fluid/trainer.py @@ -27,11 +27,8 @@ import parallel_executor from transpiler import distribute_transpiler __all__ = [ - 'Trainer', - 'BeginEpochEvent', - 'EndEpochEvent', - 'BeginStepEvent', - 'EndStepEvent', + 'Trainer', 'BeginEpochEvent', 'EndEpochEvent', 'BeginStepEvent', + 'EndStepEvent', 'CheckpointConfig' ] @@ -59,6 +56,35 @@ class EndStepEvent(object): self.metrics = metrics +class CheckpointConfig(object): + def __init__(self, + checkpoint_dir=None, + max_num_checkpoints=3, + epoch_interval=1, + step_interval=10): + if checkpoint_dir is None: + self.checkpoint_dir = os.getcwd() + else: + self.checkpoint_dir = checkpoint_dir + + self.max_num_checkpoints = max_num_checkpoints + + if epoch_interval < 1: + self.epoch_interval = 1 + else: + self.epoch_interval = epoch_interval + + if step_interval < 1: + self.step_interval = 10 + else: + self.step_interval = step_interval + + self.epoch_id = 0 + self.step_id = 0 + self.load_serial = None + self.is_pserver = False + + def check_and_get_place(place): """ Check the type of place or get the default place @@ -99,13 +125,24 @@ class Trainer(object): optimizer_func, param_path=None, place=None, - parallel=False): + parallel=False, + checkpoint_config=None): self.__stop = False self.parallel = parallel # 1. we need to generate a framework.Program by calling # program_func. Reference: fluid.program_guard in # test_word2vec.py + # config for checkpoint + # only chief worker will save variables + self.trainer_id = 0 + self.checkpoint_cfg = checkpoint_config + if self.checkpoint_cfg: + assert isinstance(self.checkpoint_cfg, CheckpointConfig) + serial = io.get_latest_checkpoint_serial( + self.checkpoint_cfg.checkpoint_dir) + self.checkpoint_cfg.load_serial = serial if serial >= 0 else None + self.scope = core.Scope() self.startup_program = framework.Program() @@ -115,9 +152,9 @@ class Trainer(object): program_func_outs = train_func() self.train_func_outputs = program_func_outs if isinstance( program_func_outs, list) else [program_func_outs] - self.test_program = self.train_program.clone() + self.test_program = self.train_program.clone(for_test=True) - # The fisrt element of program_func_outs is loss. + # The first element of program_func_outs is loss. loss = self.train_func_outputs[0] optimizer = optimizer_func() @@ -137,9 +174,25 @@ class Trainer(object): exe = executor.Executor(place) exe.run(self.startup_program) - if param_path: + if self.checkpoint_cfg and self.checkpoint_cfg.load_serial: + with self._prog_and_scope_guard(): + exe = executor.Executor(place) + io.load_checkpoint(exe, self.checkpoint_cfg.checkpoint_dir, + self.checkpoint_cfg.load_serial, + self.startup_program) + + if not self.checkpoint_cfg.is_pserver: + epoch_id, step_id = io.load_trainer_args( + self.checkpoint_cfg.checkpoint_dir, + self.checkpoint_cfg.load_serial, self.trainer_id, + self._get_checkpoint_load_args()) + self.checkpoint_cfg.epoch_id = int(epoch_id) + self.checkpoint_cfg.step_id = int(step_id) + + if param_path and os.path.isdir(param_path): # load params from param_path into scope - io.load_persistables(exe, dirname=param_path) + io.load_persist_vars_without_grad( + exe, dirname=param_path, program=self.startup_program) def _transpile_nccl2_dist(self): # PADDLE_TRAINER_IPS @@ -194,14 +247,18 @@ class Trainer(object): current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port # the unique trainer id, starting from 0, needed by trainer # only - trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0")) + self.trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0")) + # the role, should be either PSERVER or TRAINER training_role = os.getenv("PADDLE_TRAINING_ROLE") with self._prog_and_scope_guard(): t = distribute_transpiler.DistributeTranspiler() t.transpile( - trainer_id, pservers=pserver_endpoints, trainers=trainers) + self.trainer_id, pservers=pserver_endpoints, trainers=trainers) if training_role == "PSERVER": + if self.checkpoint_cfg: + self.is_pserver = True + self.train_program = t.get_pserver_program(current_endpoint) self.startup_program = t.get_startup_program(current_endpoint, self.train_program) @@ -294,11 +351,26 @@ class Trainer(object): self._train_by_any_executor(event_handler, exe, num_epochs, reader) def _train_by_any_executor(self, event_handler, exe, num_epochs, reader): - for epoch_id in range(num_epochs): + if self.checkpoint_cfg: + epochs = [ + epoch_id for epoch_id in range(num_epochs) + if epoch_id >= self.checkpoint_cfg.epoch_id + ] + else: + epochs = [epoch_id for epoch_id in range(num_epochs)] + + for epoch_id in epochs: event_handler(BeginEpochEvent(epoch_id)) for step_id, data in enumerate(reader()): if self.__stop: + if self.checkpoint_cfg: + self._clean_checkpoint() return + + if self.checkpoint_cfg and self.checkpoint_cfg.load_serial \ + and self.checkpoint_cfg.step_id >= step_id and self.checkpoint_cfg.epoch_id == epoch_id: + continue + begin_event = BeginStepEvent(epoch_id, step_id) event_handler(begin_event) if begin_event.fetch_metrics: @@ -309,8 +381,13 @@ class Trainer(object): ]) else: metrics = exe.run(feed=data, fetch_list=[]) + + if self.checkpoint_cfg: + self._save_checkpoint(epoch_id, step_id) event_handler(EndStepEvent(epoch_id, step_id, metrics)) event_handler(EndEpochEvent(epoch_id)) + if self.checkpoint_cfg: + self._clean_checkpoint() def _test_by_executor(self, reader, feed_order, fetch_list): with executor.scope_guard(self.scope): @@ -349,6 +426,38 @@ class Trainer(object): loss_name=self.train_func_outputs[0].name) return self._get_parallel_executor() + def _clean_checkpoint(self): + assert self.checkpoint_cfg + io.clean_checkpoint(checkpoint_dir=self.checkpoint_cfg.checkpoint_dir) + + def _get_checkpoint_load_args(self): + """ + epoch_id and step_id are runtime arguments, they are not variables, will load them independently. + """ + return ["epoch_id", "step_id"] + + def _get_checkpoint_save_args(self, epoch_id, step_id): + """ + epoch_id and step_id are runtime arguments, they are not variables, will save them independently. + """ + trainer_args = {} + trainer_args["epoch_id"] = epoch_id + trainer_args["step_id"] = step_id + return trainer_args + + def _save_checkpoint(self, epoch_id, step_id): + assert self.checkpoint_cfg + + if epoch_id % self.checkpoint_cfg.epoch_interval == 0 and step_id % self.checkpoint_cfg.step_interval == 0: + exe = executor.Executor(self.place) + io.save_checkpoint( + executor=exe, + checkpoint_dir=self.checkpoint_cfg.checkpoint_dir, + trainer_id=self.trainer_id, + trainer_args=self._get_checkpoint_save_args(epoch_id, step_id), + main_program=self.train_program, + max_num_checkpoints=self.checkpoint_cfg.max_num_checkpoints) + def build_feed_var_list(program, feed_order): if not isinstance(program, framework.Program): diff --git a/python/paddle/fluid/transpiler/distribute_transpiler.py b/python/paddle/fluid/transpiler/distribute_transpiler.py index 27992df462ffd00ddf445538cc508b4232712481..5b299a0f29d2f17f7ecf3509fee341712f3c9d70 100644 --- a/python/paddle/fluid/transpiler/distribute_transpiler.py +++ b/python/paddle/fluid/transpiler/distribute_transpiler.py @@ -24,9 +24,9 @@ Steps to transpile trainer: 1. split variable to multiple blocks, aligned by product(dim[1:]) (width). 2. rename splited grad variables to add trainer_id suffix ".trainer_%d". 3. modify trainer program add split_op to each grad variable. -4. append send_op to send splited variables to server and fetch - params(splited blocks or origin param) from server. -5. append concat_op to merge splited blocks to update local weights. +4. append send_op to send splited variables to server and +5. add recv_op to fetch params(splited blocks or origin param) from server. +6. append concat_op to merge splited blocks to update local weights. Steps to transpile pserver: 1. create new program for parameter server. @@ -177,6 +177,7 @@ class DistributeTranspiler: dtype=table_grad_var.dtype) for index in range(len(self.pserver_endpoints)) ] + return param_list, grad_list def _init_splited_vars(self, slice_var_up): # update these mappings for further transpile: @@ -199,8 +200,8 @@ class DistributeTranspiler: grad_list.append(g) param_grad_set.add(g.name) - self._update_dist_lookup_table_vars(param_list, grad_list, - self.params_grads) + param_list, grad_list = self._update_dist_lookup_table_vars( + param_list, grad_list, self.params_grads) if slice_var_up: # when we slice var up into blocks, we will slice the var according to @@ -316,7 +317,7 @@ class DistributeTranspiler: program.global_block().insert_op( index=index + 1, - type="send_vars", + type="send", inputs={"X": splited_vars}, outputs={}, attrs={ @@ -677,7 +678,7 @@ class DistributeTranspiler: break def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints): - # 2. add split_ids_op and send_vars_op to send gradient to pservers + # 2. add split_ids_op and send_op to send gradient to pservers # there should only be one table_name all_ops = program.global_block().ops table_grad_name = grad_var_name(self.table_name) @@ -694,11 +695,11 @@ class DistributeTranspiler: outputs={"Out": self.trainer_side_table_grad_list}) program.global_block().insert_op( index=op_index + 2, - type="send_vars", + type="send", inputs={'X': self.trainer_side_table_grad_list}, outputs={}, attrs={ - "sync_send": True, + "sync_mode": True, "epmap": pserver_endpoints, RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE }) diff --git a/python/paddle/v2/dataset/flowers.py b/python/paddle/v2/dataset/flowers.py index 7bdddeaabec733ef26b3f766c6437f5c53d65044..357a4e9b000ea81afe291ff39dde2bed5c67e619 100644 --- a/python/paddle/v2/dataset/flowers.py +++ b/python/paddle/v2/dataset/flowers.py @@ -119,7 +119,8 @@ def reader_creator(data_file, yield sample, int(label) - 1 if use_xmap: - return xmap_readers(mapper, reader, cpu_count(), buffered_size) + cpu_num = int(os.environ.get('CPU_NUM', cpu_count())) + return xmap_readers(mapper, reader, cpu_num, buffered_size) else: return map_readers(mapper, reader)