diff --git a/paddle/fluid/framework/ir/graph_traits.h b/paddle/fluid/framework/ir/graph_traits.h index edbe45acb98326ee3bf1d86495832ec8469b634e..f42bab20ed97e372d2da0c4a492a4458ab94e0a0 100644 --- a/paddle/fluid/framework/ir/graph_traits.h +++ b/paddle/fluid/framework/ir/graph_traits.h @@ -12,7 +12,11 @@ // See the License for the specific language governing permissions and // limitations under the License. +#pragma once + #include +#include + #include "paddle/fluid/framework/ir/graph.h" #include "paddle/fluid/framework/ir/node.h" diff --git a/paddle/fluid/inference/analysis/CMakeLists.txt b/paddle/fluid/inference/analysis/CMakeLists.txt index 27fe575cb6167a726ff92a8f3d2e47b6f536ba39..b972efe5b0a6942bf0710755bbabbaf863477931 100644 --- a/paddle/fluid/inference/analysis/CMakeLists.txt +++ b/paddle/fluid/inference/analysis/CMakeLists.txt @@ -8,7 +8,7 @@ cc_library(analysis SRCS pass_manager.cc dot.cc node.cc data_flow_graph.cc graph helper.cc model_store_pass.cc DEPS framework_proto proto_desc) -cc_test(test_node SRCS node_tester.cc DEPS analysis) +cc_test(test_node SRCS node_tester.cc DEPS analysis gflags glog gtest) cc_test(test_dot SRCS dot_tester.cc DEPS analysis) cc_binary(inference_analyzer SRCS analyzer_main.cc DEPS analysis) diff --git a/paddle/fluid/inference/analysis/node.cc b/paddle/fluid/inference/analysis/node.cc index f2e918f3ff41d9db0c3ec38561015967bed26f4e..3339b5044df0cf91d00aa9ddad310d4bf263bc3c 100644 --- a/paddle/fluid/inference/analysis/node.cc +++ b/paddle/fluid/inference/analysis/node.cc @@ -20,17 +20,6 @@ namespace paddle { namespace inference { namespace analysis { -template <> -std::string &NodeAttr::As() { - if (data_.empty()) { - type_index_ = std::type_index(typeid(std::string)); - } - PADDLE_ENFORCE_EQ(type_index_, std::type_index(typeid(std::string))); - return data_; -} - -std::string &NodeAttr::String() { return As(); } - std::vector Value::dot_attrs() const { return std::vector({Dot::Attr("style", "filled,rounded"), Dot::Attr("shape", "box"), diff --git a/paddle/fluid/inference/analysis/node.h b/paddle/fluid/inference/analysis/node.h index 47e524bc5c4a6b1324d5f182053129311487522d..fb426fb893d12c017deda74fc05016053fbc6b1c 100644 --- a/paddle/fluid/inference/analysis/node.h +++ b/paddle/fluid/inference/analysis/node.h @@ -29,6 +29,7 @@ limitations under the License. */ #include "paddle/fluid/inference/analysis/device.h" #include "paddle/fluid/inference/analysis/dot.h" #include "paddle/fluid/inference/analysis/helper.h" +#include "paddle/fluid/platform/variant.h" namespace paddle { namespace inference { @@ -38,39 +39,35 @@ class NodeMap; // A helper class to maintain the status from Pass. struct NodeAttr { + using any_t = + boost::variant; // NOTE T should be a primary type or a struct combined by several primary // types. // NOTE the STL containers should not use here. // Some usages // Attr attr; // attr.Bool() = true; - bool &Bool() { return As(); } float &Float() { return As(); } int32_t &Int32() { return As(); } int64_t &Int64() { return As(); } void *&Pointer() { return As(); } - std::string &String(); + std::string &String() { return As(); } private: template T &As() { - // init storage in the first usage. - if (data_.empty()) { - VLOG(4) << "resize data to " << sizeof(T); - type_index_ = std::type_index(typeid(T)); - data_.resize(sizeof(T)); + if (type_index_ == typeid(NodeAttr)) { + type_index_ = typeid(T); + any_data_ = T(); + } else { + PADDLE_ENFORCE(type_index_ == typeid(T), "fetch error type"); } - PADDLE_ENFORCE(framework::IsType(type_index_), - "type not matched, origin is %s, want %s", - DataTypeNamer::Global().repr(type_index_), - DataTypeNamer::Global().repr()); - PADDLE_ENFORCE_EQ(data_.size(), sizeof(T), "Node attr type recast error"); - return *reinterpret_cast(&data_[0]); + return boost::get(any_data_); } private: - std::string data_; + any_t any_data_; std::type_index type_index_{typeid(NodeAttr)}; }; diff --git a/paddle/fluid/inference/analysis/node_tester.cc b/paddle/fluid/inference/analysis/node_tester.cc index ea832a3a7e47758be9b6bd59a4325ddb576ec446..8bbcfff53741772ee3705e2efdf46a1b59ee02ab 100644 --- a/paddle/fluid/inference/analysis/node_tester.cc +++ b/paddle/fluid/inference/analysis/node_tester.cc @@ -20,6 +20,24 @@ namespace paddle { namespace inference { namespace analysis { +TEST(NodeAttr, bool) { + NodeAttr x; + x.Bool() = true; + ASSERT_EQ(x.Bool(), true); +} + +TEST(NodeAttr, int32) { + NodeAttr x; + x.Int32() = 32; + ASSERT_EQ(x.Int32(), 32); +} + +TEST(NodeAttr, string) { + NodeAttr x; + x.String() = "Hello"; + ASSERT_EQ(x.String(), "Hello"); +} + TEST(Node, Attr) { // Node is an abstract class, use Value instead for they share the same Attr // logic. @@ -27,6 +45,9 @@ TEST(Node, Attr) { auto* node = nodes.Create(Node::Type::kValue); node->attr("v0").Int32() = 2008; ASSERT_EQ(node->attr("v0").Int32(), 2008); + + node->attr("str").String() = "hello world"; + ASSERT_EQ(node->attr("str").String(), "hello world"); } } // namespace analysis diff --git a/paddle/fluid/operators/recv_op.cc b/paddle/fluid/operators/recv_op.cc index 4a6ce938a5f337d035b21f562d46daf606236db0..a1f368e8690512cec2db7593aabc0279bbe174eb 100644 --- a/paddle/fluid/operators/recv_op.cc +++ b/paddle/fluid/operators/recv_op.cc @@ -57,6 +57,8 @@ class RecvOp : public framework::OperatorBase { class RecvOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() { + AddInput("X", "(Any) Dummy inputs, used for control dependency") + .AsDuplicable(); AddOutput("Out", "(Tensor) Variables to get from server.").AsDuplicable(); AddComment(R"DOC( Recv operator diff --git a/paddle/fluid/operators/send_barrier_op.cc b/paddle/fluid/operators/send_barrier_op.cc index 1866a86048acbefadcb4d82cd6309cd16f0352d6..14b07649c416ff1b671fc9b5ee4eb956b44570c5 100644 --- a/paddle/fluid/operators/send_barrier_op.cc +++ b/paddle/fluid/operators/send_barrier_op.cc @@ -37,22 +37,19 @@ class SendBarrierOp : public framework::OperatorBase { void RunImpl(const framework::Scope& scope, const platform::Place& place) const override { std::vector eps = Attr>("endpoints"); - bool sync_mode = Attr("sync_mode"); distributed::RPCClient* rpc_client = distributed::RPCClient::GetInstance(); - VLOG(3) << "SendBarrierOp sync_mode:" << sync_mode; + VLOG(3) << "SendBarrierOp sync"; // need to wait before sending send_barrier message PADDLE_ENFORCE(rpc_client->Wait(), "internal error in RPCClient"); - if (sync_mode) { - for (auto& ep : eps) { - VLOG(3) << "send barrier, ep: " << ep; - rpc_client->AsyncSendBatchBarrier(ep); - } - PADDLE_ENFORCE(rpc_client->Wait(), "internal error in RPCClient"); + for (auto& ep : eps) { + VLOG(3) << "send barrier, ep: " << ep; + rpc_client->AsyncSendBatchBarrier(ep); } + PADDLE_ENFORCE(rpc_client->Wait(), "internal error in RPCClient"); } }; @@ -70,7 +67,6 @@ the Parameter Server would knew all variables have been sent. "(string vector, default 127.0.0.1:6164)" "Server endpoints to send variables to.") .SetDefault({"127.0.0.1:6164"}); - AddAttr("sync_mode", "work in sync_mode or not").SetDefault(true); } }; diff --git a/paddle/fluid/operators/send_op.cc b/paddle/fluid/operators/send_op.cc index 3cd42f2d059532b7090e66ce21de8e5cb014adf1..82a70e4bf13247d784371ffdf419c9f792d7f721 100644 --- a/paddle/fluid/operators/send_op.cc +++ b/paddle/fluid/operators/send_op.cc @@ -66,6 +66,8 @@ class SendOpMaker : public framework::OpProtoAndCheckerMaker { void Make() { AddInput("X", "(Tensor, SelectedRows) Input variables to be sent") .AsDuplicable(); + AddOutput("Out", "(Any) Dummy outputs, used for control dependency") + .AsDuplicable(); AddComment(R"DOC( Send operator diff --git a/paddle/fluid/platform/cuda_device_function.h b/paddle/fluid/platform/cuda_device_function.h index 23457ff5fe1ec27094113ba0dde26adc64c716b5..9f504d14a8da116648483c0f64cb511b46e6a97e 100644 --- a/paddle/fluid/platform/cuda_device_function.h +++ b/paddle/fluid/platform/cuda_device_function.h @@ -36,7 +36,7 @@ __forceinline__ __device__ T CudaShuffleDownSync(unsigned mask, T val, #if CUDA_VERSION < 9000 return __shfl_down(val, delta, width); #else - return __shfl_down_sync(mask, val, delta, width); + return __shfl_down_sync(mask, val, static_cast(delta), width); #endif } @@ -46,9 +46,16 @@ template <> __forceinline__ __device__ float16 CudaShuffleDownSync(unsigned mask, float16 val, int delta, int width) { - half tmp = static_cast(val); - __shfl_down(tmp, static_cast(delta), width); - return float16(tmp); + return float16( + __shfl_down(static_cast(val), static_cast(delta), width)); +} +#else +template <> +__forceinline__ __device__ float16 CudaShuffleDownSync(unsigned mask, + float16 val, int delta, + int width) { + return float16(__shfl_down_sync(mask, static_cast(val), + static_cast(delta), width)); } #endif diff --git a/paddle/fluid/platform/cuda_helper_test.cu b/paddle/fluid/platform/cuda_helper_test.cu index ca5ca1caeb23f01c047feeccf9c276b2dcd1cb68..ee45afab93d079374aefe366425502890854c28d 100644 --- a/paddle/fluid/platform/cuda_helper_test.cu +++ b/paddle/fluid/platform/cuda_helper_test.cu @@ -13,6 +13,7 @@ // limitations under the License. #include +#include #include #include @@ -123,7 +124,7 @@ void TestUnalign(size_t num, const int shift_bit) { cudaMemcpy(out, d_in2, array_size, cudaMemcpyDeviceToHost); cudaDeviceSynchronize(); for (size_t i = 0; i < num / 2; ++i) { - // NOTE(dzhwinter): the float16 add has small underflow/overflow + // NOTE(dzhwinter): the float16 add has small truncate error. // so we use EXPECT_NEAR to check the result. EXPECT_NEAR(static_cast(out[i]), static_cast(AddFunctor()(r_in1[i], r_in2[i])), @@ -151,3 +152,83 @@ TEST(CudaAtomic, float16Unalign) { TestUnalign(static_cast(1024), /*shift_bit*/ 3); TestUnalign(static_cast(1024 * 1024), /*shift_bit*/ 3); } + +// https://devblogs.nvidia.com/faster-parallel-reductions-kepler/ +template +static __forceinline__ __device__ T WarpReduceSum(T val) { + unsigned mask = 0u; + CREATE_SHFL_MASK(mask, true); + for (int offset = warpSize / 2; offset > 0; offset /= 2) { + val += paddle::platform::CudaShuffleDownSync(mask, val, offset); + } + return val; +} + +template +__forceinline__ __device__ T BlockReduce(T val) { + static __shared__ T shared[32]; // Shared mem for 32 partial sums + int lane = threadIdx.x % warpSize; + int wid = threadIdx.x / warpSize; + + val = WarpReduceSum(val); // Each warp performs partial reduction + + if (lane == 0) shared[wid] = val; // Write reduced value to shared memory + + __syncthreads(); // Wait for all partial reductions + + // read from shared memory only if that warp existed + val = + (threadIdx.x < blockDim.x / warpSize) ? shared[lane] : static_cast(0); + + if (wid == 0) val = WarpReduceSum(val); // Final reduce within first warp + + return val; +} + +template +__global__ void DeviceReduceSum(T* in, T* out, size_t N) { + T sum(0); + for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N; + i += blockDim.x * gridDim.x) { + sum += in[i]; + } + sum = BlockReduce(sum); + __syncthreads(); + if (threadIdx.x == 0) out[blockIdx.x] = sum; +} + +template +void TestReduce(size_t num, float atol = 0.01) { + T* in1; + T *d_in1, *d_in2; + size_t size = sizeof(T) * num; + cudaMalloc(reinterpret_cast(&d_in1), size); + cudaMalloc(reinterpret_cast(&d_in2), sizeof(T)); + in1 = reinterpret_cast(malloc(size)); + std::minstd_rand engine; + std::uniform_real_distribution dist(0.0, 1.0); + for (size_t i = 0; i < num; ++i) { + in1[i] = static_cast(dist(engine)); + } + auto out = std::accumulate(in1, in1 + num, static_cast(0)); + cudaMemcpy(d_in1, in1, size, cudaMemcpyHostToDevice); + cudaDeviceSynchronize(); + DeviceReduceSum<<<1, PADDLE_CUDA_NUM_THREADS>>>(d_in1, d_in2, num); + cudaMemcpy(in1, d_in2, sizeof(T), cudaMemcpyDeviceToHost); + cudaDeviceSynchronize(); + // NOTE(dzhwinter): the float16 add has small underflow/overflow + // so we use EXPECT_NEAR to check the result. + EXPECT_NEAR(static_cast(in1[0]), static_cast(out), atol); + free(in1); + cudaFree(d_in1); + cudaFree(d_in2); +} + +TEST(CudaShuffleSync, float16) { + TestReduce(10); + TestReduce(1000); + + // float16 will overflow or accumulate truncate errors in big size. + TestReduce(10); + TestReduce(100, /*atol error*/ 1.0); +} diff --git a/paddle/scripts/submit_local.sh.in b/paddle/scripts/submit_local.sh.in index 1283de9d957a46b848c7bb6caf9c5f49398468e2..622a2d51049d164b6e8423e4054081f40f190cb9 100755 --- a/paddle/scripts/submit_local.sh.in +++ b/paddle/scripts/submit_local.sh.in @@ -54,7 +54,7 @@ function cpu_config() { if [ $platform == "Linux" ]; then ht=`lscpu |grep "per core"|awk -F':' '{print $2}'|xargs` elif [ $platform == "Darwin" ]; then - if [`sysctl -n hw.physicalcpu` -eq `sysctl -n hw.logicalcpu`]; then + if [ `sysctl -n hw.physicalcpu` -eq `sysctl -n hw.logicalcpu` ]; then # HT is OFF ht=1 fi diff --git a/python/paddle/dataset/mnist.py b/python/paddle/dataset/mnist.py index 3038747bf8d03cf82613f1b329b7eeb778a0b9f2..38addd0cfd9bd0afde7eefc57f2111b717b7e636 100644 --- a/python/paddle/dataset/mnist.py +++ b/python/paddle/dataset/mnist.py @@ -24,7 +24,6 @@ import paddle.dataset.common import subprocess import numpy import platform -import six import tempfile from six.moves import range __all__ = ['train', 'test', 'convert'] diff --git a/python/paddle/fluid/layers/io.py b/python/paddle/fluid/layers/io.py index 21a295a0982cbc51947a063beee542c13494024d..b03ee514f50f9a8c1425bd5b1d409b58ed62351a 100644 --- a/python/paddle/fluid/layers/io.py +++ b/python/paddle/fluid/layers/io.py @@ -24,7 +24,7 @@ from .layer_function_generator import templatedoc from .. import core from ..executor import global_scope from ..framework import convert_np_dtype_to_dtype_, default_main_program, \ - default_startup_program, program_guard, Program + default_startup_program, program_guard, Program, Variable from ..layer_helper import LayerHelper from ..unique_name import generate as unique_name @@ -209,7 +209,7 @@ class ListenAndServ(object): }) -def Send(endpoints, send_vars, sync=True): +def Send(endpoints, send_vars, dummy_output=None, sync=True): """ Send variables to the server side, and get vars from server side when server have finished running server side program. @@ -223,6 +223,13 @@ def Send(endpoints, send_vars, sync=True): """ assert (type(send_vars) == list) + if dummy_output is None: + dummy_output = [] + elif isinstance(dummy_output, Variable): + dummy_output = [dummy_output] + + assert (type(dummy_output) == list) + epmap = endpoints.split(",") endpoints = list(set(epmap)) @@ -232,6 +239,7 @@ def Send(endpoints, send_vars, sync=True): helper.append_op( type="send", inputs={"X": send_vars}, + outputs={"Out": dummy_output}, attrs={ "endpoints": endpoints, "epmap": epmap, @@ -241,7 +249,7 @@ def Send(endpoints, send_vars, sync=True): helper.append_op(type="send_barrier", attrs={"endpoints": endpoints}) -def Recv(endpoints, get_vars, sync=True): +def Recv(endpoints, get_vars, dummy_input=None, sync=True): """ Receive variables from server side @@ -256,13 +264,20 @@ def Recv(endpoints, get_vars, sync=True): """ assert (type(get_vars) == list) + if dummy_input is None: + dummy_input = [] + elif isinstance(dummy_input, Variable): + dummy_input = [dummy_input] + + assert (type(dummy_input) == list) + epmap = endpoints.split(",") endpoints = list(set(epmap)) helper = LayerHelper("Recv", **locals()) helper.append_op( type="recv", - inputs={"X": get_vars}, + inputs={"X": dummy_input}, outputs={"Out": get_vars}, attrs={"endpoints": endpoints, "epmap": epmap}) diff --git a/python/paddle/fluid/tests/unittests/dist_se_resnext.py b/python/paddle/fluid/tests/unittests/dist_se_resnext.py index b0ee6ff9f5941b090e663dac0122cfb575f2f442..1307ba4e4ad11ef01094c44068d916ff2d442f78 100644 --- a/python/paddle/fluid/tests/unittests/dist_se_resnext.py +++ b/python/paddle/fluid/tests/unittests/dist_se_resnext.py @@ -16,7 +16,6 @@ from __future__ import print_function import numpy as np import argparse -import six import time import math diff --git a/python/paddle/fluid/transpiler/distribute_transpiler.py b/python/paddle/fluid/transpiler/distribute_transpiler.py index 49d1b6c7b4e8fe353a4e849a407bc988183c96eb..57bc2e8a0ba173bb1273a5183340d0b618f0d73c 100644 --- a/python/paddle/fluid/transpiler/distribute_transpiler.py +++ b/python/paddle/fluid/transpiler/distribute_transpiler.py @@ -34,6 +34,7 @@ import math import random import numpy as np import collections +import six from .ps_dispatcher import RoundRobin, HashName, PSDispatcher from .. import core, framework @@ -210,6 +211,9 @@ class DistributeTranspiler(object): ps_dispatcher = self.config.split_method(self.pserver_endpoints) self.has_distributed_lookup_table = self._has_distributed_lookup_table() + self.param_name_to_grad_name = dict() + for param_var, grad_var in self.params_grads: + self.param_name_to_grad_name[param_var.name] = grad_var.name # step 1: split and create vars, then put splited vars in dicts for later use. self._init_splited_vars() @@ -229,34 +233,39 @@ class DistributeTranspiler(object): random.seed(self.origin_program.random_seed) random.shuffle(grad_var_mapping_items) - for orig_varname, splited_vars in grad_var_mapping_items: + grad_name_to_send_dummy_out = dict() + for grad_varname, splited_vars in grad_var_mapping_items: eplist = ps_dispatcher.dispatch(splited_vars) if not self.config.slice_var_up: assert (len(splited_vars) == 1) + splited_grad_varname = grad_varname if len(splited_vars) == 1: - orig_varname = splited_vars[0].name + splited_grad_varname = splited_vars[0].name index = find_op_by_output_arg(program.global_block(), - orig_varname) + splited_grad_varname) elif len(splited_vars) > 1: - orig_var = program.global_block().vars[orig_varname] + orig_var = program.global_block().vars[splited_grad_varname] index = find_op_by_output_arg(program.global_block(), - orig_varname) + splited_grad_varname) self._insert_split_op(program, orig_var, index, splited_vars) index += 1 else: AssertionError("Can not insert the send op by original " - "variable name :", orig_varname) + "variable name :", splited_grad_varname) + dummy_output = program.global_block().create_var() + grad_name_to_send_dummy_out[grad_varname] = dummy_output program.global_block()._insert_op( index=index + 1, type="send", inputs={"X": splited_vars}, - outputs={}, + outputs={"Out": dummy_output}, attrs={ "epmap": eplist, - RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE + RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE, + "sync_mode": not self.sync_mode, }) for _, var in enumerate(splited_vars): send_vars.append(var) @@ -268,7 +277,6 @@ class DistributeTranspiler(object): outputs={}, attrs={ "endpoints": pserver_endpoints, - "sync_mode": self.sync_mode, RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE }) @@ -284,19 +292,21 @@ class DistributeTranspiler(object): self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i]) # step4: Concat the parameters splits together after recv. - for varname, splited_var in six.iteritems(self.param_var_mapping): + for param_varname, splited_var in six.iteritems(self.param_var_mapping): eps = [] for var in splited_var: index = [v.name for v in recv_vars].index(var.name) eps.append(eplist[index]) - + grad_send_dummy_out = grad_name_to_send_dummy_out[ + self.param_name_to_grad_name[param_varname]] program.global_block().append_op( type="recv", - inputs={}, + inputs={"X": [grad_send_dummy_out]}, outputs={"Out": splited_var}, attrs={ "epmap": eps, - RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE + RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE, + "sync_mode": not self.sync_mode }) if self.sync_mode: @@ -309,10 +319,10 @@ class DistributeTranspiler(object): RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE }) - for varname, splited_var in six.iteritems(self.param_var_mapping): + for param_varname, splited_var in six.iteritems(self.param_var_mapping): if len(splited_var) <= 1: continue - orig_param = program.global_block().vars[varname] + orig_param = program.global_block().vars[param_varname] program.global_block().append_op( type="concat", inputs={"X": splited_var}, @@ -380,7 +390,7 @@ class DistributeTranspiler(object): op = startup_program.global_block().append_op( type="recv", - inputs={}, + inputs={"X": []}, outputs={"Out": splited_var}, attrs={ "epmap": eps, @@ -786,19 +796,21 @@ class DistributeTranspiler(object): self.config.min_block_size) assert (len(grad_blocks) == len(param_blocks)) - # origin_varname -> [splited_var] + # origin_param_name -> [splited_param_vars] self.param_var_mapping = self._create_vars_from_blocklist( self.origin_program, param_blocks) + # origin_grad_name -> [splited_grad_vars] self.grad_var_mapping = self._create_vars_from_blocklist( self.origin_program, grad_blocks, add_trainer_suffix=self.trainer_num > 1) + # dict(grad_splited_var -> param_splited_var) self.grad_param_mapping = collections.OrderedDict() for g, p in zip(grad_blocks, param_blocks): g_name, g_bid, _ = g.split(":") p_name, p_bid, _ = p.split(":") self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \ - self.param_var_mapping[p_name][int(p_bid)] + self.param_var_mapping[p_name][int(p_bid)] # create mapping of endpoint -> split var to create pserver side program self.param_grad_ep_mapping = collections.OrderedDict() @@ -919,7 +931,7 @@ class DistributeTranspiler(object): index=op_index + 2, type="send", inputs={'X': self.trainer_side_table_grad_list}, - outputs={}, + outputs={'Out': []}, attrs={ "sync_mode": True, "epmap": pserver_endpoints, diff --git a/tools/manylinux1/Dockerfile.x64 b/tools/manylinux1/Dockerfile.x64 index 987fc01cfc13bcefbb9d792a6780fdfff158755d..0d59e4c110ff8502acb4dbcda15f855f7652a946 100644 --- a/tools/manylinux1/Dockerfile.x64 +++ b/tools/manylinux1/Dockerfile.x64 @@ -13,7 +13,7 @@ ENV PATH /opt/rh/devtoolset-2/root/usr/bin:$PATH ENV LD_LIBRARY_PATH /opt/rh/devtoolset-2/root/usr/lib64:/opt/rh/devtoolset-2/root/usr/lib:/usr/local/lib64:/usr/local/lib:${LD_LIBRARY_PATH} ENV PKG_CONFIG_PATH=/usr/local/lib/pkgconfig -RUN yum install -y sqlite-devel zlib-devel openssl-devel pcre-devel vim tk-devel tkinter libtool xz freetype-devel libpng-devel graphviz +RUN yum install -y sqlite-devel zlib-devel openssl-devel pcre-devel vim tk-devel tkinter libtool xz graphviz COPY build_scripts /build_scripts RUN bash build_scripts/build.sh && \ bash build_scripts/install_nccl2.sh && rm -r build_scripts diff --git a/tools/manylinux1/build_scripts/build.sh b/tools/manylinux1/build_scripts/build.sh index d99d3db2ed7e3a719f044d8117baeb7ac212b74d..eb4b477dcb538f7ba17cfc54057a97c9669a6916 100644 --- a/tools/manylinux1/build_scripts/build.sh +++ b/tools/manylinux1/build_scripts/build.sh @@ -28,7 +28,7 @@ AUTOCONF_HASH=954bd69b391edc12d6a4a51a2dd1476543da5c6bbf05a95b59dc0dd6fd4c2969 PYTHON_COMPILE_DEPS="zlib-devel bzip2-devel ncurses-devel sqlite-devel readline-devel tk-devel gdbm-devel db4-devel libpcap-devel xz-devel" # Libraries that are allowed as part of the manylinux1 profile -MANYLINUX1_DEPS="glibc-devel libstdc++-devel glib2-devel libX11-devel libXext-devel libXrender-devel mesa-libGL-devel libICE-devel libSM-devel ncurses-devel" +MANYLINUX1_DEPS="glibc-devel libstdc++-devel glib2-devel libX11-devel libXext-devel libXrender-devel mesa-libGL-devel libICE-devel libSM-devel ncurses-devel freetype-devel libpng-devel" # Get build utilities MY_DIR=$(dirname "${BASH_SOURCE[0]}")