diff --git a/paddle/fluid/framework/ngraph_bridge.cc b/paddle/fluid/framework/ngraph_bridge.cc index d5ca47b1919049c14f0fb4d04b6a2f11ea38e2e3..365870c54eb3861ad6c273d3866dcd32d1c4166a 100644 --- a/paddle/fluid/framework/ngraph_bridge.cc +++ b/paddle/fluid/framework/ngraph_bridge.cc @@ -26,11 +26,14 @@ limitations under the License. */ namespace paddle { namespace framework { +namespace NG_OPS = paddle::operators::ngraphs; std::map&, std::shared_ptr>>)>> NgraphBridge::NG_NODE_MAP = { + {"elementwise_add", NG_OPS::BuildElementwiseAddNode}, + {"elementwise_add_grad", NG_OPS::BuildElementwiseAddGradNode}, {"fill_constant", paddle::operators::ngraphs::BuildFillConstantNode}, {"mean", paddle::operators::ngraphs::BuildMeanNode}, {"mean_grad", paddle::operators::ngraphs::BuildMeanGradNode}, diff --git a/paddle/fluid/operators/ngraph/ngraph_ops.h b/paddle/fluid/operators/ngraph/ngraph_ops.h index 3e6277e6baac68637c8e5d42fa194deaf01dd33a..b6c7c67c13cc54a4ccdfb4e33795cad76d8179c8 100644 --- a/paddle/fluid/operators/ngraph/ngraph_ops.h +++ b/paddle/fluid/operators/ngraph/ngraph_ops.h @@ -22,6 +22,7 @@ limitations under the License. */ #pragma once #include "ops/binary_unnary_op.h" +#include "ops/elementwise_add_op.h" #include "ops/fill_constant_op.h" #include "ops/mean_op.h" #include "ops/mul_op.h" diff --git a/paddle/fluid/operators/ngraph/ops/elementwise_add_op.h b/paddle/fluid/operators/ngraph/ops/elementwise_add_op.h new file mode 100644 index 0000000000000000000000000000000000000000..868df51e16a9714a750bac64dadc3441de79165e --- /dev/null +++ b/paddle/fluid/operators/ngraph/ops/elementwise_add_op.h @@ -0,0 +1,87 @@ +/*Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include +#include + +#include "ngraph/ngraph.hpp" +#include "paddle/fluid/operators/ngraph/ops/elementwise_node.h" +#include "paddle/fluid/platform/ngraph_helper.h" + +namespace paddle { +namespace operators { +namespace ngraphs { + +void BuildElementwiseAddNode( + const std::shared_ptr& op, + std::shared_ptr< + std::unordered_map>> + ngb_node_map) { + BuildElementwiseBinaryNode(op, ngb_node_map); +} + +void BuildElementwiseAddGradNode( + const std::shared_ptr& op, + std::shared_ptr< + std::unordered_map>> + ngb_node_map) { + auto op_attrs = paddle::framework::AttrReader(op->Attrs()); + int axis = op_attrs.Get("axis"); + + auto dout = paddle::platform::GetInputNode(op, "Out@GRAD", ngb_node_map); + auto y = paddle::platform::GetInputNode(op, "Y", ngb_node_map); + auto dout_shape = dout->get_shape(); + auto y_shape = y->get_shape(); + + if (dout_shape == y_shape) { + paddle::platform::SetOutputNode(op, "X@GRAD", dout, ngb_node_map); + paddle::platform::SetOutputNode(op, "Y@GRAD", dout, ngb_node_map); + } else { + axis = (axis == -1 ? dout_shape.size() - y_shape.size() : axis); + paddle::platform::TrimTrailingSingularDims(&y_shape); + axis = (y_shape.size() == 0 ? dout_shape.size() : axis); + + int pre, n, post; + paddle::platform::GetMidDims(dout_shape, y_shape, axis, &pre, &n, &post); + + ngraph::Shape lhs_shape{}; + lhs_shape.push_back(pre); + lhs_shape.push_back(n); + if (post != 1) { + lhs_shape.push_back(post); + } + + std::vector lhs_order(dout_shape.size()); + std::iota(std::begin(lhs_order), std::end(lhs_order), 0); + auto dout_reshape = std::make_shared( + dout, ngraph::AxisVector(lhs_order), lhs_shape); + + ngraph::AxisSet axis_set{0}; + if (post != 1) { + axis_set.insert(2); + } + + auto dout_sum = std::make_shared(dout_reshape, axis_set); + auto dy = std::make_shared( + dout_sum, ngraph::AxisVector{0}, y->get_shape()); + + paddle::platform::SetOutputNode(op, "X@GRAD", dout, ngb_node_map); + paddle::platform::SetOutputNode(op, "Y@GRAD", dy, ngb_node_map); + } +} +} // namespace ngraphs +} // namespace operators +} // namespace paddle diff --git a/paddle/fluid/operators/ngraph/ops/elementwise_binary_prepare_node.h b/paddle/fluid/operators/ngraph/ops/elementwise_binary_prepare_node.h new file mode 100644 index 0000000000000000000000000000000000000000..8732932dedd4401853325b629877880cc90f6cb6 --- /dev/null +++ b/paddle/fluid/operators/ngraph/ops/elementwise_binary_prepare_node.h @@ -0,0 +1,76 @@ +/*Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include +#include + +#include "ngraph/ngraph.hpp" +#include "paddle/fluid/platform/ngraph_helper.h" + +namespace paddle { +namespace operators { +namespace ngraphs { + +ngraph::NodeVector ElementwiseBinaryNodePrepare( + const std::shared_ptr& op, + std::shared_ptr< + std::unordered_map>> + ngb_node_map) { + auto op_attrs = paddle::framework::AttrReader(op->Attrs()); + int axis = op_attrs.Get("axis"); + auto lhs = paddle::platform::GetInputNode(op, "X", ngb_node_map); + auto rhs = paddle::platform::GetInputNode(op, "Y", ngb_node_map); + + auto lhs_shape = lhs->get_shape(); + auto rhs_shape = rhs->get_shape(); + + PADDLE_ENFORCE_GE(lhs_shape.size(), rhs_shape.size(), + "Rank of first input must >= rank of second input."); + if (lhs_shape == rhs_shape) { + return ngraph::NodeVector{lhs, rhs}; + } + axis = (axis == -1 ? lhs_shape.size() - rhs_shape.size() : axis); + PADDLE_ENFORCE(axis >= 0 && axis < (int)(lhs_shape.size()), + "Axis should be in range [0, lhs_shape)"); + paddle::platform::TrimTrailingSingularDims(&rhs_shape); + axis = (rhs_shape.size() == 0) ? lhs_shape.size() : axis; + + int pre, n, post; + paddle::platform::GetMidDims(lhs_shape, rhs_shape, axis, &pre, &n, &post); + + ngraph::Shape l_shape{}; + l_shape.push_back(pre); + l_shape.push_back(n); + l_shape.push_back(post); + + std::vector rhs_order(rhs->get_shape().size()); + std::iota(std::begin(rhs_order), std::end(rhs_order), 0); + ngraph::Shape r_shape{}; + r_shape.push_back(n); + auto rhs_reshape = std::make_shared( + rhs, ngraph::AxisVector(rhs_order), r_shape); + auto rhs_bcast = std::make_shared( + rhs_reshape, l_shape, ngraph::AxisSet{0, 2}); + std::vector bcast_order(rhs_bcast->get_shape().size()); + std::iota(std::begin(bcast_order), std::end(bcast_order), 0); + std::shared_ptr rhs_bcast_reshape = + std::make_shared( + rhs_bcast, ngraph::AxisVector(bcast_order), lhs_shape); + return ngraph::NodeVector{lhs, rhs_bcast_reshape}; +} +} // namespace ngraphs +} // namespace operators +} // namespace paddle diff --git a/paddle/fluid/operators/ngraph/ops/elementwise_node.h b/paddle/fluid/operators/ngraph/ops/elementwise_node.h new file mode 100644 index 0000000000000000000000000000000000000000..1e3f87aabe4c8595b781d9feafec9490fe514c12 --- /dev/null +++ b/paddle/fluid/operators/ngraph/ops/elementwise_node.h @@ -0,0 +1,63 @@ +/*Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include + +#include "ngraph/ngraph.hpp" +#include "paddle/fluid/operators/ngraph/ops/elementwise_binary_prepare_node.h" +#include "paddle/fluid/platform/ngraph_helper.h" + +namespace paddle { +namespace operators { +namespace ngraphs { + +template +void BuildElementwiseBinaryNode( + const std::shared_ptr& op, + std::shared_ptr< + std::unordered_map>> + ngb_node_map) { + auto nodes = ElementwiseBinaryNodePrepare(op, ngb_node_map); + std::shared_ptr& x = nodes.at(0); + std::shared_ptr& y = nodes.at(1); + + if (x->get_element_type() != y->get_element_type()) { + y = std::make_shared(y, x->get_element_type()); + } + auto out = std::make_shared(x, y); + paddle::platform::SetOutputNode(op, "Out", out, ngb_node_map); +} + +template +void BuildElementwiseCompareNode( + const std::shared_ptr& op, + std::shared_ptr< + std::unordered_map>> + ngb_node_map) { + auto nodes = ElementwiseBinaryNodePrepare(op, ngb_node_map); + std::shared_ptr& x = nodes.at(0); + std::shared_ptr& y = nodes.at(1); + + if (x->get_element_type() != y->get_element_type()) { + x = std::make_shared(x, ngraph::element::f64); + y = std::make_shared(y, ngraph::element::f64); + } + auto out = std::make_shared(x, y); + paddle::platform::SetOutputNode(op, "Out", out, ngb_node_map); +} +} // namespace ngraphs +} // namespace operators +} // namespace paddle diff --git a/paddle/fluid/platform/ngraph_helper.h b/paddle/fluid/platform/ngraph_helper.h index 889fb55c87d752a0a149529e6144d1fc345b8f63..c5b65d6636945b85603c07aeae0290ef9cadb396 100644 --- a/paddle/fluid/platform/ngraph_helper.h +++ b/paddle/fluid/platform/ngraph_helper.h @@ -23,7 +23,7 @@ limitations under the License. */ namespace paddle { namespace platform { -static ngraph::Shape FlattenTo2d(ngraph::Shape sh, int num) { +ngraph::Shape FlattenTo2d(ngraph::Shape sh, int num) { auto x1 = std::accumulate(std::begin(sh), std::begin(sh) + num, 1, std::multiplies()); auto x2 = std::accumulate(std::begin(sh) + num, std::end(sh), 1, @@ -33,15 +33,15 @@ static ngraph::Shape FlattenTo2d(ngraph::Shape sh, int num) { return ngraph::Shape{x1_l, x2_l}; } -static std::shared_ptr NgReshaper( - std::shared_ptr input, ngraph::Shape shape) { +std::shared_ptr NgReshaper(std::shared_ptr input, + ngraph::Shape shape) { std::vector input_order(input->get_shape().size()); std::iota(std::begin(input_order), std::end(input_order), 0); return std::make_shared( input, ngraph::AxisVector(input_order), shape); } -static std::shared_ptr GetNode( +std::shared_ptr GetNode( const std::shared_ptr& op, const std::string prm, const paddle::framework::VariableNameMap& var_map, std::shared_ptr< @@ -57,7 +57,7 @@ static std::shared_ptr GetNode( } } -static std::shared_ptr GetInputNode( +std::shared_ptr GetInputNode( const std::shared_ptr& op, const std::string prm, std::shared_ptr< @@ -66,7 +66,7 @@ static std::shared_ptr GetInputNode( return GetNode(op, prm, op->Inputs(), ngb_node_map); } -static std::shared_ptr GetOutputNode( +std::shared_ptr GetOutputNode( const std::shared_ptr& op, const std::string prm, std::shared_ptr< @@ -75,7 +75,7 @@ static std::shared_ptr GetOutputNode( return GetNode(op, prm, op->Outputs(), ngb_node_map); } -static void SetOutputNode( +void SetOutputNode( const std::shared_ptr& op, const std::string prm, std::shared_ptr node, std::shared_ptr< @@ -91,14 +91,45 @@ static void SetOutputNode( } } -static bool HasOutput( - const std::shared_ptr& op, - const std::string prm) { +bool HasOutput(const std::shared_ptr& op, + const std::string prm) { auto& outputs = op->Outputs(); if (outputs.find(prm) == outputs.end()) return false; return outputs.at(prm).size() > 0; } +inline void GetMidDims(const ngraph::Shape& x_shape, + const ngraph::Shape& y_shape, int axis, int* pre, int* n, + int* post) { + *pre = 1; + *n = 1; + *post = 1; + for (int i = 0; i < axis; ++i) { + (*pre) *= x_shape[i]; + } + + for (size_t i = 0; i < y_shape.size(); ++i) { + PADDLE_ENFORCE_EQ(x_shape[i + axis], y_shape[i], + "Broadcast dimension mismatch."); + (*n) *= y_shape[i]; + } + + for (size_t i = axis + y_shape.size(); i < x_shape.size(); ++i) { + (*post) *= x_shape[i]; + } +} + +inline void TrimTrailingSingularDims(ngraph::Shape* shape) { + // Remove trailing dimensions of size 1 for y + auto actual_shape_size = shape->size(); + for (; actual_shape_size != 0; --actual_shape_size) { + if ((*shape)[actual_shape_size - 1] != 1) { + break; + } else { + shape->pop_back(); + } + } +} } // namespace platform } // namespace paddle diff --git a/python/paddle/fluid/tests/unittests/ngraph/test_elementwise_add_ngraph_op.py b/python/paddle/fluid/tests/unittests/ngraph/test_elementwise_add_ngraph_op.py new file mode 100644 index 0000000000000000000000000000000000000000..67722db89bc9007c6247b8fc108f6df177157b7d --- /dev/null +++ b/python/paddle/fluid/tests/unittests/ngraph/test_elementwise_add_ngraph_op.py @@ -0,0 +1,87 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function +import unittest +from paddle.fluid.tests.unittests.test_elementwise_add_op import * + + +class TestNGRAPHElementwiseAddOp(TestElementwiseAddOp): + def init_input_output(self): + super(TestNGRAPHElementwiseAddOp, self).init_input_output() + + +class TestNGRAPHElementwiseAddOp_scalar(TestElementwiseAddOp_scalar): + def init_input_output(self): + super(TestNGRAPHElementwiseAddOp_scalar, self).init_input_output() + + +class TestNGRAPHElementwiseAddOp_scalar2(TestElementwiseAddOp_scalar2): + def init_input_output(self): + super(TestNGRAPHElementwiseAddOp_scalar2, self).init_input_output() + + +class TestNGRAPHElementwiseAddOp_Vector(TestElementwiseAddOp_Vector): + def init_input_output(self): + super(TestNGRAPHElementwiseAddOp_Vector, self).init_input_output() + + +class TesNGRAPHtElementwiseAddOp_broadcast_0(TestElementwiseAddOp_broadcast_0): + def init_input_output(self): + super(TesNGRAPHtElementwiseAddOp_broadcast_0, self).init_input_output() + + +class TestNGRAPHElementwiseAddOp_broadcast_1(TestElementwiseAddOp_broadcast_1): + def init_input_output(self): + super(TestNGRAPHElementwiseAddOp_broadcast_1, self).init_input_output() + + +class TestNGRAPHElementwiseAddOp_broadcast_2(TestElementwiseAddOp_broadcast_2): + def init_input_output(self): + super(TestNGRAPHElementwiseAddOp_broadcast_2, self).init_input_output() + + +class TestNGRAPHElementwiseAddOp_broadcast_3(TestElementwiseAddOp_broadcast_3): + def init_input_output(self): + super(TestNGRAPHElementwiseAddOp_broadcast_3, self).init_input_output() + + +class TestNGRAPHElementwiseAddOp_broadcast_4(TestElementwiseAddOp_broadcast_4): + def init_input_output(self): + super(TestNGRAPHElementwiseAddOp_broadcast_4, self).init_input_output() + + +class TestNGRAPHElementwiseAddOp_rowwise_add_0( + TestElementwiseAddOp_rowwise_add_0): + def init_input_output(self): + super(TestNGRAPHElementwiseAddOp_rowwise_add_0, + self).init_input_output() + + +class TestNGRAPHElementwiseAddOp_rowwise_add_1( + TestElementwiseAddOp_rowwise_add_1): + def init_input_output(self): + super(TestNGRAPHElementwiseAddOp_rowwise_add_1, + self).init_input_output() + + +class TestNGRAPHElementwiseAddOp_channelwise_add( + TestElementwiseAddOp_channelwise_add): + def init_input_output(self): + super(TestNGRAPHElementwiseAddOp_channelwise_add, + self).init_input_output() + + +if __name__ == '__main__': + unittest.main()