Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
350cc61f
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
350cc61f
编写于
11月 20, 2017
作者:
S
sweetsky0901
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into my_maxout_op
上级
4e5c9896
9db4d019
变更
10
显示空白变更内容
内联
并排
Showing
10 changed file
with
187 addition
and
201 deletion
+187
-201
benchmark/paddle/image/googlenet.py
benchmark/paddle/image/googlenet.py
+4
-1
benchmark/paddle/image/run_mkldnn.sh
benchmark/paddle/image/run_mkldnn.sh
+2
-1
paddle/operators/math/pooling.cc
paddle/operators/math/pooling.cc
+30
-30
paddle/operators/math/pooling.cu
paddle/operators/math/pooling.cu
+65
-65
paddle/operators/math/pooling.h
paddle/operators/math/pooling.h
+4
-4
paddle/operators/pool_with_index_op.cc
paddle/operators/pool_with_index_op.cc
+29
-13
paddle/operators/pool_with_index_op.cu.cc
paddle/operators/pool_with_index_op.cu.cc
+8
-8
paddle/operators/pool_with_index_op.h
paddle/operators/pool_with_index_op.h
+9
-9
python/paddle/v2/fluid/layers.py
python/paddle/v2/fluid/layers.py
+1
-1
python/paddle/v2/fluid/tests/test_pool_max_op.py
python/paddle/v2/fluid/tests/test_pool_max_op.py
+35
-69
未找到文件。
benchmark/paddle/image/googlenet.py
浏览文件 @
350cc61f
...
...
@@ -5,6 +5,7 @@ height = 224
width
=
224
num_class
=
1000
batch_size
=
get_config_arg
(
'batch_size'
,
int
,
128
)
use_gpu
=
get_config_arg
(
'use_gpu'
,
bool
,
True
)
args
=
{
'height'
:
height
,
'width'
:
width
,
'color'
:
True
,
'num_class'
:
num_class
}
define_py_data_sources2
(
...
...
@@ -16,6 +17,8 @@ settings(
learning_method
=
MomentumOptimizer
(
0.9
),
regularization
=
L2Regularization
(
0.0005
*
batch_size
))
conv_projection
=
conv_projection
if
use_gpu
else
img_conv_layer
def
inception2
(
name
,
input
,
channels
,
\
filter1
,
filter3R
,
filter3
,
...
...
@@ -138,7 +141,7 @@ def inception(name, input, channels, \
cat
=
concat_layer
(
name
=
name
,
input
=
[
cov1
,
cov3
,
cov5
,
covprj
],
bias_attr
=
True
,
bias_attr
=
True
if
use_gpu
else
False
,
act
=
ReluActivation
())
return
cat
...
...
benchmark/paddle/image/run_mkldnn.sh
浏览文件 @
350cc61f
...
...
@@ -41,5 +41,6 @@ for use_mkldnn in True False; do
for
batchsize
in
64 128 256
;
do
train vgg 19
$batchsize
$use_mkldnn
train resnet 50
$batchsize
$use_mkldnn
train googlenet v1
$batchsize
$use_mkldnn
done
done
paddle/operators/math/pooling.cc
浏览文件 @
350cc61f
...
...
@@ -498,8 +498,8 @@ template class Pool3dGradFunctor<
* Ksize, strides, paddings are two elements. These two elements represent
* height and width, respectively.
*/
template
<
typename
T
>
class
MaxPool2dWithIndexFunctor
<
platform
::
CPUPlace
,
T
>
{
template
<
typename
T
1
,
typename
T2
>
class
MaxPool2dWithIndexFunctor
<
platform
::
CPUPlace
,
T
1
,
T2
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
std
::
vector
<
int
>&
ksize
,
...
...
@@ -520,9 +520,9 @@ class MaxPool2dWithIndexFunctor<platform::CPUPlace, T> {
const
int
input_stride
=
input_height
*
input_width
;
const
int
output_stride
=
output_height
*
output_width
;
const
T
*
input_data
=
input
.
data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
mask_data
=
mask
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
T
1
*
input_data
=
input
.
data
<
T1
>
();
T
1
*
output_data
=
output
->
mutable_data
<
T1
>
(
context
.
GetPlace
());
T
2
*
mask_data
=
mask
->
mutable_data
<
T2
>
(
context
.
GetPlace
());
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
...
...
@@ -535,7 +535,7 @@ class MaxPool2dWithIndexFunctor<platform::CPUPlace, T> {
int
wend
=
std
::
min
(
wstart
+
ksize_width
,
input_width
);
wstart
=
std
::
max
(
wstart
,
0
);
T
ele
=
static_cast
<
T
>
(
-
FLT_MAX
);
T
1
ele
=
static_cast
<
T1
>
(
-
FLT_MAX
);
int
index
=
-
1
;
for
(
int
h
=
hstart
;
h
<
hend
;
++
h
)
{
for
(
int
w
=
wstart
;
w
<
wend
;
++
w
)
{
...
...
@@ -563,8 +563,8 @@ class MaxPool2dWithIndexFunctor<platform::CPUPlace, T> {
* Ksize, strides, paddings are two elements. These two elements represent
* height and width, respectively.
*/
template
<
typename
T
>
class
MaxPool2dWithIndexGradFunctor
<
platform
::
CPUPlace
,
T
>
{
template
<
typename
T
1
,
typename
T2
>
class
MaxPool2dWithIndexGradFunctor
<
platform
::
CPUPlace
,
T
1
,
T2
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
output_grad
,
...
...
@@ -580,9 +580,9 @@ class MaxPool2dWithIndexGradFunctor<platform::CPUPlace, T> {
const
int
input_stride
=
input_height
*
input_width
;
const
int
output_stride
=
output_height
*
output_width
;
const
T
*
mask_data
=
mask
.
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
.
data
<
T
>
();
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
T
2
*
mask_data
=
mask
.
data
<
T2
>
();
const
T
1
*
output_grad_data
=
output_grad
.
data
<
T1
>
();
T
1
*
input_grad_data
=
input_grad
->
mutable_data
<
T1
>
(
context
.
GetPlace
());
for
(
int
n
=
0
;
n
<
batch_size
;
++
n
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
...
...
@@ -602,18 +602,18 @@ class MaxPool2dWithIndexGradFunctor<platform::CPUPlace, T> {
}
};
template
class
MaxPool2dWithIndexFunctor
<
platform
::
CPUPlace
,
float
>;
template
class
MaxPool2dWithIndexGradFunctor
<
platform
::
CPUPlace
,
float
>;
template
class
MaxPool2dWithIndexFunctor
<
platform
::
CPUPlace
,
double
>;
template
class
MaxPool2dWithIndexGradFunctor
<
platform
::
CPUPlace
,
double
>;
template
class
MaxPool2dWithIndexFunctor
<
platform
::
CPUPlace
,
float
,
int
>;
template
class
MaxPool2dWithIndexGradFunctor
<
platform
::
CPUPlace
,
float
,
int
>;
template
class
MaxPool2dWithIndexFunctor
<
platform
::
CPUPlace
,
double
,
int
>;
template
class
MaxPool2dWithIndexGradFunctor
<
platform
::
CPUPlace
,
double
,
int
>;
/*
* All tensors are in NCDHW format.
* Ksize, strides, paddings are three elements. These three elements represent
* depth, height and width, respectively.
*/
template
<
typename
T
>
class
MaxPool3dWithIndexFunctor
<
platform
::
CPUPlace
,
T
>
{
template
<
typename
T
1
,
typename
T2
>
class
MaxPool3dWithIndexFunctor
<
platform
::
CPUPlace
,
T
1
,
T2
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
std
::
vector
<
int
>&
ksize
,
...
...
@@ -639,9 +639,9 @@ class MaxPool3dWithIndexFunctor<platform::CPUPlace, T> {
const
int
input_stride
=
input_depth
*
input_height
*
input_width
;
const
int
output_stride
=
output_depth
*
output_height
*
output_width
;
const
T
*
input_data
=
input
.
data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
mask_data
=
mask
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
T
1
*
input_data
=
input
.
data
<
T1
>
();
T
1
*
output_data
=
output
->
mutable_data
<
T1
>
(
context
.
GetPlace
());
T
2
*
mask_data
=
mask
->
mutable_data
<
T2
>
(
context
.
GetPlace
());
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
...
...
@@ -659,7 +659,7 @@ class MaxPool3dWithIndexFunctor<platform::CPUPlace, T> {
wstart
=
std
::
max
(
wstart
,
0
);
int
output_idx
=
(
pd
*
output_height
+
ph
)
*
output_width
+
pw
;
T
ele
=
static_cast
<
T
>
(
-
FLT_MAX
);
T
1
ele
=
static_cast
<
T1
>
(
-
FLT_MAX
);
int
index
=
-
1
;
for
(
int
d
=
dstart
;
d
<
dend
;
++
d
)
{
for
(
int
h
=
hstart
;
h
<
hend
;
++
h
)
{
...
...
@@ -691,8 +691,8 @@ class MaxPool3dWithIndexFunctor<platform::CPUPlace, T> {
* Ksize, strides, paddings are three elements. These three elements represent
* depth, height and width, respectively.
*/
template
<
typename
T
>
class
MaxPool3dWithIndexGradFunctor
<
platform
::
CPUPlace
,
T
>
{
template
<
typename
T
1
,
typename
T2
>
class
MaxPool3dWithIndexGradFunctor
<
platform
::
CPUPlace
,
T
1
,
T2
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
output_grad
,
...
...
@@ -710,9 +710,9 @@ class MaxPool3dWithIndexGradFunctor<platform::CPUPlace, T> {
const
int
input_stride
=
input_depth
*
input_height
*
input_width
;
const
int
output_stride
=
output_depth
*
output_height
*
output_width
;
const
T
*
mask_data
=
mask
.
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
.
data
<
T
>
();
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
T
2
*
mask_data
=
mask
.
data
<
T2
>
();
const
T
1
*
output_grad_data
=
output_grad
.
data
<
T1
>
();
T
1
*
input_grad_data
=
input_grad
->
mutable_data
<
T1
>
(
context
.
GetPlace
());
for
(
int
n
=
0
;
n
<
batch_size
;
++
n
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
...
...
@@ -735,10 +735,10 @@ class MaxPool3dWithIndexGradFunctor<platform::CPUPlace, T> {
}
};
template
class
MaxPool3dWithIndexFunctor
<
platform
::
CPUPlace
,
float
>;
template
class
MaxPool3dWithIndexGradFunctor
<
platform
::
CPUPlace
,
float
>;
template
class
MaxPool3dWithIndexFunctor
<
platform
::
CPUPlace
,
double
>;
template
class
MaxPool3dWithIndexGradFunctor
<
platform
::
CPUPlace
,
double
>;
template
class
MaxPool3dWithIndexFunctor
<
platform
::
CPUPlace
,
float
,
int
>;
template
class
MaxPool3dWithIndexGradFunctor
<
platform
::
CPUPlace
,
float
,
int
>;
template
class
MaxPool3dWithIndexFunctor
<
platform
::
CPUPlace
,
double
,
int
>;
template
class
MaxPool3dWithIndexGradFunctor
<
platform
::
CPUPlace
,
double
,
int
>;
}
// namespace math
}
// namespace operators
}
// namespace paddle
paddle/operators/math/pooling.cu
浏览文件 @
350cc61f
...
...
@@ -658,13 +658,13 @@ template class Pool3dGradFunctor<
template
class
Pool3dGradFunctor
<
platform
::
GPUPlace
,
paddle
::
operators
::
math
::
AvgPoolGrad
<
double
>,
double
>
;
template
<
typename
T
>
template
<
typename
T
1
,
typename
T2
>
__global__
void
KernelMaxPool2dWithIdx
(
const
int
nthreads
,
const
T
*
input_data
,
const
int
channels
,
const
int
nthreads
,
const
T
1
*
input_data
,
const
int
channels
,
const
int
input_height
,
const
int
input_width
,
const
int
output_height
,
const
int
output_width
,
const
int
ksize_height
,
const
int
ksize_width
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_height
,
const
int
padding_width
,
T
*
output_data
,
T
*
mask_data
)
{
const
int
padding_width
,
T
1
*
output_data
,
T2
*
mask_data
)
{
for
(
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
index
<
nthreads
;
index
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
pw
=
index
%
output_width
;
...
...
@@ -681,7 +681,7 @@ __global__ void KernelMaxPool2dWithIdx(
wstart
=
max
(
wstart
,
0
);
input_data
+=
(
batch_idx
*
channels
+
c
)
*
input_height
*
input_width
;
T
ele
=
-
FLT_MAX
;
T
1
ele
=
-
FLT_MAX
;
int
max_index
=
-
1
;
for
(
int
h
=
hstart
;
h
<
hend
;
++
h
)
{
for
(
int
w
=
wstart
;
w
<
wend
;
++
w
)
{
...
...
@@ -697,13 +697,13 @@ __global__ void KernelMaxPool2dWithIdx(
}
}
template
<
typename
T
>
template
<
typename
T
1
,
typename
T2
>
__global__
void
KernelMaxPool2DWithIdxGrad
(
const
int
nthreads
,
const
T
*
output_grad
,
const
T
*
mask_data
,
const
int
nthreads
,
const
T
1
*
output_grad
,
const
T2
*
mask_data
,
const
int
channels
,
const
int
input_height
,
const
int
input_width
,
const
int
output_height
,
const
int
output_width
,
const
int
ksize_height
,
const
int
ksize_width
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_height
,
const
int
padding_width
,
T
*
input_grad
)
{
const
int
padding_height
,
const
int
padding_width
,
T
1
*
input_grad
)
{
for
(
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
index
<
nthreads
;
index
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
w_offset
=
index
%
input_width
;
...
...
@@ -724,7 +724,7 @@ __global__ void KernelMaxPool2DWithIdxGrad(
int
pw_end
=
min
((
w_offset
+
padding_width
)
/
stride_width
+
1
,
output_width
);
T
gradient
=
0
;
T
1
gradient
=
0
;
int
input_current_featuremap_idx
=
h_offset
*
input_width
+
w_offset
;
int
output_idx
=
(
batch_idx
*
channels
+
c_offset
)
*
output_height
*
output_width
;
...
...
@@ -746,8 +746,8 @@ __global__ void KernelMaxPool2DWithIdxGrad(
* Ksize, strides, paddings are two elements. These two elements represent
* height and width, respectively.
*/
template
<
typename
T
>
class
MaxPool2dWithIndexFunctor
<
platform
::
GPUPlace
,
T
>
{
template
<
typename
T
1
,
typename
T2
>
class
MaxPool2dWithIndexFunctor
<
platform
::
GPUPlace
,
T
1
,
T2
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
std
::
vector
<
int
>&
ksize
,
...
...
@@ -767,9 +767,9 @@ class MaxPool2dWithIndexFunctor<platform::GPUPlace, T> {
const
int
padding_height
=
paddings
[
0
];
const
int
padding_width
=
paddings
[
1
];
const
T
*
input_data
=
input
.
data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
mask_data
=
mask
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
T
1
*
input_data
=
input
.
data
<
T1
>
();
T
1
*
output_data
=
output
->
mutable_data
<
T1
>
(
context
.
GetPlace
());
T
2
*
mask_data
=
mask
->
mutable_data
<
T2
>
(
context
.
GetPlace
());
int
nthreads
=
batch_size
*
output_channels
*
output_height
*
output_width
;
int
blocks
=
(
nthreads
+
1024
-
1
)
/
1024
;
...
...
@@ -777,7 +777,7 @@ class MaxPool2dWithIndexFunctor<platform::GPUPlace, T> {
dim3
grid
(
blocks
,
1
);
KernelMaxPool2dWithIdx
<
T
><<<
grid
,
threads
,
0
,
T
1
,
T2
><<<
grid
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
stream
()
>>>
(
nthreads
,
input_data
,
input_channels
,
input_height
,
input_width
,
...
...
@@ -791,8 +791,8 @@ class MaxPool2dWithIndexFunctor<platform::GPUPlace, T> {
* Ksize, strides, paddings are two elements. These two elements represent
* height and width, respectively.
*/
template
<
typename
T
>
class
MaxPool2dWithIndexGradFunctor
<
platform
::
GPUPlace
,
T
>
{
template
<
typename
T
1
,
typename
T2
>
class
MaxPool2dWithIndexGradFunctor
<
platform
::
GPUPlace
,
T
1
,
T2
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
output_grad
,
...
...
@@ -812,9 +812,9 @@ class MaxPool2dWithIndexGradFunctor<platform::GPUPlace, T> {
const
int
padding_height
=
paddings
[
0
];
const
int
padding_width
=
paddings
[
1
];
const
T
*
mask_data
=
mask
.
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
.
data
<
T
>
();
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
T
2
*
mask_data
=
mask
.
data
<
T2
>
();
const
T
1
*
output_grad_data
=
output_grad
.
data
<
T1
>
();
T
1
*
input_grad_data
=
input_grad
->
mutable_data
<
T1
>
(
context
.
GetPlace
());
int
nthreads
=
batch_size
*
input_channels
*
input_height
*
input_width
;
int
blocks
=
(
nthreads
+
1024
-
1
)
/
1024
;
...
...
@@ -822,30 +822,30 @@ class MaxPool2dWithIndexGradFunctor<platform::GPUPlace, T> {
dim3
grid
(
blocks
,
1
);
KernelMaxPool2DWithIdxGrad
<
T
><<<
grid
,
threads
,
0
,
T
1
,
T2
><<<
grid
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
stream
()
>>>
(
nthreads
,
output_grad_data
,
mask_data
,
input_channels
,
input_height
,
input_width
,
output_height
,
output_width
,
ksize_height
,
ksize_width
,
stride_height
,
stride
_width
,
padding_height
,
padding_width
,
input_grad_data
);
.
stream
()
>>>
(
nthreads
,
output_grad_data
,
mask_data
,
input_channels
,
input_height
,
input_width
,
output_height
,
output_width
,
ksize_height
,
ksize_width
,
stride_height
,
stride_width
,
padding_height
,
padding
_width
,
input_grad_data
);
}
};
template
class
MaxPool2dWithIndexFunctor
<
platform
::
GPUPlace
,
float
>;
template
class
MaxPool2dWithIndexGradFunctor
<
platform
::
GPUPlace
,
float
>;
template
class
MaxPool2dWithIndexFunctor
<
platform
::
GPUPlace
,
double
>;
template
class
MaxPool2dWithIndexGradFunctor
<
platform
::
GPUPlace
,
double
>;
template
class
MaxPool2dWithIndexFunctor
<
platform
::
GPUPlace
,
float
,
int
>;
template
class
MaxPool2dWithIndexGradFunctor
<
platform
::
GPUPlace
,
float
,
int
>;
template
class
MaxPool2dWithIndexFunctor
<
platform
::
GPUPlace
,
double
,
int
>;
template
class
MaxPool2dWithIndexGradFunctor
<
platform
::
GPUPlace
,
double
,
int
>;
template
<
typename
T
>
template
<
typename
T
1
,
typename
T2
>
__global__
void
KernelMaxPool3DWithIdx
(
const
int
nthreads
,
const
T
*
input_data
,
const
int
channels
,
const
int
nthreads
,
const
T
1
*
input_data
,
const
int
channels
,
const
int
input_depth
,
const
int
input_height
,
const
int
input_width
,
const
int
output_depth
,
const
int
output_height
,
const
int
output_width
,
const
int
ksize_depth
,
const
int
ksize_height
,
const
int
ksize_width
,
const
int
stride_depth
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_depth
,
const
int
padding_height
,
const
int
padding_width
,
T
*
output_data
,
T
*
mask_data
)
{
T
1
*
output_data
,
T2
*
mask_data
)
{
for
(
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
index
<
nthreads
;
index
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
pw
=
index
%
output_width
;
...
...
@@ -865,7 +865,7 @@ __global__ void KernelMaxPool3DWithIdx(
hstart
=
max
(
hstart
,
0
);
wstart
=
max
(
wstart
,
0
);
T
ele
=
-
FLT_MAX
;
T
1
ele
=
-
FLT_MAX
;
int
max_index
=
-
1
;
input_data
+=
(
batch_idx
*
channels
+
c
)
*
input_depth
*
input_height
*
input_width
;
...
...
@@ -885,15 +885,15 @@ __global__ void KernelMaxPool3DWithIdx(
}
}
template
<
typename
T
>
template
<
typename
T
1
,
typename
T2
>
__global__
void
KernelMaxPool3DWithIdxGrad
(
const
int
nthreads
,
const
T
*
output_grad
,
const
T
*
mask
,
const
int
channels
,
const
int
input_depth
,
const
int
input_height
,
const
int
input_width
,
const
int
output_depth
,
const
int
output_height
,
const
int
output_width
,
const
int
ksize_depth
,
const
int
ksize_height
,
const
int
ksize_width
,
const
int
stride_depth
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_depth
,
const
int
padding_height
,
const
int
padding_width
,
T
*
input_grad
)
{
const
int
nthreads
,
const
T
1
*
output_grad
,
const
T2
*
mask
,
const
int
channels
,
const
int
input_depth
,
const
int
input_height
,
const
int
input_width
,
const
int
output_depth
,
const
int
output_height
,
const
int
output_width
,
const
int
ksize_depth
,
const
int
ksize_height
,
const
int
ksize_width
,
const
int
stride_depth
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_depth
,
const
int
padding_height
,
const
int
padding_width
,
T1
*
input_grad
)
{
for
(
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
index
<
nthreads
;
index
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
w_offset
=
index
%
input_width
;
...
...
@@ -922,7 +922,7 @@ __global__ void KernelMaxPool3DWithIdxGrad(
int
pw_end
=
min
((
w_offset
+
padding_width
)
/
stride_width
+
1
,
output_width
);
T
gradient
=
0
;
T
1
gradient
=
0
;
int
input_current_feature_map_idx
=
(
d_offset
*
input_height
+
h_offset
)
*
input_width
+
w_offset
;
int
output_idx
=
(
batch_idx
*
channels
+
c_offset
)
*
output_depth
*
...
...
@@ -949,8 +949,8 @@ __global__ void KernelMaxPool3DWithIdxGrad(
* Ksize, strides, paddings are three elements. These three elements represent
* depth, height and width, respectively.
*/
template
<
typename
T
>
class
MaxPool3dWithIndexFunctor
<
platform
::
GPUPlace
,
T
>
{
template
<
typename
T
1
,
typename
T2
>
class
MaxPool3dWithIndexFunctor
<
platform
::
GPUPlace
,
T
1
,
T2
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
std
::
vector
<
int
>&
ksize
,
...
...
@@ -975,9 +975,9 @@ class MaxPool3dWithIndexFunctor<platform::GPUPlace, T> {
const
int
padding_height
=
paddings
[
1
];
const
int
padding_width
=
paddings
[
2
];
const
T
*
input_data
=
input
.
data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
mask_data
=
mask
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
T
1
*
input_data
=
input
.
data
<
T1
>
();
T
1
*
output_data
=
output
->
mutable_data
<
T1
>
(
context
.
GetPlace
());
T
2
*
mask_data
=
mask
->
mutable_data
<
T2
>
(
context
.
GetPlace
());
int
nthreads
=
batch_size
*
output_channels
*
output_depth
*
output_height
*
output_width
;
...
...
@@ -986,7 +986,7 @@ class MaxPool3dWithIndexFunctor<platform::GPUPlace, T> {
dim3
grid
(
blocks
,
1
);
KernelMaxPool3DWithIdx
<
T
><<<
grid
,
threads
,
0
,
T
1
,
T2
><<<
grid
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
stream
()
>>>
(
nthreads
,
input_data
,
input_channels
,
input_depth
,
input_height
,
...
...
@@ -1001,8 +1001,8 @@ class MaxPool3dWithIndexFunctor<platform::GPUPlace, T> {
* Ksize, strides, paddings are three elements. These three elements represent
* depth, height and width, respectively.
*/
template
<
typename
T
>
class
MaxPool3dWithIndexGradFunctor
<
platform
::
GPUPlace
,
T
>
{
template
<
typename
T
1
,
typename
T2
>
class
MaxPool3dWithIndexGradFunctor
<
platform
::
GPUPlace
,
T
1
,
T2
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
output_grad
,
...
...
@@ -1027,9 +1027,9 @@ class MaxPool3dWithIndexGradFunctor<platform::GPUPlace, T> {
const
int
padding_height
=
paddings
[
1
];
const
int
padding_width
=
paddings
[
2
];
const
T
*
output_grad_data
=
output_grad
.
data
<
T
>
();
const
T
*
mask_data
=
mask
.
data
<
T
>
();
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
T
1
*
output_grad_data
=
output_grad
.
data
<
T1
>
();
const
T
2
*
mask_data
=
mask
.
data
<
T2
>
();
T
1
*
input_grad_data
=
input_grad
->
mutable_data
<
T1
>
(
context
.
GetPlace
());
int
nthreads
=
batch_size
*
input_channels
*
input_depth
*
input_height
*
input_width
;
...
...
@@ -1038,7 +1038,7 @@ class MaxPool3dWithIndexGradFunctor<platform::GPUPlace, T> {
dim3
grid
(
blocks
,
1
);
KernelMaxPool3DWithIdxGrad
<
T
><<<
grid
,
threads
,
0
,
T
1
,
T2
><<<
grid
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
stream
()
>>>
(
nthreads
,
output_grad_data
,
mask_data
,
input_channels
,
input_depth
,
...
...
@@ -1049,10 +1049,10 @@ class MaxPool3dWithIndexGradFunctor<platform::GPUPlace, T> {
}
};
template
class
MaxPool3dWithIndexFunctor
<
platform
::
GPUPlace
,
float
>;
template
class
MaxPool3dWithIndexGradFunctor
<
platform
::
GPUPlace
,
float
>;
template
class
MaxPool3dWithIndexFunctor
<
platform
::
GPUPlace
,
double
>;
template
class
MaxPool3dWithIndexGradFunctor
<
platform
::
GPUPlace
,
double
>;
template
class
MaxPool3dWithIndexFunctor
<
platform
::
GPUPlace
,
float
,
int
>;
template
class
MaxPool3dWithIndexGradFunctor
<
platform
::
GPUPlace
,
float
,
int
>;
template
class
MaxPool3dWithIndexFunctor
<
platform
::
GPUPlace
,
double
,
int
>;
template
class
MaxPool3dWithIndexGradFunctor
<
platform
::
GPUPlace
,
double
,
int
>;
}
// namespace math
}
// namespace operators
...
...
paddle/operators/math/pooling.h
浏览文件 @
350cc61f
...
...
@@ -153,7 +153,7 @@ class MaxPool3dGradFunctor {
* In pool2d, all tensors are in NCHW format. In pool3d, all tensors are in
* NCDHW format.
*/
template
<
typename
Place
,
typename
T
>
template
<
typename
Place
,
typename
T
1
,
typename
T2
>
class
MaxPool2dWithIndexFunctor
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
...
...
@@ -162,7 +162,7 @@ class MaxPool2dWithIndexFunctor {
framework
::
Tensor
*
output
,
framework
::
Tensor
*
mask
);
};
template
<
typename
Place
,
typename
T
>
template
<
typename
Place
,
typename
T
1
,
typename
T2
>
class
MaxPool2dWithIndexGradFunctor
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
...
...
@@ -172,7 +172,7 @@ class MaxPool2dWithIndexGradFunctor {
framework
::
Tensor
*
input_grad
);
};
template
<
typename
Place
,
typename
T
>
template
<
typename
Place
,
typename
T
1
,
typename
T2
>
class
MaxPool3dWithIndexFunctor
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
...
...
@@ -181,7 +181,7 @@ class MaxPool3dWithIndexFunctor {
framework
::
Tensor
*
output
,
framework
::
Tensor
*
mask
);
};
template
<
typename
Place
,
typename
T
>
template
<
typename
Place
,
typename
T
1
,
typename
T2
>
class
MaxPool3dWithIndexGradFunctor
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
...
...
paddle/operators/pool_with_index_op.cc
浏览文件 @
350cc61f
...
...
@@ -29,11 +29,11 @@ class MaxPoolWithIndexOp : public framework::OperatorWithKernel {
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"
X(Input
) of Pooling should not be null."
);
"
Input(X
) of Pooling should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Out
(Outp
ut) of Pooling should not be null."
);
"Out
put(O
ut) of Pooling should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Mask"
),
"
Mask(Output
) of Pooling should not be null."
);
"
Output(Mask
) of Pooling should not be null."
);
auto
in_x_dims
=
ctx
->
GetInputDim
(
"X"
);
...
...
@@ -67,6 +67,14 @@ class MaxPoolWithIndexOp : public framework::OperatorWithKernel {
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
output_shape
));
ctx
->
SetOutputDim
(
"Mask"
,
framework
::
make_ddim
(
output_shape
));
}
protected:
framework
::
OpKernelType
GetKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
)
->
type
()),
ctx
.
device_context
());
}
};
class
MaxPoolWithIndexOpGrad
:
public
framework
::
OperatorWithKernel
{
...
...
@@ -80,6 +88,14 @@ class MaxPoolWithIndexOpGrad : public framework::OperatorWithKernel {
"Input(X@GRAD) should not be null."
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
}
protected:
framework
::
OpKernelType
GetKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
)
->
type
()),
ctx
.
device_context
());
}
};
class
MaxPool2dWithIndexOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
...
...
@@ -116,7 +132,7 @@ class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
// TypedAttrChecker don't support vector type.)
AddAttr
<
bool
>
(
"global_pooling"
,
"(bool, default
false) Whether to use the global pooling. "
"(bool, default
:
false) Whether to use the global pooling. "
"If global_pooling = true, ksize and paddings will be ignored."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
...
...
@@ -126,7 +142,7 @@ class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
// TypedAttrChecker don't support vector type.)
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"(vector<int>, defalut
{0, 0}), paddings(height, width) of pooling "
"(vector<int>, defalut
:
{0, 0}), paddings(height, width) of pooling "
"operator. "
"If global_pooling = true, paddings and will be ignored."
)
.
SetDefault
({
0
,
0
});
// TODO(Chengduo): Add checker. (Currently,
...
...
@@ -250,12 +266,12 @@ REGISTER_OP(max_pool2d_with_index, ops::MaxPoolWithIndexOp,
REGISTER_OP_CPU_KERNEL
(
max_pool2d_with_index
,
ops
::
MaxPoolWithIndexKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
MaxPoolWithIndexKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
);
ops
::
MaxPoolWithIndexKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
int
>
,
ops
::
MaxPoolWithIndexKernel
<
paddle
::
platform
::
CPUPlace
,
double
,
int
>
);
REGISTER_OP_CPU_KERNEL
(
max_pool2d_with_index_grad
,
ops
::
MaxPoolWithIndexGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
MaxPoolWithIndexGradKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
)
ops
::
MaxPoolWithIndexGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
int
>
,
ops
::
MaxPoolWithIndexGradKernel
<
paddle
::
platform
::
CPUPlace
,
double
,
int
>
)
REGISTER_OP
(
max_pool3d_with_index
,
ops
::
MaxPoolWithIndexOp
,
ops
::
MaxPool3dWithIndexOpMaker
,
max_pool3d_with_index_grad
,
...
...
@@ -263,9 +279,9 @@ REGISTER_OP(max_pool3d_with_index, ops::MaxPoolWithIndexOp,
REGISTER_OP_CPU_KERNEL
(
max_pool3d_with_index
,
ops
::
MaxPoolWithIndexKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
MaxPoolWithIndexKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
);
ops
::
MaxPoolWithIndexKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
int
>
,
ops
::
MaxPoolWithIndexKernel
<
paddle
::
platform
::
CPUPlace
,
double
,
int
>
);
REGISTER_OP_CPU_KERNEL
(
max_pool3d_with_index_grad
,
ops
::
MaxPoolWithIndexGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
MaxPoolWithIndexGradKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
)
ops
::
MaxPoolWithIndexGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
int
>
,
ops
::
MaxPoolWithIndexGradKernel
<
paddle
::
platform
::
CPUPlace
,
double
,
int
>
)
paddle/operators/pool_with_index_op.cu.cc
浏览文件 @
350cc61f
...
...
@@ -18,18 +18,18 @@ namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL
(
max_pool2d_with_index
,
ops
::
MaxPoolWithIndexKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
,
ops
::
MaxPoolWithIndexKernel
<
paddle
::
platform
::
GPUPlace
,
double
>
);
ops
::
MaxPoolWithIndexKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
int
>
,
ops
::
MaxPoolWithIndexKernel
<
paddle
::
platform
::
GPUPlace
,
double
,
int
>
);
REGISTER_OP_GPU_KERNEL
(
max_pool2d_with_index_grad
,
ops
::
MaxPoolWithIndexGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
,
ops
::
MaxPoolWithIndexGradKernel
<
paddle
::
platform
::
GPUPlace
,
double
>
)
ops
::
MaxPoolWithIndexGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
int
>
,
ops
::
MaxPoolWithIndexGradKernel
<
paddle
::
platform
::
GPUPlace
,
double
,
int
>
)
REGISTER_OP_GPU_KERNEL
(
max_pool3d_with_index
,
ops
::
MaxPoolWithIndexKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
,
ops
::
MaxPoolWithIndexKernel
<
paddle
::
platform
::
GPUPlace
,
double
>
);
ops
::
MaxPoolWithIndexKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
int
>
,
ops
::
MaxPoolWithIndexKernel
<
paddle
::
platform
::
GPUPlace
,
double
,
int
>
);
REGISTER_OP_GPU_KERNEL
(
max_pool3d_with_index_grad
,
ops
::
MaxPoolWithIndexGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
,
ops
::
MaxPoolWithIndexGradKernel
<
paddle
::
platform
::
GPUPlace
,
double
>
)
ops
::
MaxPoolWithIndexGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
int
>
,
ops
::
MaxPoolWithIndexGradKernel
<
paddle
::
platform
::
GPUPlace
,
double
,
int
>
)
paddle/operators/pool_with_index_op.h
浏览文件 @
350cc61f
...
...
@@ -24,8 +24,8 @@ namespace operators {
using
Tensor
=
framework
::
Tensor
;
template
<
typename
Place
,
typename
T
>
class
MaxPoolWithIndexKernel
:
public
framework
::
OpKernel
<
T
>
{
template
<
typename
Place
,
typename
T
1
,
typename
T2
>
class
MaxPoolWithIndexKernel
:
public
framework
::
OpKernel
<
T
1
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
in_x
=
context
.
Input
<
Tensor
>
(
"X"
);
...
...
@@ -44,13 +44,13 @@ class MaxPoolWithIndexKernel : public framework::OpKernel<T> {
switch
(
ksize
.
size
())
{
case
2
:
{
paddle
::
operators
::
math
::
MaxPool2dWithIndexFunctor
<
Place
,
T
>
paddle
::
operators
::
math
::
MaxPool2dWithIndexFunctor
<
Place
,
T
1
,
T2
>
pool2d_forward
;
pool2d_forward
(
context
.
device_context
(),
*
in_x
,
ksize
,
strides
,
paddings
,
out
,
mask
);
}
break
;
case
3
:
{
paddle
::
operators
::
math
::
MaxPool3dWithIndexFunctor
<
Place
,
T
>
paddle
::
operators
::
math
::
MaxPool3dWithIndexFunctor
<
Place
,
T
1
,
T2
>
pool3d_forward
;
pool3d_forward
(
context
.
device_context
(),
*
in_x
,
ksize
,
strides
,
paddings
,
out
,
mask
);
...
...
@@ -60,8 +60,8 @@ class MaxPoolWithIndexKernel : public framework::OpKernel<T> {
}
};
template
<
typename
Place
,
typename
T
>
class
MaxPoolWithIndexGradKernel
:
public
framework
::
OpKernel
<
T
>
{
template
<
typename
Place
,
typename
T
1
,
typename
T2
>
class
MaxPoolWithIndexGradKernel
:
public
framework
::
OpKernel
<
T
1
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
mask
=
context
.
Input
<
Tensor
>
(
"Mask"
);
...
...
@@ -80,19 +80,19 @@ class MaxPoolWithIndexGradKernel : public framework::OpKernel<T> {
}
if
(
in_x_grad
)
{
in_x_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
in_x_grad
->
mutable_data
<
T
1
>
(
context
.
GetPlace
());
auto
&
device_ctx
=
context
.
device_context
();
math
::
set_constant
(
device_ctx
,
in_x_grad
,
0
);
switch
(
ksize
.
size
())
{
case
2
:
{
paddle
::
operators
::
math
::
MaxPool2dWithIndexGradFunctor
<
Place
,
T
>
paddle
::
operators
::
math
::
MaxPool2dWithIndexGradFunctor
<
Place
,
T
1
,
T2
>
pool2d_backward
;
pool2d_backward
(
device_ctx
,
*
out_grad
,
*
mask
,
ksize
,
strides
,
paddings
,
in_x_grad
);
}
break
;
case
3
:
{
paddle
::
operators
::
math
::
MaxPool3dWithIndexGradFunctor
<
Place
,
T
>
paddle
::
operators
::
math
::
MaxPool3dWithIndexGradFunctor
<
Place
,
T
1
,
T2
>
pool3d_backward
;
pool3d_backward
(
device_ctx
,
*
out_grad
,
*
mask
,
ksize
,
strides
,
paddings
,
in_x_grad
);
...
...
python/paddle/v2/fluid/layers.py
浏览文件 @
350cc61f
...
...
@@ -661,7 +661,7 @@ def conv2d(input,
if
groups
is
None
:
num_filter_channels
=
num_channels
else
:
if
num_channels
%
groups
is
not
0
:
if
num_channels
%
groups
!=
0
:
raise
ValueError
(
"num_channels must be divisible by groups."
)
num_filter_channels
=
num_channels
/
groups
...
...
python/paddle/v2/fluid/tests/test_pool_max_op.py
浏览文件 @
350cc61f
...
...
@@ -3,11 +3,13 @@ import numpy as np
from
op_test
import
OpTest
def
max_pool3D_forward_naive
(
x
,
ksize
,
strides
,
paddings
,
global_pool
=
0
):
def
max_pool3D_forward_naive
(
x
,
ksize
,
strides
,
paddings
,
global_pool
=
False
):
N
,
C
,
D
,
H
,
W
=
x
.
shape
if
global_pool
==
1
:
if
global_pool
:
ksize
=
[
D
,
H
,
W
]
paddings
=
[
0
,
0
,
0
]
D_out
=
(
D
-
ksize
[
0
]
+
2
*
paddings
[
0
])
/
strides
[
0
]
+
1
H_out
=
(
H
-
ksize
[
1
]
+
2
*
paddings
[
1
])
/
strides
[
1
]
+
1
W_out
=
(
W
-
ksize
[
2
]
+
2
*
paddings
[
2
])
/
strides
[
2
]
+
1
...
...
@@ -40,11 +42,13 @@ def max_pool3D_forward_naive(x, ksize, strides, paddings, global_pool=0):
return
out
,
mask
def
max_pool2D_forward_naive
(
x
,
ksize
,
strides
,
paddings
,
global_pool
=
0
):
def
max_pool2D_forward_naive
(
x
,
ksize
,
strides
,
paddings
,
global_pool
=
False
):
N
,
C
,
H
,
W
=
x
.
shape
if
global_pool
==
1
:
if
global_pool
:
ksize
=
[
H
,
W
]
paddings
=
[
0
,
0
]
H_out
=
(
H
-
ksize
[
0
]
+
2
*
paddings
[
0
])
/
strides
[
0
]
+
1
W_out
=
(
W
-
ksize
[
1
]
+
2
*
paddings
[
1
])
/
strides
[
1
]
+
1
out
=
np
.
zeros
((
N
,
C
,
H_out
,
W_out
))
...
...
@@ -74,13 +78,13 @@ def max_pool2D_forward_naive(x, ksize, strides, paddings, global_pool=0):
class
TestMaxPoolWithIndex_Op
(
OpTest
):
def
setUp
(
self
):
self
.
init_test_case
()
if
self
.
global_pool
:
self
.
paddings
=
[
0
for
_
in
range
(
len
(
self
.
paddings
))]
self
.
init_global
()
input
=
np
.
random
.
random
(
self
.
shape
).
astype
(
"float32"
)
output
,
mask
=
self
.
pool_forward_naive
(
input
,
self
.
ksize
,
self
.
strides
,
self
.
paddings
,
self
.
global_pool
)
output
=
output
.
astype
(
"float32"
)
mask
=
mask
.
astype
(
"
floa
t32"
)
mask
=
mask
.
astype
(
"
in
t32"
)
self
.
attrs
=
{
'strides'
:
self
.
strides
,
...
...
@@ -99,41 +103,24 @@ class TestMaxPoolWithIndex_Op(OpTest):
# self.check_grad(set(['X']), ['Out'], max_relative_error=0.07)
def
init_test_case
(
self
):
self
.
global_pool
=
True
self
.
index
=
"max_pool3d_with_index"
self
.
op_type
=
"%s"
%
self
.
index
self
.
op_type
=
"max_pool3d_with_index"
self
.
pool_forward_naive
=
max_pool3D_forward_naive
self
.
shape
=
[
2
,
3
,
5
,
5
,
5
]
self
.
ksize
=
[
3
,
3
,
3
]
self
.
strides
=
[
1
,
1
,
1
]
self
.
paddings
=
[
1
,
1
,
1
]
def
init_global
(
self
):
self
.
global_pool
=
False
class
TestCase1
(
TestMaxPoolWithIndex_Op
):
def
init_
test_case
(
self
):
def
init_
global
(
self
):
self
.
global_pool
=
True
self
.
op_type
=
"max_pool3d_with_index"
self
.
pool_forward_naive
=
max_pool3D_forward_naive
self
.
shape
=
[
2
,
3
,
5
,
5
,
5
]
self
.
ksize
=
[
3
,
3
,
3
]
self
.
strides
=
[
1
,
1
,
1
]
self
.
paddings
=
[
1
,
1
,
1
]
class
TestCase2
(
TestMaxPoolWithIndex_Op
):
def
init_test_case
(
self
):
self
.
global_pool
=
False
self
.
op_type
=
"max_pool3d_with_index"
self
.
pool_forward_naive
=
max_pool3D_forward_naive
self
.
shape
=
[
2
,
3
,
7
,
7
,
7
]
self
.
ksize
=
[
3
,
3
,
3
]
self
.
strides
=
[
1
,
1
,
1
]
self
.
paddings
=
[
1
,
1
,
1
]
class
TestCase3
(
TestMaxPoolWithIndex_Op
):
def
init_test_case
(
self
):
self
.
global_pool
=
False
self
.
op_type
=
"max_pool3d_with_index"
self
.
pool_forward_naive
=
max_pool3D_forward_naive
self
.
shape
=
[
2
,
3
,
7
,
7
,
7
]
...
...
@@ -141,32 +128,18 @@ class TestCase3(TestMaxPoolWithIndex_Op):
self
.
strides
=
[
2
,
2
,
2
]
self
.
paddings
=
[
0
,
0
,
0
]
class
TestCase4
(
TestMaxPoolWithIndex_Op
):
def
init_test_case
(
self
):
def
init_global
(
self
):
self
.
global_pool
=
True
self
.
op_type
=
"max_pool3d_with_index"
self
.
pool_forward_naive
=
max_pool3D_forward_naive
self
.
shape
=
[
2
,
3
,
5
,
5
,
5
]
self
.
ksize
=
[
3
,
3
,
3
]
self
.
strides
=
[
1
,
1
,
1
]
self
.
paddings
=
[
1
,
1
,
1
]
class
TestCase5
(
TestMaxPoolWithIndex_Op
):
def
init_test_case
(
self
):
self
.
global_pool
=
True
self
.
op_type
=
"max_pool3d_with_index"
self
.
pool_forward_naive
=
max_pool3D_forward_naive
self
.
shape
=
[
2
,
3
,
5
,
5
,
5
]
self
.
ksize
=
[
3
,
3
,
3
]
self
.
strides
=
[
2
,
2
,
2
]
self
.
paddings
=
[
0
,
0
,
0
]
class
TestCase3
(
TestCase2
):
def
init_global
(
self
):
self
.
global_pool
=
False
class
TestCase6
(
TestMaxPoolWithIndex_Op
):
#----------------max_pool2d_with_index----------------
class
TestCase4
(
TestMaxPoolWithIndex_Op
):
def
init_test_case
(
self
):
self
.
global_pool
=
False
self
.
op_type
=
"max_pool2d_with_index"
self
.
pool_forward_naive
=
max_pool2D_forward_naive
self
.
shape
=
[
2
,
3
,
7
,
7
]
...
...
@@ -174,10 +147,17 @@ class TestCase6(TestMaxPoolWithIndex_Op):
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
1
,
1
]
def
init_global
(
self
):
self
.
global_pool
=
True
class
TestCase
7
(
TestMaxPoolWithIndex_Op
):
def
init_
test_case
(
self
):
class
TestCase
5
(
TestCase4
):
def
init_
global
(
self
):
self
.
global_pool
=
False
class
TestCase6
(
TestMaxPoolWithIndex_Op
):
def
init_test_case
(
self
):
self
.
op_type
=
"max_pool2d_with_index"
self
.
pool_forward_naive
=
max_pool2D_forward_naive
self
.
shape
=
[
2
,
3
,
7
,
7
]
...
...
@@ -185,27 +165,13 @@ class TestCase7(TestMaxPoolWithIndex_Op):
self
.
strides
=
[
2
,
2
]
self
.
paddings
=
[
0
,
0
]
class
TestCase8
(
TestMaxPoolWithIndex_Op
):
def
init_test_case
(
self
):
def
init_global
(
self
):
self
.
global_pool
=
True
self
.
op_type
=
"max_pool2d_with_index"
self
.
pool_forward_naive
=
max_pool2D_forward_naive
self
.
shape
=
[
2
,
3
,
5
,
5
]
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
1
,
1
]
class
TestCase9
(
TestMaxPoolWithIndex_Op
):
def
init_test_case
(
self
):
self
.
global_pool
=
True
self
.
op_type
=
"max_pool2d_with_index"
self
.
pool_forward_naive
=
max_pool2D_forward_naive
self
.
shape
=
[
2
,
3
,
5
,
5
]
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
2
,
2
]
self
.
paddings
=
[
0
,
0
]
class
TestCase7
(
TestCase6
):
def
init_global
(
self
):
self
.
global_pool
=
False
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录