Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
3b9f040d
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3b9f040d
编写于
8月 16, 2021
作者:
Q
Qi Li
提交者:
GitHub
8月 16, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[NPU] add nearest_interp_v2 and nearest_interp_v2_grad, test=develop (#34769)
上级
e4e8cc9b
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
704 addition
and
0 deletion
+704
-0
paddle/fluid/operators/interpolate_v2_op.h
paddle/fluid/operators/interpolate_v2_op.h
+6
-0
paddle/fluid/operators/interpolate_v2_op_npu.cc
paddle/fluid/operators/interpolate_v2_op_npu.cc
+332
-0
python/paddle/fluid/tests/unittests/npu/test_nearest_interp_v2_op_npu.py
...luid/tests/unittests/npu/test_nearest_interp_v2_op_npu.py
+366
-0
未找到文件。
paddle/fluid/operators/interpolate_v2_op.h
浏览文件 @
3b9f040d
...
...
@@ -58,6 +58,12 @@ inline std::vector<T> get_new_data_from_tensor(const Tensor* new_data_tensor) {
TensorCopySync
(
*
new_data_tensor
,
platform
::
CPUPlace
(),
&
cpu_starts_tensor
);
new_data
=
cpu_starts_tensor
.
data
<
T
>
();
}
#ifdef PADDLE_WITH_ASCEND_CL
if
(
platform
::
is_npu_place
(
new_data_tensor
->
place
()))
{
TensorCopySync
(
*
new_data_tensor
,
platform
::
CPUPlace
(),
&
cpu_starts_tensor
);
new_data
=
cpu_starts_tensor
.
data
<
T
>
();
}
#endif
vec_new_data
=
std
::
vector
<
T
>
(
new_data
,
new_data
+
new_data_tensor
->
numel
());
return
vec_new_data
;
}
...
...
paddle/fluid/operators/interpolate_v2_op_npu.cc
0 → 100644
浏览文件 @
3b9f040d
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the Licnse. */
#include "paddle/fluid/operators/interpolate_v2_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
DataLayout
=
framework
::
DataLayout
;
template
<
typename
DeviceContext
,
typename
T
>
class
InterpolateV2NPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
input_dims
=
input
->
dims
();
PADDLE_ENFORCE_EQ
(
input_dims
.
size
(),
4UL
,
platform
::
errors
::
External
(
"NPU Interpolate Kernel only support 4-D Tensor."
));
const
std
::
string
data_layout_str
=
ctx
.
Attr
<
std
::
string
>
(
"data_layout"
);
const
DataLayout
data_layout
=
framework
::
StringToDataLayout
(
data_layout_str
);
int
n
,
c
,
in_d
,
in_h
,
in_w
;
ExtractNCDWH
(
input_dims
,
data_layout
,
&
n
,
&
c
,
&
in_d
,
&
in_h
,
&
in_w
);
PADDLE_ENFORCE_EQ
(
input
->
layout
(),
data_layout
,
platform
::
errors
::
InvalidArgument
(
"Interpolate OP's input tensor layout should equal to attr "
"data_layout, but got tensor layout <%s>, attr layout <%s>"
,
framework
::
DataLayoutToString
(
input
->
layout
()),
data_layout_str
));
PADDLE_ENFORCE_EQ
(
output
->
layout
(),
data_layout
,
platform
::
errors
::
InvalidArgument
(
"Interpolate OP's output tensor layout should equal to attr "
"data_layout, but got tensor layout <%s>, attr layout <%s>"
,
framework
::
DataLayoutToString
(
output
->
layout
()),
data_layout_str
));
auto
interp_method
=
ctx
.
Attr
<
std
::
string
>
(
"interp_method"
);
bool
align_corners
=
ctx
.
Attr
<
bool
>
(
"align_corners"
);
// To-do(qili93): need to support align_corners = true case, try ReSizeD
PADDLE_ENFORCE_EQ
(
align_corners
,
false
,
platform
::
errors
::
InvalidArgument
(
"NPU Interpolate Kernel has diff when align_corners is true."
));
int
out_h
=
ctx
.
Attr
<
int
>
(
"out_h"
);
int
out_w
=
ctx
.
Attr
<
int
>
(
"out_w"
);
float
scale_h
=
-
1
;
float
scale_w
=
-
1
;
// Priority: SizeTensor > OutSize > Scale > scale > out_h & out_w
auto
list_new_shape_tensor
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"SizeTensor"
);
if
(
list_new_shape_tensor
.
size
()
>
0
)
{
std
::
vector
<
int32_t
>
output_h
(
1
);
std
::
vector
<
int32_t
>
output_w
(
1
);
auto
dev_ctx
=
platform
::
DeviceContextPool
::
Instance
().
Get
(
ctx
.
GetPlace
());
framework
::
TensorToVector
(
*
list_new_shape_tensor
[
0
],
*
dev_ctx
,
&
output_h
);
framework
::
TensorToVector
(
*
list_new_shape_tensor
[
1
],
*
dev_ctx
,
&
output_w
);
out_h
=
output_h
[
0
];
out_w
=
output_w
[
0
];
}
else
if
(
ctx
.
HasInput
(
"OutSize"
))
{
auto
out_size
=
ctx
.
Input
<
Tensor
>
(
"OutSize"
);
auto
out_size_data
=
get_new_data_from_tensor
<
int
>
(
out_size
);
out_h
=
out_size_data
[
0
];
out_w
=
out_size_data
[
1
];
}
else
{
auto
scale_tensor
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
auto
scale
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"scale"
);
if
(
scale_tensor
!=
nullptr
)
{
auto
scale_data
=
get_new_data_from_tensor
<
float
>
(
scale_tensor
);
if
(
scale_data
.
size
()
>
1
)
{
scale_h
=
scale_data
[
0
];
scale_w
=
scale_data
[
1
];
}
else
{
scale_h
=
scale_data
[
0
];
scale_w
=
scale_data
[
0
];
}
PADDLE_ENFORCE_EQ
(
scale_w
>
0
,
true
,
platform
::
errors
::
InvalidArgument
(
"The scale_w in input 'Scale' Tensor of Operator(interpolate) "
"should be greater than 0, but received value is %d."
,
scale_w
));
PADDLE_ENFORCE_EQ
(
scale_h
>
0
,
true
,
platform
::
errors
::
InvalidArgument
(
"The scale_h in input 'Scale' Tensor of Operator(interpolate) "
"should be greater than 0, but received value is %d."
,
scale_h
));
}
else
{
if
(
scale
.
size
()
>
1
)
{
scale_h
=
scale
[
0
];
scale_w
=
scale
[
1
];
PADDLE_ENFORCE_EQ
(
scale_w
>
0
,
true
,
platform
::
errors
::
InvalidArgument
(
"The scale_w in Attr(scale) of Operator(interpolate) "
"should be greater than 0, but received value is %d."
,
scale_w
));
PADDLE_ENFORCE_EQ
(
scale_h
>
0
,
true
,
platform
::
errors
::
InvalidArgument
(
"The scale_h in Attr(scale) of Operator(interpolate) "
"should be greater than 0, but received value is %d."
,
scale_h
));
}
}
if
(
scale_h
>
0.
&&
scale_w
>
0.
)
{
out_h
=
static_cast
<
int
>
(
in_h
*
scale_h
);
out_w
=
static_cast
<
int
>
(
in_w
*
scale_w
);
}
}
PADDLE_ENFORCE_GT
(
out_h
,
0
,
platform
::
errors
::
InvalidArgument
(
"out_h in Attr(out_shape) of Op(interpolate) "
"should be greater than 0."
));
PADDLE_ENFORCE_GT
(
out_w
,
0
,
platform
::
errors
::
InvalidArgument
(
"out_w in Attr(out_shape) of Op(interpolate) "
"should be greater than 0."
));
framework
::
DDim
dim_out
;
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
dim_out
=
{
n
,
c
,
out_h
,
out_w
};
}
else
{
dim_out
=
{
n
,
out_h
,
out_w
,
c
};
}
output
->
mutable_data
<
T
>
(
dim_out
,
ctx
.
GetPlace
());
if
(
in_h
==
out_h
&&
in_w
==
out_w
)
{
framework
::
TensorCopy
(
*
input
,
ctx
.
GetPlace
(),
output
);
return
;
}
auto
stream
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
NpuOpRunner
runner
;
// To-do(qili93): need to support bilineare, try ResizeD
if
(
"nearest"
==
interp_method
)
{
runner
.
SetType
(
"ResizeNearestNeighborV2"
)
.
AddInput
(
*
input
)
.
AddInput
(
std
::
vector
<
int32_t
>
{
out_h
,
out_w
})
.
AddOutput
(
*
output
)
.
AddAttr
(
"align_corners"
,
align_corners
)
.
AddAttr
(
"half_pixel_centers"
,
false
);
}
runner
.
Run
(
stream
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
InterpolateV2NPUGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
output_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
const
std
::
string
data_layout_str
=
ctx
.
Attr
<
std
::
string
>
(
"data_layout"
);
const
DataLayout
data_layout
=
framework
::
StringToDataLayout
(
data_layout_str
);
int
n
,
c
,
in_d
,
in_h
,
in_w
;
ExtractNCDWH
(
input
->
dims
(),
data_layout
,
&
n
,
&
c
,
&
in_d
,
&
in_h
,
&
in_w
);
PADDLE_ENFORCE_EQ
(
input
->
layout
(),
data_layout
,
platform
::
errors
::
InvalidArgument
(
"Interpolate OP's input tensor layout should equal to attr "
"data_layout, but got tensor layout <%s>, attr layout <%s>"
,
framework
::
DataLayoutToString
(
input
->
layout
()),
data_layout_str
));
PADDLE_ENFORCE_EQ
(
output_grad
->
layout
(),
data_layout
,
platform
::
errors
::
InvalidArgument
(
"Interpolate OP's output_grad tensor layout should "
"equal to attr data_layout, but got tensor layout is "
"<%s>, and attr layout is <%s>"
,
framework
::
DataLayoutToString
(
output_grad
->
layout
()),
data_layout_str
));
PADDLE_ENFORCE_EQ
(
input_grad
->
layout
(),
data_layout
,
platform
::
errors
::
InvalidArgument
(
"Interpolate OP's input_grad tensor layout should "
"equal to attr data_layout, but got tensor layout is "
"<%s>, and attr layout is <%s>"
,
framework
::
DataLayoutToString
(
input_grad
->
layout
()),
data_layout_str
));
auto
interp_method
=
ctx
.
Attr
<
std
::
string
>
(
"interp_method"
);
bool
align_corners
=
ctx
.
Attr
<
bool
>
(
"align_corners"
);
// To-do(qili93): need to support align_corners = true case, try ReSizeD
PADDLE_ENFORCE_EQ
(
align_corners
,
false
,
platform
::
errors
::
InvalidArgument
(
"NPU Interpolate Kernel has diff when align_corners is true."
));
int
out_h
=
ctx
.
Attr
<
int
>
(
"out_h"
);
int
out_w
=
ctx
.
Attr
<
int
>
(
"out_w"
);
float
scale_h
=
-
1
;
float
scale_w
=
-
1
;
// Priority: SizeTensor > OutSize > Scale > scale > out_h & out_w
auto
list_new_size_tensor
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"SizeTensor"
);
if
(
list_new_size_tensor
.
size
()
>
0
)
{
std
::
vector
<
int32_t
>
output_h
(
1
);
std
::
vector
<
int32_t
>
output_w
(
1
);
auto
dev_ctx
=
platform
::
DeviceContextPool
::
Instance
().
Get
(
ctx
.
GetPlace
());
framework
::
TensorToVector
(
*
list_new_size_tensor
[
0
],
*
dev_ctx
,
&
output_h
);
framework
::
TensorToVector
(
*
list_new_size_tensor
[
1
],
*
dev_ctx
,
&
output_w
);
out_h
=
output_h
[
0
];
out_w
=
output_w
[
0
];
}
else
if
(
ctx
.
HasInput
(
"OutSize"
))
{
auto
out_size
=
ctx
.
Input
<
Tensor
>
(
"OutSize"
);
auto
out_size_data
=
get_new_data_from_tensor
<
int
>
(
out_size
);
out_h
=
out_size_data
[
0
];
out_w
=
out_size_data
[
1
];
}
else
{
auto
scale_tensor
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
auto
scale
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"scale"
);
if
(
scale_tensor
!=
nullptr
)
{
auto
scale_data
=
get_new_data_from_tensor
<
float
>
(
scale_tensor
);
if
(
scale_data
.
size
()
>
1
)
{
scale_h
=
scale_data
[
0
];
scale_w
=
scale_data
[
1
];
}
else
{
scale_w
=
scale_data
[
0
];
scale_h
=
scale_data
[
0
];
}
PADDLE_ENFORCE_EQ
(
scale_w
>
0
,
true
,
platform
::
errors
::
InvalidArgument
(
"The scale_w in input 'Scale' Tensor of Operator(interpolate) "
"should be greater than 0, but received value is %d."
,
scale_w
));
PADDLE_ENFORCE_EQ
(
scale_h
>
0
,
true
,
platform
::
errors
::
InvalidArgument
(
"The scale_h in input 'Scale' Tensor of Operator(interpolate) "
"should be greater than 0, but received value is %d."
,
scale_h
));
}
else
{
if
(
scale
.
size
()
>
1
)
{
scale_h
=
scale
[
0
];
scale_w
=
scale
[
1
];
PADDLE_ENFORCE_EQ
(
scale_w
>
0
,
true
,
platform
::
errors
::
InvalidArgument
(
"The scale_w in Attr(scale) of Operator(interpolate) "
"should be greater than 0, but received value is %d."
,
scale_w
));
PADDLE_ENFORCE_EQ
(
scale_h
>
0
,
true
,
platform
::
errors
::
InvalidArgument
(
"The scale_h in Attr(scale) of Operator(interpolate) "
"should be greater than 0, but received value is %d."
,
scale_h
));
}
}
if
(
scale_h
>
0.
&&
scale_w
>
0.
)
{
out_h
=
static_cast
<
int
>
(
in_h
*
scale_h
);
out_w
=
static_cast
<
int
>
(
in_w
*
scale_w
);
}
}
framework
::
DDim
dim_grad
;
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
dim_grad
=
{
n
,
c
,
in_h
,
in_w
};
}
else
{
dim_grad
=
{
n
,
in_h
,
in_w
,
c
};
}
input_grad
->
mutable_data
<
T
>
(
dim_grad
,
ctx
.
GetPlace
());
if
(
in_h
==
out_h
&&
in_w
==
out_w
)
{
framework
::
TensorCopy
(
*
output_grad
,
ctx
.
GetPlace
(),
input_grad
);
return
;
}
auto
stream
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
NpuOpRunner
runner
;
// To-do(qili93): need to support bilineare, try ResizeGradD
if
(
"nearest"
==
interp_method
)
{
runner
.
SetType
(
"ResizeNearestNeighborV2Grad"
)
.
AddInput
(
*
output_grad
)
.
AddInput
(
std
::
vector
<
int32_t
>
{
in_h
,
in_w
})
.
AddOutput
(
*
input_grad
)
.
AddAttr
(
"align_corners"
,
align_corners
)
.
AddAttr
(
"half_pixel_centers"
,
false
);
}
runner
.
Run
(
stream
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_NPU_KERNEL
(
nearest_interp_v2
,
ops
::
InterpolateV2NPUKernel
<
plat
::
NPUDeviceContext
,
float
>
,
ops
::
InterpolateV2NPUKernel
<
plat
::
NPUDeviceContext
,
plat
::
float16
>
);
REGISTER_OP_NPU_KERNEL
(
nearest_interp_v2_grad
,
ops
::
InterpolateV2NPUGradKernel
<
plat
::
NPUDeviceContext
,
float
>
,
ops
::
InterpolateV2NPUGradKernel
<
plat
::
NPUDeviceContext
,
plat
::
float16
>
);
python/paddle/fluid/tests/unittests/npu/test_nearest_interp_v2_op_npu.py
0 → 100755
浏览文件 @
3b9f040d
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
import
paddle.nn
as
nn
import
paddle
from
paddle.nn.functional
import
interpolate
from
test_nearest_interp_v2_op
import
nearest_neighbor_interp_np
paddle
.
enable_static
()
class
TestNearestInterpOp
(
OpTest
):
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
self
.
place
=
paddle
.
NPUPlace
(
0
)
def
setUp
(
self
):
self
.
set_npu
()
self
.
out_size
=
None
self
.
actual_shape
=
None
self
.
data_layout
=
'NCHW'
self
.
init_test_case
()
self
.
op_type
=
"nearest_interp_v2"
input_np
=
np
.
random
.
random
(
self
.
input_shape
).
astype
(
"float32"
)
if
self
.
data_layout
==
"NCHW"
:
in_h
=
self
.
input_shape
[
2
]
in_w
=
self
.
input_shape
[
3
]
else
:
in_h
=
self
.
input_shape
[
1
]
in_w
=
self
.
input_shape
[
2
]
scale_h
=
0
scale_w
=
0
if
self
.
scale
:
if
isinstance
(
self
.
scale
,
float
)
or
isinstance
(
self
.
scale
,
int
):
if
self
.
scale
>
0
:
scale_h
=
scale_w
=
float
(
self
.
scale
)
if
isinstance
(
self
.
scale
,
list
)
and
len
(
self
.
scale
)
==
1
:
scale_w
=
scale_h
=
self
.
scale
[
0
]
elif
isinstance
(
self
.
scale
,
list
)
and
len
(
self
.
scale
)
>
1
:
scale_w
=
self
.
scale
[
1
]
scale_h
=
self
.
scale
[
0
]
output_h
=
int
(
in_h
*
scale_h
)
output_w
=
int
(
in_w
*
scale_w
)
else
:
output_h
=
self
.
out_h
output_w
=
self
.
out_w
output_np
=
nearest_neighbor_interp_np
(
input_np
,
output_h
,
output_w
,
scale_h
,
scale_w
,
self
.
out_size
,
self
.
actual_shape
,
self
.
align_corners
,
self
.
data_layout
)
self
.
inputs
=
{
'X'
:
input_np
}
if
self
.
out_size
is
not
None
:
self
.
inputs
[
'OutSize'
]
=
self
.
out_size
if
self
.
actual_shape
is
not
None
:
self
.
inputs
[
'OutSize'
]
=
self
.
actual_shape
self
.
attrs
=
{
'out_h'
:
self
.
out_h
,
'out_w'
:
self
.
out_w
,
'interp_method'
:
self
.
interp_method
,
'align_corners'
:
self
.
align_corners
,
'data_layout'
:
self
.
data_layout
}
if
self
.
scale
:
if
isinstance
(
self
.
scale
,
float
)
or
isinstance
(
self
.
scale
,
int
):
if
self
.
scale
>
0
:
self
.
scale
=
[
self
.
scale
]
if
isinstance
(
self
.
scale
,
list
)
and
len
(
self
.
scale
)
==
1
:
self
.
scale
=
[
self
.
scale
[
0
],
self
.
scale
[
0
]]
self
.
attrs
[
'scale'
]
=
self
.
scale
self
.
outputs
=
{
'Out'
:
output_np
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
,
in_place
=
True
,
max_relative_error
=
0.006
)
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
2
,
3
,
4
,
5
]
self
.
out_h
=
2
self
.
out_w
=
2
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
3
,
3
]).
astype
(
"int32"
)
self
.
align_corners
=
False
class
TestNearestNeighborInterpCase1
(
TestNearestInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
4
,
1
,
7
,
8
]
self
.
out_h
=
1
self
.
out_w
=
1
self
.
scale
=
0.
self
.
align_corners
=
False
class
TestNearestNeighborInterpCase2
(
TestNearestInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
3
,
3
,
9
,
6
]
self
.
out_h
=
12
self
.
out_w
=
12
self
.
scale
=
0.
self
.
align_corners
=
False
class
TestNearestNeighborInterpCase3
(
TestNearestInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
1
,
1
,
32
,
64
]
self
.
out_h
=
64
self
.
out_w
=
32
self
.
scale
=
0.
self
.
align_corners
=
False
class
TestNearestNeighborInterpCase4
(
TestNearestInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
4
,
1
,
7
,
8
]
self
.
out_h
=
1
self
.
out_w
=
1
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
2
,
2
]).
astype
(
"int32"
)
self
.
align_corners
=
False
class
TestNearestNeighborInterpCase5
(
TestNearestInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
3
,
3
,
9
,
6
]
self
.
out_h
=
12
self
.
out_w
=
12
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
11
,
11
]).
astype
(
"int32"
)
self
.
align_corners
=
False
class
TestNearestNeighborInterpCase6
(
TestNearestInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
1
,
1
,
32
,
64
]
self
.
out_h
=
64
self
.
out_w
=
32
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
65
,
129
]).
astype
(
"int32"
)
self
.
align_corners
=
False
class
TestNearestNeighborInterpSame
(
TestNearestInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
2
,
3
,
32
,
64
]
self
.
out_h
=
32
self
.
out_w
=
64
self
.
scale
=
0.
self
.
align_corners
=
False
class
TestNearestNeighborInterpActualShape
(
TestNearestInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
3
,
2
,
32
,
16
]
self
.
out_h
=
64
self
.
out_w
=
32
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
66
,
40
]).
astype
(
"int32"
)
self
.
align_corners
=
False
class
TestNearestNeighborInterpScale1
(
TestNearestInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
3
,
2
,
7
,
5
]
self
.
out_h
=
64
self
.
out_w
=
32
self
.
scale
=
2.
self
.
out_size
=
None
self
.
align_corners
=
False
class
TestNearestNeighborInterpScale2
(
TestNearestInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
3
,
2
,
5
,
7
]
self
.
out_h
=
64
self
.
out_w
=
32
self
.
scale
=
1.5
self
.
out_size
=
None
self
.
align_corners
=
False
class
TestNearestNeighborInterpScale3
(
TestNearestInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
3
,
2
,
7
,
5
]
self
.
out_h
=
64
self
.
out_w
=
32
self
.
scale
=
[
2.0
,
3.0
]
self
.
out_size
=
None
self
.
align_corners
=
False
class
TestNearestInterpOp_attr_tensor
(
OpTest
):
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
self
.
place
=
paddle
.
NPUPlace
(
0
)
def
setUp
(
self
):
self
.
set_npu
()
self
.
out_size
=
None
self
.
actual_shape
=
None
self
.
init_test_case
()
self
.
op_type
=
"nearest_interp_v2"
self
.
shape_by_1Dtensor
=
False
self
.
scale_by_1Dtensor
=
False
self
.
attrs
=
{
'interp_method'
:
self
.
interp_method
,
'align_corners'
:
self
.
align_corners
,
}
input_np
=
np
.
random
.
random
(
self
.
input_shape
).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
input_np
}
if
self
.
scale_by_1Dtensor
:
self
.
inputs
[
'Scale'
]
=
np
.
array
([
self
.
scale
]).
astype
(
"float32"
)
elif
self
.
scale
:
if
isinstance
(
self
.
scale
,
float
)
or
isinstance
(
self
.
scale
,
int
):
if
self
.
scale
>
0
:
scale_h
=
scale_w
=
float
(
self
.
scale
)
if
isinstance
(
self
.
scale
,
list
)
and
len
(
self
.
scale
)
==
1
:
scale_w
=
scale_h
=
self
.
scale
[
0
]
elif
isinstance
(
self
.
scale
,
list
)
and
len
(
self
.
scale
)
>
1
:
scale_w
=
self
.
scale
[
1
]
scale_h
=
self
.
scale
[
0
]
out_h
=
int
(
self
.
input_shape
[
2
]
*
scale_h
)
out_w
=
int
(
self
.
input_shape
[
3
]
*
scale_w
)
else
:
out_h
=
self
.
out_h
out_w
=
self
.
out_w
if
self
.
shape_by_1Dtensor
:
self
.
inputs
[
'OutSize'
]
=
self
.
out_size
elif
self
.
out_size
is
not
None
:
size_tensor
=
[]
for
index
,
ele
in
enumerate
(
self
.
out_size
):
size_tensor
.
append
((
"x"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
'int32'
)
*
ele
))
self
.
inputs
[
'SizeTensor'
]
=
size_tensor
self
.
attrs
[
'out_h'
]
=
self
.
out_h
self
.
attrs
[
'out_w'
]
=
self
.
out_w
if
self
.
scale
:
if
isinstance
(
self
.
scale
,
float
)
or
isinstance
(
self
.
scale
,
int
):
if
self
.
scale
>
0
:
self
.
scale
=
[
self
.
scale
]
if
isinstance
(
self
.
scale
,
list
)
and
len
(
self
.
scale
)
==
1
:
self
.
scale
=
[
self
.
scale
[
0
],
self
.
scale
[
0
]]
self
.
attrs
[
'scale'
]
=
self
.
scale
output_np
=
nearest_neighbor_interp_np
(
input_np
,
out_h
,
out_w
,
0
,
0
,
self
.
out_size
,
self
.
actual_shape
,
self
.
align_corners
)
self
.
outputs
=
{
'Out'
:
output_np
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
,
in_place
=
True
)
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
2
,
5
,
4
,
4
]
self
.
out_h
=
3
self
.
out_w
=
3
self
.
scale
=
0.
self
.
out_size
=
[
3
,
3
]
self
.
align_corners
=
False
# out_size is a tensor list
class
TestNearestInterp_attr_tensor_Case1
(
TestNearestInterpOp_attr_tensor
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
3
,
3
,
9
,
6
]
self
.
out_h
=
12
self
.
out_w
=
12
self
.
scale
=
0.
self
.
out_size
=
[
8
,
12
]
self
.
align_corners
=
False
# out_size is a 1-D tensor
class
TestNearestInterp_attr_tensor_Case2
(
TestNearestInterpOp_attr_tensor
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
3
,
2
,
32
,
16
]
self
.
out_h
=
64
self
.
out_w
=
32
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
66
,
40
]).
astype
(
"int32"
)
self
.
align_corners
=
False
self
.
shape_by_1Dtensor
=
True
# scale is a 1-D tensor
class
TestNearestInterp_attr_tensor_Case3
(
TestNearestInterpOp_attr_tensor
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
3
,
2
,
32
,
16
]
self
.
out_h
=
64
self
.
out_w
=
32
self
.
scale
=
2.0
self
.
out_size
=
None
self
.
align_corners
=
False
self
.
scale_by_1Dtensor
=
True
class
TestNearestInterpOpAPI_dy
(
unittest
.
TestCase
):
def
test_case
(
self
):
import
paddle
if
core
.
is_compiled_with_npu
():
place
=
core
.
NPUPlace
(
0
)
else
:
place
=
core
.
CPUPlace
()
with
fluid
.
dygraph
.
guard
(
place
):
input_data
=
np
.
random
.
random
((
2
,
3
,
6
,
6
)).
astype
(
"float32"
)
scale_np
=
np
.
array
([
2
,
2
]).
astype
(
"int64"
)
input_x
=
paddle
.
to_tensor
(
input_data
)
scale
=
paddle
.
to_tensor
(
scale_np
)
expect_res
=
nearest_neighbor_interp_np
(
input_data
,
out_h
=
12
,
out_w
=
12
,
align_corners
=
False
)
out
=
interpolate
(
x
=
input_x
,
scale_factor
=
scale
,
mode
=
"nearest"
,
align_corners
=
False
)
self
.
assertTrue
(
np
.
allclose
(
out
.
numpy
(),
expect_res
))
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录