Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
2ec13062
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
2ec13062
编写于
12月 23, 2017
作者:
C
Cao Ying
提交者:
GitHub
12月 23, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #6907 from lcy-seso/fix_doc
fix doc.
上级
ed08a483
8a463939
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
9 addition
and
8 deletion
+9
-8
paddle/operators/mul_op.cc
paddle/operators/mul_op.cc
+1
-1
paddle/operators/positive_negative_pair_op.cc
paddle/operators/positive_negative_pair_op.cc
+8
-7
未找到文件。
paddle/operators/mul_op.cc
浏览文件 @
2ec13062
...
...
@@ -113,7 +113,7 @@ This operator is used to perform matrix multiplication for input $X$ and $Y$.
The equation is:
$$Out = X * Y$$
$$Out = X * Y$$
Both the input $X$ and $Y$ can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input $X$.
...
...
paddle/operators/positive_negative_pair_op.cc
浏览文件 @
2ec13062
...
...
@@ -154,13 +154,14 @@ class PositiveNegativePairOpMaker : public framework::OpProtoAndCheckerMaker {
"Noting that reducing on the first dim will make the LoD info lost."
)
.
SetDefault
(
0
);
AddComment
(
R"DOC(
PositiveNegativePairOp can be used to evaluate Learning To Rank(LTR)
model performance.
Within some context, e.g. the "query", a LTR model generates scores
for a list of items, which gives a partial order of the items.
PositiveNegativePairOp takes a list of reference rank order
(Input("Label")) and the model generated scores (Input(Score)) as
inputs and counts the pairs that ranked correctly and incorrectly.
PositiveNegativePairOp can be used to evaluate Learning To Rank(LTR) model's
performance.
Within some context, e.g. the "query", a LTR model generates scores for a list
of items, which gives a partial order of the items. PositiveNegativePairOp
takes a list of reference rank order (Input("Label")) and the model generated
scores (Input(Score)) as inputs and counts the pairs that ranked correctly
and incorrectly.
)DOC"
);
}
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录