Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
426de255
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
426de255
编写于
10月 14, 2020
作者:
H
Huihuang Zheng
提交者:
GitHub
10月 14, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refine Executor API English Doc for 2.0rc (#27857)
As the title
上级
9b3b3b74
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
146 addition
and
137 deletion
+146
-137
python/paddle/fluid/executor.py
python/paddle/fluid/executor.py
+146
-137
未找到文件。
python/paddle/fluid/executor.py
浏览文件 @
426de255
...
...
@@ -480,7 +480,7 @@ class Executor(object):
and single/multiple-CPU running.
Args:
place(
fluid.CPUPlace()|fluid
.CUDAPlace(n)|None): This parameter represents
place(
paddle.CPUPlace()|paddle
.CUDAPlace(n)|None): This parameter represents
which device the executor runs on. When this parameter is None, PaddlePaddle
will set the default device according to its installation version. If Paddle
is CPU version, the default device would be set to `CPUPlace()` . If Paddle is
...
...
@@ -492,60 +492,57 @@ class Executor(object):
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid.compiler as compiler
import numpy
import os
# Set place explicitly.
# use_cuda = True
# place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
# exe = fluid.Executor(place)
# If you don't set place, PaddlePaddle sets the default device.
exe = fluid.Executor()
train_program = fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(train_program, startup_program):
data = fluid.data(name='X', shape=[None, 1], dtype='float32')
hidden = fluid.layers.fc(input=data, size=10)
loss = fluid.layers.mean(hidden)
fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)
# Run the startup program once and only once.
# Not need to optimize/compile the startup program.
startup_program.random_seed=1
exe.run(startup_program)
# Run the main program directly without compile.
x = numpy.random.random(size=(10, 1)).astype('float32')
loss_data, = exe.run(train_program,
feed={"X": x},
fetch_list=[loss.name])
# Or, compiled the program and run. See `CompiledProgram`
# for more detail.
# NOTE: If you use CPU to run the program or Paddle is
# CPU version, you need to specify the CPU_NUM, otherwise,
# fluid will use all the number of the logic core as
# the CPU_NUM, in that case, the batch size of the input
# should be greater than CPU_NUM, if not, the process will be
# failed by an exception.
# Set place explicitly.
# if not use_cuda:
# os.environ['CPU_NUM'] = str(2)
# If you don't set place and PaddlePaddle is CPU version
os.environ['CPU_NUM'] = str(2)
compiled_prog = compiler.CompiledProgram(
train_program).with_data_parallel(
loss_name=loss.name)
loss_data, = exe.run(compiled_prog,
feed={"X": x},
fetch_list=[loss.name])
import paddle
import numpy
import os
# Executor is only used in static graph mode
paddle.enable_static()
# Set place explicitly.
# use_cuda = True
# place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
# exe = paddle.static.Executor(place)
# If you don't set place, PaddlePaddle sets the default device.
exe = paddle.static.Executor()
train_program = paddle.static.Program()
startup_program = paddle.static.Program()
with paddle.static.program_guard(train_program, startup_program):
data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
hidden = paddle.static.nn.fc(data, 10)
loss = paddle.mean(hidden)
paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
# Run the startup program once and only once.
# Not need to optimize/compile the startup program.
exe.run(startup_program)
# Run the main program directly without compile.
x = numpy.random.random(size=(10, 1)).astype('float32')
loss_data, = exe.run(train_program, feed={"X": x}, fetch_list=[loss.name])
# Or, compiled the program and run. See `CompiledProgram`
# for more details.
# NOTE: If you use CPU to run the program or Paddle is
# CPU version, you need to specify the CPU_NUM, otherwise,
# PaddlePaddle will use all the number of the logic core as
# the CPU_NUM, in that case, the batch size of the input
# should be greater than CPU_NUM, if not, the process will be
# failed by an exception.
# Set place explicitly.
# if not use_cuda:
# os.environ['CPU_NUM'] = str(2)
# If you don't set place and PaddlePaddle is CPU version
os.environ['CPU_NUM'] = str(2)
compiled_prog = paddle.static.CompiledProgram(
train_program).with_data_parallel(loss_name=loss.name)
loss_data, = exe.run(compiled_prog, feed={"X": x}, fetch_list=[loss.name])
"""
def
__init__
(
self
,
place
=
None
):
...
...
@@ -842,10 +839,10 @@ class Executor(object):
Examples:
.. code-block:: python
import paddle
.fluid as fluid
import paddle
cpu =
fluid
.CPUPlace()
exe =
fluid
.Executor(cpu)
cpu =
paddle
.CPUPlace()
exe =
paddle.static
.Executor(cpu)
# execute training or testing
exe.close()
"""
...
...
@@ -928,17 +925,17 @@ class Executor(object):
Run the specified :code:`Program` or :code:`CompiledProgram`. It should be noted that the executor
will execute all the operators in :code:`Program` or :code:`CompiledProgram` without pruning some
operators of the :code:`Program` or :code:`CompiledProgram` according to fetch_list. And you could
specify the scope to store the :code:`
Variables
` during the executor running if the scope
is not set, the executor will use the global scope, i.e. :code:`
fluid
.global_scope()`.
specify the scope to store the :code:`
Tensor
` during the executor running if the scope
is not set, the executor will use the global scope, i.e. :code:`
paddle.static
.global_scope()`.
Args:
program(Program|CompiledProgram): This parameter represents the :code:`Program` or
:code:`CompiledProgram` to be executed. If this parameter is not provided, that
parameter is None, the program will be set to :code:`
fluid
.default_main_program()`.
parameter is None, the program will be set to :code:`
paddle.static
.default_main_program()`.
The default is None.
feed(list|dict): This parameter represents the input
variable
s of the model.
feed(list|dict): This parameter represents the input
Tensor
s of the model.
If it is single card training, the feed is dict type, and if it is multi-card
training, the parameter feed can be dict or list
type variable
. If the
training, the parameter feed can be dict or list
of Tensors
. If the
parameter type is dict, the data in the feed will be split and sent to
multiple devices (CPU/GPU), that is to say, the input data will be evenly
sent to different devices, so you should make sure the number of samples of
...
...
@@ -946,23 +943,23 @@ class Executor(object):
if the parameter type is list, those data are copied directly to each device,
so the length of this list should be equal to the number of places.
The default is None.
fetch_list(list): This parameter represents the
variable
s that need to be returned
fetch_list(list): This parameter represents the
Tensor
s that need to be returned
after the model runs. The default is None.
feed_var_name(str): This parameter represents the name of the input
variable
of
feed_var_name(str): This parameter represents the name of the input
Tensor
of
the feed operator. The default is "feed".
fetch_var_name(str): This parameter represents the name of the output
variable
of
fetch_var_name(str): This parameter represents the name of the output
Tensor
of
the fetch operator. The default is "fetch".
scope(Scope): the scope used to run this program, you can switch
it to different scope. default is :code:`
fluid
.global_scope()`
return_numpy(bool): This parameter indicates whether convert the fetched
variable
s
(the
variable
specified in the fetch list) to numpy.ndarray. if it is False,
it to different scope. default is :code:`
paddle.static
.global_scope()`
return_numpy(bool): This parameter indicates whether convert the fetched
Tensor
s
(the
Tensor
specified in the fetch list) to numpy.ndarray. if it is False,
the type of the return value is a list of :code:`LoDTensor`. The default is True.
use_program_cache(bool): This parameter indicates whether the input :code:`Program` is cached.
If the parameter is True, the model may run faster in the following cases:
the input program is :code:`
fluid.Program`, and the parameters(program, feed variable
name
and fetch_list
variable
) of this interface remains unchanged during running.
the input program is :code:`
paddle.static.Program`, and the parameters(program, feed Tensor
name
and fetch_list
Tensor
) of this interface remains unchanged during running.
The default is False.
return_merged(bool): This parameter indicates whether fetched
variables (the variable
s
return_merged(bool): This parameter indicates whether fetched
Tensors (the Tensor
s
specified in the fetch list) should be merged according to the execution device dimension.
If :code:`return_merged` is False, the type of the return value is a two-dimensional list
of :code:`Tensor` / :code:`LoDTensorArray` ( :code:`return_numpy` is False) or a two-dimensional
...
...
@@ -996,81 +993,88 @@ class Executor(object):
number of CPU cores or GPU cards, if it is less than, it is recommended that
the batch be discarded.
2. If the number of CPU cores or GPU cards available is greater than 1, the fetch
results are spliced together in dimension 0 for the same
variable
values
(
variable
s in fetch_list) on different devices.
results are spliced together in dimension 0 for the same
Tensor
values
(
Tensor
s in fetch_list) on different devices.
Examples 1:
.. code-block:: python
import paddle.fluid as fluid
import numpy
# First create the Executor.
place = fluid.CPUPlace() # fluid.CUDAPlace(0)
exe = fluid.Executor(place)
import paddle
import numpy
data = fluid.data(name='X', shape=[None, 1], dtype='float32')
hidden = fluid.layers.fc(input=data, size=10)
loss = fluid.layers.mean(hidden)
adam = fluid.optimizer.Adam()
adam.minimize(loss)
i = fluid.layers.zeros(shape=[1], dtype='int64')
array = fluid.layers.array_write(x=loss, i=i)
# First create the Executor.
paddle.enable_static()
place = paddle.CPUPlace() # paddle.CUDAPlace(0)
exe = paddle.static.Executor(place)
data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
hidden = paddle.static.nn.fc(data, 10)
loss = paddle.mean(hidden)
adam = paddle.optimizer.Adam()
adam.minimize(loss)
i = paddle.zeros(shape=[1], dtype='int64')
array = paddle.fluid.layers.array_write(x=loss, i=i)
# Run the startup program once and only once.
exe.run(fluid
.default_startup_program())
# Run the startup program once and only once.
exe.run(paddle.static
.default_startup_program())
x = numpy.random.random(size=(10, 1)).astype('float32')
loss_val, array_val = exe.run(feed={'X': x},
fetch_list=[loss.name, array.name])
print(array_val)
# [array([0.02153828], dtype=float32)]
x = numpy.random.random(size=(10, 1)).astype('float32')
loss_val, array_val = exe.run(feed={'X': x},
fetch_list=[loss.name, array.name])
print(array_val)
# [array([0.02153828], dtype=float32)]
Examples 2:
.. code-block:: python
import paddle
.fluid as fluid
import paddle
import numpy as np
# First create the Executor.
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
paddle.enable_static()
place = paddle.CUDAPlace(0)
exe = paddle.static.Executor(place)
data =
fluid
.data(name='X', shape=[None, 1], dtype='float32')
data =
paddle.static
.data(name='X', shape=[None, 1], dtype='float32')
class_dim = 2
prediction =
fluid.layers.fc(input=data, size=
class_dim)
loss =
fluid.layers
.mean(prediction)
adam =
fluid
.optimizer.Adam()
prediction =
paddle.static.nn.fc(data,
class_dim)
loss =
paddle
.mean(prediction)
adam =
paddle
.optimizer.Adam()
adam.minimize(loss)
# Run the startup program once and only once.
exe.run(fluid.default_startup_program())
build_strategy = fluid.BuildStrategy()
binary = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(
loss_name=loss.name, build_strategy=build_strategy)
exe.run(paddle.static.default_startup_program())
build_strategy = paddle.static.BuildStrategy()
binary = paddle.static.CompiledProgram(
paddle.static.default_main_program()).with_data_parallel(
loss_name=loss.name, build_strategy=build_strategy)
batch_size = 6
x = np.random.random(size=(batch_size, 1)).astype('float32')
# Set return_merged as False to fetch unmerged results:
unmerged_prediction, = exe.run(binary, feed={'X': x},
fetch_list=[prediction.name],
return_merged=False)
unmerged_prediction, = exe.run(binary,
feed={'X': x},
fetch_list=[prediction.name],
return_merged=False)
# If the user uses two GPU cards to run this python code, the printed result will be
# (2, 3, class_dim). The first dimension value of the printed result is the number of used
# GPU cards, and the second dimension value is the quotient of batch_size and the
# number of used GPU cards.
print("The unmerged prediction shape: {}".format(np.array(unmerged_prediction).shape))
print("The unmerged prediction shape: {}".format(
np.array(unmerged_prediction).shape))
print(unmerged_prediction)
# Set return_merged as True to fetch merged results:
merged_prediction, = exe.run(binary, feed={'X': x},
fetch_list=[prediction.name],
return_merged=True)
merged_prediction, = exe.run(binary,
feed={'X': x},
fetch_list=[prediction.name],
return_merged=True)
# If the user uses two GPU cards to run this python code, the printed result will be
# (6, class_dim). The first dimension value of the printed result is the batch_size.
print("The merged prediction shape: {}".format(np.array(merged_prediction).shape))
print("The merged prediction shape: {}".format(
np.array(merged_prediction).shape))
print(merged_prediction)
# Out:
# The unmerged prediction shape: (2, 3, 2)
# [array([[-0.37620035, -0.19752218],
...
...
@@ -1085,6 +1089,7 @@ class Executor(object):
# [-0.24635398 -0.13003758]
# [-0.49232286 -0.25939852]
# [-0.44514108 -0.2345845 ]]
"""
try
:
return
self
.
_run_impl
(
...
...
@@ -1508,9 +1513,9 @@ class Executor(object):
thread(int): number of thread a user wants to run in this function. Default is 0, which
means using thread num of dataset
debug(bool): whether a user wants to run infer_from_dataset, default is False
fetch_list(
Variable List): fetch variable list, each variable
will be printed during
fetch_list(
Tensor List): fetch Tensor list, each Tensor
will be printed during
training, default is None
fetch_info(String List): print information for each
variable
, default is None
fetch_info(String List): print information for each
Tensor
, default is None
print_period(int): the number of mini-batches for each print, default is 100
fetch_handler(FetchHandler): a user define class for fetch output.
...
...
@@ -1521,20 +1526,22 @@ class Executor(object):
.. code-block:: python
import paddle
.fluid as fluid
import paddle
place = fluid.CPUPlace() # you can set place = fluid.CUDAPlace(0) to use gpu
exe = fluid.Executor(place)
x = fluid.data(name="x", shape=[None, 10, 10], dtype="int64")
y = fluid.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
dataset = fluid.DatasetFactory().create_dataset()
paddle.enable_static()
place = paddle.CPUPlace() # you can set place = paddle.CUDAPlace(0) to use gpu
exe = paddle.static.Executor(place)
x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
dataset = paddle.fluid.DatasetFactory().create_dataset()
dataset.set_use_var([x, y])
dataset.set_thread(1)
filelist = [] # you should set your own filelist, e.g. filelist = ["dataA.txt"]
# you should set your own filelist, e.g. filelist = ["dataA.txt"]
filelist = []
dataset.set_filelist(filelist)
exe.run(
fluid
.default_startup_program())
exe.infer_from_dataset(program=
fluid
.default_main_program(),
dataset=dataset)
exe.run(
paddle.static
.default_startup_program())
exe.infer_from_dataset(program=
paddle.static
.default_main_program(),
dataset=dataset)
"""
return
self
.
_run_from_dataset
(
program
,
dataset
,
scope
,
thread
,
True
,
...
...
@@ -1627,9 +1634,9 @@ class Executor(object):
thread(int): number of thread a user wants to run in this function. Default is 0, which
means using thread num of dataset
debug(bool): whether a user wants to run train_from_dataset
fetch_list(
Variable List): fetch variable
list, each variable will be printed
fetch_list(
Tensor List): fetch Tensor
list, each variable will be printed
during training
fetch_info(String List): print information for each
variable
, its length should be equal
fetch_info(String List): print information for each
Tensor
, its length should be equal
to fetch_list
print_period(int): the number of mini-batches for each print, default is 100
fetch_handler(FetchHandler): a user define class for fetch output.
...
...
@@ -1641,19 +1648,21 @@ class Executor(object):
.. code-block:: python
import paddle
.fluid as fluid
import paddle
place = fluid.CPUPlace() # you can set place = fluid.CUDAPlace(0) to use gpu
exe = fluid.Executor(place)
x = fluid.data(name="x", shape=[None, 10, 10], dtype="int64")
y = fluid.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
dataset = fluid.DatasetFactory().create_dataset()
paddle.enable_static()
place = paddle.CPUPlace() # you can set place = paddle.CUDAPlace(0) to use gpu
exe = paddle.static.Executor(place)
x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
dataset = paddle.fluid.DatasetFactory().create_dataset()
dataset.set_use_var([x, y])
dataset.set_thread(1)
filelist = [] # you should set your own filelist, e.g. filelist = ["dataA.txt"]
# you should set your own filelist, e.g. filelist = ["dataA.txt"]
filelist = []
dataset.set_filelist(filelist)
exe.run(
fluid
.default_startup_program())
exe.train_from_dataset(program=
fluid
.default_main_program(),
exe.run(
paddle.static
.default_startup_program())
exe.train_from_dataset(program=
paddle.static
.default_main_program(),
dataset=dataset)
"""
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录