From 36fa251756f583b9c40f067717990fff062bf9ae Mon Sep 17 00:00:00 2001 From: xuwei06 Date: Thu, 10 Nov 2016 10:07:13 -0800 Subject: [PATCH] '*' operator overload for LayerOutput Making '*' support the multiplication between a scalar and LayerOutput Also changing '+' to support adding between a vector and a scalar. Change-Id: I7daf35590dc2b2f855a29d9ef43ac57979442e0f --- doc/ui/api/trainer_config_helpers/layers.rst | 6 + python/paddle/trainer/config_parser.py | 2 +- .../paddle/trainer_config_helpers/__init__.py | 3 + .../paddle/trainer_config_helpers/layers.py | 146 +++++++++++++----- python/paddle/trainer_config_helpers/math.py | 43 +++++- .../tests/configs/math_ops.py | 8 +- .../tests/configs/protostr/math_ops.protostr | 135 +++++++++++++++- 7 files changed, 294 insertions(+), 49 deletions(-) diff --git a/doc/ui/api/trainer_config_helpers/layers.rst b/doc/ui/api/trainer_config_helpers/layers.rst index c78682423e4..a98e8f2f55c 100644 --- a/doc/ui/api/trainer_config_helpers/layers.rst +++ b/doc/ui/api/trainer_config_helpers/layers.rst @@ -254,6 +254,12 @@ expand_layer :members: expand_layer :noindex: +repeat_layer +------------ +.. automodule:: paddle.trainer_config_helpers.layers + :members: repeat_layer + :noindex: + Math Layers =========== diff --git a/python/paddle/trainer/config_parser.py b/python/paddle/trainer/config_parser.py index c55579c960e..06ef3554459 100644 --- a/python/paddle/trainer/config_parser.py +++ b/python/paddle/trainer/config_parser.py @@ -3015,7 +3015,7 @@ def Layer( layer_func = layers.get(type) config_assert(layer_func, "layer type '%s' not supported." % type) - layer_func(name, **xargs) + return layer_func(name, **xargs) @config_func def ParameterHook( diff --git a/python/paddle/trainer_config_helpers/__init__.py b/python/paddle/trainer_config_helpers/__init__.py index 451b9ac3396..adebebba252 100644 --- a/python/paddle/trainer_config_helpers/__init__.py +++ b/python/paddle/trainer_config_helpers/__init__.py @@ -20,3 +20,6 @@ from layers import * from networks import * from optimizers import * from attrs import * + +# This will enable operator overload for LayerOutput +import math diff --git a/python/paddle/trainer_config_helpers/layers.py b/python/paddle/trainer_config_helpers/layers.py index 59822180883..bd8e9f07b6a 100644 --- a/python/paddle/trainer_config_helpers/layers.py +++ b/python/paddle/trainer_config_helpers/layers.py @@ -31,6 +31,7 @@ import copy __all__ = ["full_matrix_projection", "AggregateLevel", "ExpandLevel", "identity_projection", "dotmul_projection", "dotmul_operator", + "repeat_layer", "table_projection", "mixed_layer", "data_layer", "embedding_layer", "fc_layer", "grumemory", "pooling_layer", "lstmemory", "last_seq", "first_seq", @@ -99,6 +100,7 @@ class LayerType(object): SCALING_LAYER = 'scaling' TRANS_LAYER = 'trans' OUT_PROD_LAYER = 'out_prod' + FEATURE_MAP_EXPAND_LAYER = 'featmap_expand' MEMORY = 'memory' MAXID_LAYER = 'maxid' @@ -181,6 +183,7 @@ class LayerOutput(object): reverse=None): assert isinstance(name, basestring) assert isinstance(layer_type, basestring) + assert size is not None assert LayerType.is_layer_type(layer_type) self.name = name self.layer_type = layer_type @@ -1209,6 +1212,48 @@ def expand_layer(input, expand_as, parents=[input, expand_as]) +@wrap_name_default() +@layer_support() +def repeat_layer(input, num_repeats, + name=None, + layer_attr=None): + """ + A layer for repeating the input for num_repeats times. This is equivalent + to apply concat_layer() with num_repeats same input. + + .. math:: + y = [x, x, \cdots, x] + + The example usage is: + + .. code-block:: python + + expand = repeat_layer(layer, 4) + + :param input: Input layer + :type input: LayerOutput + :param num_repeats: Repeat the input so many times + :type num_repeats: int + :param name: Layer name. + :type name: basestring + :param layer_attr: extra layer attributes. + :type layer_attr: ExtraLayerAttribute. + :return: LayerOutput object. + :rtype: LayerOutput + """ + + l = Layer( + inputs=[input.name], + name=name, + num_filters=num_repeats, + type=LayerType.FEATURE_MAP_EXPAND_LAYER, + **ExtraAttr.to_kwargs(layer_attr) + ) + return LayerOutput(name=name, + size=l.config.size, + layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER, + parents=[input]) + @wrap_name_default() @layer_support() def interpolation_layer(input, weight, name=None, layer_attr=None): @@ -1296,7 +1341,7 @@ def bilinear_interp_layer(input, assert out_size_x > 0 and out_size_y > 0 assert input.num_filters is not None num_channels = input.num_filters - Layer(name=name, + l = Layer(name=name, inputs=Input(input.name, bilinear_interp=BilinearInterp(out_size_x=out_size_x, out_size_y=out_size_y, @@ -1304,7 +1349,7 @@ def bilinear_interp_layer(input, type=LayerType.BILINEAR_INTERP_LAYER, **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput(name, LayerType.BILINEAR_INTERP_LAYER, parents=[input], - num_filters=num_channels) + num_filters=num_channels, size=l.config.size) @wrap_name_default() @layer_support() @@ -1482,7 +1527,7 @@ def cos_sim(a, b, scale=5, size=1, name=None, layer_attr=None): inputs=[a.name, b.name], **ExtraLayerAttribute.to_kwargs(layer_attr) ) - return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b]) + return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size) @wrap_name_default() @@ -1545,7 +1590,7 @@ def hsigmoid(input, label, num_classes, name=None, bias_attr=None, ipts_for_layer.append(label.name) parents.append(label) - Layer( + l = Layer( name=name, type=LayerType.HSIGMOID, num_classes=num_classes, @@ -1553,7 +1598,8 @@ def hsigmoid(input, label, num_classes, name=None, bias_attr=None, inputs=ipts_for_layer, **ExtraLayerAttribute.to_kwargs(layer_attr) ) - return LayerOutput(name, LayerType.HSIGMOID, parents=parents) + return LayerOutput(name, LayerType.HSIGMOID, parents=parents, + size=l.config.size) @wrap_name_default("conv") @@ -1671,7 +1717,7 @@ def img_conv_layer(input, filter_size, num_filters, lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER - Layer( + l = Layer( name=name, inputs=Input(input.name, conv=Conv( filter_size=filter_size, padding=padding, stride=stride, @@ -1687,7 +1733,8 @@ def img_conv_layer(input, filter_size, num_filters, **ExtraLayerAttribute.to_kwargs(layer_attr) ) return LayerOutput(name, lt, parents=[input], - activation=act, num_filters=num_filters) + activation=act, num_filters=num_filters, + size=l.config.size) @wrap_name_default("pool") @@ -1750,7 +1797,7 @@ def img_pool_layer(input, pool_size, name=None, stride_y = stride if stride_y is None else stride_y padding_y = padding if padding_y is None else padding_y - Layer( + l = Layer( name=name, type=LayerType.POOL_LAYER, inputs=[Input(input.name, @@ -1769,7 +1816,7 @@ def img_pool_layer(input, pool_size, name=None, **ExtraLayerAttribute.to_kwargs(layer_attr) ) return LayerOutput(name, LayerType.POOL_LAYER, parents=[input], - num_filters=num_channels) + num_filters=num_channels, size=l.config.size) def __img_norm_layer__(name, input, size, norm_type, scale, power, @@ -1778,7 +1825,7 @@ def __img_norm_layer__(name, input, size, norm_type, scale, power, assert input.num_filters is not None num_channels = input.num_filters - Layer( + l = Layer( name=name, type=LayerType.NORM_LAYER, inputs=Input( input.name, norm=Norm(norm_type=norm_type, channels=num_channels, size=size, @@ -1788,7 +1835,8 @@ def __img_norm_layer__(name, input, size, norm_type, scale, power, **ExtraLayerAttribute.to_kwargs(layer_attr) ) return LayerOutput(name, layer_type=LayerType.NORM_LAYER, parents=[input], - num_filters=num_channels, img_norm_type=norm_type) + num_filters=num_channels, img_norm_type=norm_type, + size=l.config.size) @wrap_name_default("crmnorm") @@ -1913,7 +1961,7 @@ def batch_norm_layer(input, act=None, name=None, num_channels=None, num_channels = input.size assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \ (batch_norm_type == "cudnn_batch_norm") - Layer( + l = Layer( name=name, inputs=Input(input.name, image=Image(channels=num_channels), @@ -1929,7 +1977,8 @@ def batch_norm_layer(input, act=None, name=None, num_channels=None, return LayerOutput(name=name, layer_type=LayerType.BATCH_NORM_LAYER, parents=[input], activation=act, - num_filters=num_channels) + num_filters=num_channels, + size=l.config.size) @wrap_name_default() @@ -2034,7 +2083,7 @@ def addto_layer(input, act=None, name=None, bias_attr=None, if each_input.num_filters is not None: num_filters = each_input.num_filters - Layer( + l = Layer( name=name, type=LayerType.ADDTO_LAYER, inputs=ipts_for_layer, bias=ParamAttr.to_bias(bias_attr), active_type=act.name, @@ -2042,7 +2091,8 @@ def addto_layer(input, act=None, name=None, bias_attr=None, ) return LayerOutput(name, LayerType.ADDTO_LAYER, parents=input, - activation=act, num_filters=num_filters) + activation=act, num_filters=num_filters, + size=l.config.size) @wrap_act_default(act=IdentityActivation()) @@ -2651,13 +2701,14 @@ def maxid_layer(input, name=None, layer_attr=None): """ assert isinstance(input, LayerOutput) - Layer(name=name, + l = Layer(name=name, type='maxid', inputs=[input.name], **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput(name=name, layer_type=LayerType.MAXID_LAYER, - parents=[input]) + parents=[input], + size=l.config.size) @wrap_name_default() @@ -2686,13 +2737,14 @@ def out_prod_layer(input1, input2, name=None, layer_attr=None): assert isinstance(input1, LayerOutput) assert isinstance(input2, LayerOutput) - Layer(name=name, + l = Layer(name=name, type=LayerType.OUT_PROD_LAYER, inputs=[input1.name, input2.name], **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput(name=name, layer_type=LayerType.OUT_PROD_LAYER, - parents=[input1, input2]) + parents=[input1, input2], + size=l.config.size) @wrap_name_default() @@ -2721,13 +2773,14 @@ def eos_layer(input, eos_id, name=None, layer_attr=None): :return: LayerOutput object. :rtype: LayerOutput """ - Layer(name=name, + l = Layer(name=name, type=LayerType.EOSID_LAYER, eos_id=eos_id, inputs=[input.name], **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput(name=name, layer_type=LayerType.EOSID_LAYER, - parents=[input]) + parents=[input], + size=l.config.size) @wrap_name_default() @@ -2892,7 +2945,7 @@ def regression_cost(input, label, weight=None, name=None, Layer(inputs=ipts, type="square_error", name=name, **ExtraLayerAttribute.to_kwargs(layer_attr)) - return LayerOutput(name, LayerType.COST, parents=parents) + return LayerOutput(name, LayerType.COST, parents=parents, size=1) @wrap_name_default("cost") @@ -2944,7 +2997,7 @@ def classification_cost(input, label, weight=None, name=None, for each_evaluator in evaluator: __add_evaluator__(each_evaluator) - return LayerOutput(name, LayerType.COST, parents=parents) + return LayerOutput(name, LayerType.COST, parents=parents, size=1) def conv_operator(img, filter, filter_size, num_filters, @@ -3326,13 +3379,14 @@ def sampling_id_layer(input, name=None, layer_attr=None): :return: LayerOutput object. :rtype: LayerOutput """ - Layer( + l = Layer( name=name, type=LayerType.SAMPLING_ID_LAYER, inputs=[Input(input.name)], **ExtraLayerAttribute.to_kwargs(layer_attr) ) - return LayerOutput(name, LayerType.SAMPLING_ID_LAYER, input) + return LayerOutput(name, LayerType.SAMPLING_ID_LAYER, input, + size=l.config.size) @wrap_name_default() @@ -3373,7 +3427,8 @@ def slope_intercept_layer(input, name=None, slope=1.0, intercept=0.0, inputs=[Input(input.name)], **ExtraLayerAttribute.to_kwargs(layer_attr) ) - return LayerOutput(name, LayerType.SLOPE_INTERCEPT_LAYER, input) + return LayerOutput(name, LayerType.SLOPE_INTERCEPT_LAYER, input, + size=input.size) @wrap_name_default() @@ -3512,7 +3567,7 @@ def block_expand_layer(input, if num_channels is None: assert input.num_filters is not None num_channels = input.num_filters - Layer(name=name, + l = Layer(name=name, inputs=Input(input.name, block_expand=BlockExpand(channels=num_channels, block_x=block_x, @@ -3525,7 +3580,8 @@ def block_expand_layer(input, **ExtraLayerAttribute.to_kwargs(layer_attr) ) - return LayerOutput(name, LayerType.BLOCK_EXPAND, parents=[input]) + return LayerOutput(name, LayerType.BLOCK_EXPAND, parents=[input], + size=l.config.size) @wrap_name_default() @@ -3586,13 +3642,14 @@ def maxout_layer(input, assert input.num_filters is not None num_channels = input.num_filters assert num_channels % groups == 0 - Layer(name=name, + l = Layer(name=name, inputs=Input(input.name, maxout=MaxOut(channels=num_channels, groups=groups)), type=LayerType.MAXOUT, **ExtraLayerAttribute.to_kwargs(layer_attr)) - return LayerOutput(name, LayerType.MAXOUT, parents=[input]) + return LayerOutput(name, LayerType.MAXOUT, parents=[input], + size=l.config.size) @wrap_name_default() @@ -3718,7 +3775,10 @@ def crf_layer(input, label, size=None, weight=None, param_attr=None, name=None, parents = [input, label] if weight is not None: parents.append(weight) - return LayerOutput(name, LayerType.CRF_LAYER, parents, size=size) + # The size for LayerOutput means the dimension of the output. + # It's different from the meaning of crf layer, which is the number of + # classes. + return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1) @wrap_name_default() @@ -3766,7 +3826,10 @@ def crf_decoding_layer(input, size, label=None, param_attr=None, name=None, parents = [input] if label is not None: parents.append(label) - return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=size) + # The size for LayerOutput means the dimension of the output. + # It's different from the meaning of crf layer, which is the number of + # classes. + return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1) @wrap_bias_attr_default(has_bias=True) @wrap_name_default() @@ -3834,7 +3897,7 @@ def nce_layer(input, label, num_classes, weight=None, ipts_for_layer.append(weight.name) parents.append(weight) - Layer( + l = Layer( name=name, type=LayerType.NCE_LAYER, num_classes=num_classes, @@ -3844,7 +3907,8 @@ def nce_layer(input, label, num_classes, weight=None, bias=ParamAttr.to_bias(bias_attr), **ExtraLayerAttribute.to_kwargs(layer_attr) ) - return LayerOutput(name, LayerType.NCE_LAYER, parents=parents) + return LayerOutput(name, LayerType.NCE_LAYER, parents=parents, + size=l.config.size) """ following are cost Layers. @@ -3919,7 +3983,7 @@ def rank_cost(left, right, label, weight=None, name=None, coeff=1.0, layer_attr= **ExtraLayerAttribute.to_kwargs(layer_attr) ) - return LayerOutput(name, LayerType.RANK_COST, parents=parents) + return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1) @wrap_name_default() @@ -3971,7 +4035,8 @@ def lambda_cost(input, score, name, NDCG_num=5, max_sort_size=-1, layer_attr=Non **ExtraLayerAttribute.to_kwargs(layer_attr) ) - return LayerOutput(name, LayerType.LAMBDA_COST, parents=[input, score]) + return LayerOutput(name, LayerType.LAMBDA_COST, parents=[input, score], + size=1) @wrap_name_default() @@ -4006,7 +4071,8 @@ def cross_entropy(input, label, name=None, coeff=1.0, layer_attr=None): coeff=coeff, **ExtraLayerAttribute.to_kwargs(layer_attr) ) - return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=[input, label]) + return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=[input, label], + size=1) @wrap_name_default() @@ -4048,7 +4114,7 @@ def cross_entropy_with_selfnorm(input, label, name=None, coeff=1.0, return LayerOutput(name, LayerType.CROSS_ENTROPY_WITH_SELFNORM, - parents=[input, label]) + parents=[input, label], size=1) @wrap_name_default() @@ -4083,7 +4149,7 @@ def huber_cost(input, label, name=None, coeff=1.0, layer_attr=None): coeff=coeff, **ExtraLayerAttribute.to_kwargs(layer_attr) ) - return LayerOutput(name, LayerType.HUBER, parents=[input, label]) + return LayerOutput(name, LayerType.HUBER, parents=[input, label], size=1) @wrap_name_default() @@ -4126,4 +4192,4 @@ def multi_binary_label_cross_entropy(input, label, name=None, coeff=1.0, **ExtraLayerAttribute.to_kwargs(layer_attr) ) return LayerOutput(name, LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY, - parents=[input, label]) + parents=[input, label], size=1) diff --git a/python/paddle/trainer_config_helpers/math.py b/python/paddle/trainer_config_helpers/math.py index e35849b77ac..7d7bb291485 100644 --- a/python/paddle/trainer_config_helpers/math.py +++ b/python/paddle/trainer_config_helpers/math.py @@ -13,10 +13,11 @@ # limitations under the License. from .layers import LayerOutput, mixed_layer, identity_projection, \ - slope_intercept_layer + slope_intercept_layer, scaling_layer, repeat_layer from .attrs import is_compatible_with from .default_decorators import * import activations as act +from paddle.trainer.config_parser import logger __all__ = [] @@ -40,7 +41,21 @@ register_unary_math_op('square', act.SquareActivation()) def add(layeroutput, other): if is_compatible_with(other, float): return slope_intercept_layer(input=layeroutput, intercept=other) - assert isinstance(other, LayerOutput) + if not isinstance(other, LayerOutput): + logger.fatal("LayerOutput can only be added with" + " another LayerOutput or a number") + if layeroutput.size == other.size: + return mixed_layer(input=[identity_projection(input=layeroutput), + identity_projection(input=other)]) + if other.size != 1 and layeroutput.size != 1: + logger.fatal("Two LayerOutput can be added only if they have equal size" + " or one of their sizes is 1. sizes are %s and %s" % + (layeroutput.size, other.size)) + elif layeroutput.size == 1: + tmp = layeroutput + layeroutput = other + other = tmp + other = repeat_layer(other, layeroutput.size) return mixed_layer(input=[identity_projection(input=layeroutput), identity_projection(input=other)]) @@ -50,10 +65,11 @@ LayerOutput.__add__ = add def sub(layeroutput, other): if is_compatible_with(other, float): return slope_intercept_layer(input=layeroutput, intercept=other) - assert isinstance(other, LayerOutput) + if not isinstance(other, LayerOutput): + logger.fatal("LayerOutput can only be subtracted with" + " another Layeroutput or a number") neg = slope_intercept_layer(input=other, slope=-1.0) - return mixed_layer(input=[identity_projection(input=layeroutput), - identity_projection(input=neg)]) + return add(layeroutput, neg) LayerOutput.__sub__ = sub @@ -62,3 +78,20 @@ def rsub(layeroutput, other): return add(neg, other) LayerOutput.__rsub__ = rsub + +def mul(layeroutput, other): + if is_compatible_with(other, float): + return slope_intercept_layer(input=layeroutput, slope=other) + if not isinstance(other, LayerOutput): + logger.fatal("LayerOutput can only be multiplied with" + " another Layeroutput or a number") + elif layeroutput.size == 1: + return scaling_layer(input=other, weight=layeroutput) + elif other.size == 1: + return scaling_layer(input=layeroutput, weight=other) + else: + logger.fatal("At least one of the operand of '*' must be a number" + " or a LayerOutput with size=1") + +LayerOutput.__mul__ = mul +LayerOutput.__rmul__ = mul diff --git a/python/paddle/trainer_config_helpers/tests/configs/math_ops.py b/python/paddle/trainer_config_helpers/tests/configs/math_ops.py index fe515b70293..7c2770c616d 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/math_ops.py +++ b/python/paddle/trainer_config_helpers/tests/configs/math_ops.py @@ -19,6 +19,12 @@ y = x + y y = y - x y = y - 2 y = 2 - y - +y = 2 * y +y = y * 3 +z= data_layer(name='data_2', size=1) +y = y * z +y = z * y +y = y + z +y = z + y outputs(y) diff --git a/python/paddle/trainer_config_helpers/tests/configs/protostr/math_ops.protostr b/python/paddle/trainer_config_helpers/tests/configs/protostr/math_ops.protostr index 1767445c44b..da8da1b541f 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/protostr/math_ops.protostr +++ b/python/paddle/trainer_config_helpers/tests/configs/protostr/math_ops.protostr @@ -209,8 +209,129 @@ layers { slope: 1.0 intercept: 2 } +layers { + name: "__slope_intercept_layer_6__" + type: "slope_intercept" + size: 100 + active_type: "" + inputs { + input_layer_name: "__slope_intercept_layer_5__" + } + slope: 2 + intercept: 0.0 +} +layers { + name: "__slope_intercept_layer_7__" + type: "slope_intercept" + size: 100 + active_type: "" + inputs { + input_layer_name: "__slope_intercept_layer_6__" + } + slope: 3 + intercept: 0.0 +} +layers { + name: "data_2" + type: "data" + size: 1 + active_type: "" +} +layers { + name: "__scaling_layer_0__" + type: "scaling" + size: 100 + active_type: "" + inputs { + input_layer_name: "data_2" + } + inputs { + input_layer_name: "__slope_intercept_layer_7__" + } +} +layers { + name: "__scaling_layer_1__" + type: "scaling" + size: 100 + active_type: "" + inputs { + input_layer_name: "data_2" + } + inputs { + input_layer_name: "__scaling_layer_0__" + } +} +layers { + name: "__repeat_layer_0__" + type: "featmap_expand" + size: 100 + active_type: "" + inputs { + input_layer_name: "data_2" + } + num_filters: 100 +} +layers { + name: "__mixed_2__" + type: "mixed" + size: 100 + active_type: "" + inputs { + input_layer_name: "__scaling_layer_1__" + proj_conf { + type: "identity" + name: "___mixed_2__.w0" + input_size: 100 + output_size: 100 + } + } + inputs { + input_layer_name: "__repeat_layer_0__" + proj_conf { + type: "identity" + name: "___mixed_2__.w1" + input_size: 100 + output_size: 100 + } + } +} +layers { + name: "__repeat_layer_1__" + type: "featmap_expand" + size: 100 + active_type: "" + inputs { + input_layer_name: "data_2" + } + num_filters: 100 +} +layers { + name: "__mixed_3__" + type: "mixed" + size: 100 + active_type: "" + inputs { + input_layer_name: "__mixed_2__" + proj_conf { + type: "identity" + name: "___mixed_3__.w0" + input_size: 100 + output_size: 100 + } + } + inputs { + input_layer_name: "__repeat_layer_1__" + proj_conf { + type: "identity" + name: "___mixed_3__.w1" + input_size: 100 + output_size: 100 + } + } +} +input_layer_names: "data_2" input_layer_names: "data" -output_layer_names: "__slope_intercept_layer_5__" +output_layer_names: "__mixed_3__" sub_models { name: "root" layer_names: "data" @@ -228,8 +349,18 @@ sub_models { layer_names: "__slope_intercept_layer_3__" layer_names: "__slope_intercept_layer_4__" layer_names: "__slope_intercept_layer_5__" + layer_names: "__slope_intercept_layer_6__" + layer_names: "__slope_intercept_layer_7__" + layer_names: "data_2" + layer_names: "__scaling_layer_0__" + layer_names: "__scaling_layer_1__" + layer_names: "__repeat_layer_0__" + layer_names: "__mixed_2__" + layer_names: "__repeat_layer_1__" + layer_names: "__mixed_3__" + input_layer_names: "data_2" input_layer_names: "data" - output_layer_names: "__slope_intercept_layer_5__" + output_layer_names: "__mixed_3__" is_recurrent_layer_group: false } -- GitLab