Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
3d2b2d40
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3d2b2d40
编写于
12月 27, 2017
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine doc
上级
1d936f1d
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
32 addition
and
28 deletion
+32
-28
python/paddle/v2/fluid/layers/nn.py
python/paddle/v2/fluid/layers/nn.py
+32
-28
未找到文件。
python/paddle/v2/fluid/layers/nn.py
浏览文件 @
3d2b2d40
...
...
@@ -478,8 +478,7 @@ def conv2d(input,
groups
=
None
,
param_attr
=
None
,
bias_attr
=
None
,
act
=
None
,
name
=
None
):
act
=
None
):
"""
**Convlution2D Layer**
...
...
@@ -502,42 +501,47 @@ def conv2d(input,
* :math:`X`: Input value, a tensor with NCHW format.
* :math:`W`: Filter value, a tensor with MCHW format.
* :math:
\\
ast
: Convolution operation.
* :math:
`
\\
ast`
: Convolution operation.
* :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
* :math:
\\
sigma
: Activation function.
* :math:
`
\\
sigma`
: Activation function.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Example:
-
Input:
Input:
Input shape: $(N, C_{in}, H_{in}, W_{in})$
Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
-
Output:
Output:
Output shape: $(N, C_{out}, H_{out}, W_{out})$
Where
.. math::
H_{out}=
\\
frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1
W_{out}=
\\
frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
All the input variables are passed in as local variables to the LayerHelper
constructor.
H_{out}&=
\\
frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1
\\\\
W_{out}&=
\\
frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
Args:
input(Variable): Input tensors. The format of input tensor is NCHW.
num_filters(int): Number of filters
filter_size(list/int): Filter size of Conv2d Layer
stride(list/int, optional): Strides(h_s, w_s) of Conv2d Layer. Default: 1
padding(list/int, optional): Paddings(h_pad, w_pad) of Conv2d Layer. Default: 0
groups(int, optional): The groups number of the Conv2d Layer. Default: 1
input(Variable): The input image with [N, C, H, W] format.
num_filters(int): The number of filter. It is as same as the output
image channel.
filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
it must contain two integers, (filter_size_H, filter_size_W).
Otherwise, the filter will be a square.
stride(int|tuple): The stride size. If stride is a tuple, it must
contain two integers, (stride_H, stride_W). Otherwise, the
stride_H = stride_W = stride. Default: stride = 1.
padding(int|tuple): The padding size. If padding is a tuple, it must
contain two integers, (padding_H, padding_W). Otherwise, the
padding_H = padding_W = padding. Default: padding = 0.
groups(int): The groups number of the Conv2d Layer. According to grouped
convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
the first half of the filters is only connected to the first half
of the input channels, while the second half of the filters is only
connected to the second half of the input channels. Default: groups=1
param_attr(ParamAttr): The parameters to the Conv2d Layer. Default: None
bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
act(str): Activation type. Default: None
name(str): Name/alias of the function
Returns:
Variable: The tensor variable storing the convolution and
\
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录