diff --git a/Dockerfile b/Dockerfile index 7856d3bbc492af4cad2d6b9f49001c90eadbea43..0f13acabc3e5e1f6a46c5712ca6ad199266dd5ed 100644 --- a/Dockerfile +++ b/Dockerfile @@ -57,7 +57,7 @@ RUN localedef -i en_US -f UTF-8 en_US.UTF-8 # specify sphinx version as 1.5.6 and remove -U option for [pip install -U # sphinx-rtd-theme] since -U option will cause sphinx being updated to newest # version(1.7.1 for now), which causes building documentation failed. -RUN pip install --upgrade pip && \ +RUN pip install --upgrade pip==9.0.3 && \ pip install -U wheel && \ pip install -U docopt PyYAML sphinx==1.5.6 && \ pip install sphinx-rtd-theme==0.1.9 recommonmark diff --git a/cmake/external/grpc.cmake b/cmake/external/grpc.cmake index aa249159470773241e0f6da2e8e086264634dd4a..e90948782bb5e333bbdb47ef9d61c1e37e3cf9e4 100644 --- a/cmake/external/grpc.cmake +++ b/cmake/external/grpc.cmake @@ -33,7 +33,7 @@ ExternalProject_Add( extern_grpc DEPENDS protobuf zlib GIT_REPOSITORY "https://github.com/grpc/grpc.git" - GIT_TAG "v1.11.x" + GIT_TAG "v1.10.x" PREFIX ${GRPC_SOURCES_DIR} UPDATE_COMMAND "" CONFIGURE_COMMAND "" diff --git a/doc/fluid/api/layers.rst b/doc/fluid/api/layers.rst index 22e6fb13d7320986a60bc1ef5530187e0970c767..5c02886efd7d11e9520910526fb90ec01e123bae 100644 --- a/doc/fluid/api/layers.rst +++ b/doc/fluid/api/layers.rst @@ -473,6 +473,12 @@ multiplex .. autofunction:: paddle.fluid.layers.multiplex :noindex: +label_smooth +------------ + +.. autofunction:: paddle.fluid.layers.label_smooth + :noindex: + ops === diff --git a/doc/fluid/dev/index_cn.rst b/doc/fluid/dev/index_cn.rst index b123b756e2251c38f319e1aefa2cb04fd7a36b03..ad798003f560e7fb0e6db6083fdd152fd3417584 100644 --- a/doc/fluid/dev/index_cn.rst +++ b/doc/fluid/dev/index_cn.rst @@ -4,6 +4,7 @@ .. toctree:: :maxdepth: 1 + api_doc_std_cn.md new_op_cn.md new_op_kernel.md use_eigen_cn.md diff --git a/doc/fluid/dev/index_en.rst b/doc/fluid/dev/index_en.rst index 98988fc22dcedecdbcd67fb3bf761377bf046337..80c899a82fa452c5cd8f38dad89c15d3041b09e3 100644 --- a/doc/fluid/dev/index_en.rst +++ b/doc/fluid/dev/index_en.rst @@ -4,6 +4,7 @@ Development .. toctree:: :maxdepth: 1 + api_doc_std_en.md new_op_en.md new_op_kernel.md use_eigen_en.md diff --git a/paddle/fluid/framework/details/multi_devices_graph_builder.cc b/paddle/fluid/framework/details/multi_devices_graph_builder.cc index e0dd9e6068174a4b0348d503f4082bee6ff68dac..5a95cbc53625888bac539f91af391ff0babec17b 100644 --- a/paddle/fluid/framework/details/multi_devices_graph_builder.cc +++ b/paddle/fluid/framework/details/multi_devices_graph_builder.cc @@ -55,21 +55,21 @@ MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder( } } -void MultiDevSSAGraphBuilder::CreateOpHandleIOs(SSAGraph *result, OpDesc *op, +void MultiDevSSAGraphBuilder::CreateOpHandleIOs(SSAGraph *result, + const OpDesc &op, const platform::Place &p, const size_t &i) const { auto *op_handle = result->ops_.back().get(); - op_handle->dev_ctxes_[p] = const_cast( - platform::DeviceContextPool::Instance().Get(p)); + op_handle->dev_ctxes_[p] = platform::DeviceContextPool::Instance().Get(p); - auto var_names = op->InputArgumentNames(); + auto var_names = op.InputArgumentNames(); for (auto &each_var_name : var_names) { VarHandle *var = CreateOrGetLatestVarHandle(result, each_var_name, p, i); op_handle->AddInput(var); } - var_names = op->OutputArgumentNames(); + var_names = op.OutputArgumentNames(); for (auto &each_var_name : var_names) { CreateOpOutput(result, op_handle, each_var_name, p, i); @@ -107,7 +107,7 @@ std::unique_ptr MultiDevSSAGraphBuilder::Build( result.ops_.emplace_back(new SendOpHandle(*op, s, p)); // Create inputs for output on original place and no ssa output // is created for send op. - CreateOpHandleIOs(&result, op, p, 0); + CreateOpHandleIOs(&result, *op, p, 0); continue; } @@ -117,7 +117,7 @@ std::unique_ptr MultiDevSSAGraphBuilder::Build( result.ops_.emplace_back(new ComputationOpHandle(*op, s, p)); auto *op_handle = result.ops_.back().get(); - CreateOpHandleIOs(&result, op, p, i); + CreateOpHandleIOs(&result, *op, p, i); auto var_names = op->OutputArgumentNames(); diff --git a/paddle/fluid/framework/details/multi_devices_graph_builder.h b/paddle/fluid/framework/details/multi_devices_graph_builder.h index de34caab1be85eecb741a5003f026eb982e178ea..f1518d75b421006db6311c3b0f602e47000ab381 100644 --- a/paddle/fluid/framework/details/multi_devices_graph_builder.h +++ b/paddle/fluid/framework/details/multi_devices_graph_builder.h @@ -45,8 +45,8 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder { std::unique_ptr Build(const ProgramDesc &program) const override; private: - void CreateOpHandleIOs(SSAGraph *result, OpDesc *op, const platform::Place &p, - const size_t &i) const; + void CreateOpHandleIOs(SSAGraph *result, const OpDesc &op, + const platform::Place &p, const size_t &i) const; private: std::string loss_var_name_; diff --git a/paddle/fluid/framework/program_desc_test.cc b/paddle/fluid/framework/program_desc_test.cc index 66618a291b59996836e822587af618927a4263c7..6c46e9aad5b7fbf67fdcc07a12e7932ac8b6412b 100644 --- a/paddle/fluid/framework/program_desc_test.cc +++ b/paddle/fluid/framework/program_desc_test.cc @@ -66,7 +66,7 @@ TEST(ProgramDesc, copy_ctor) { for (size_t i = 0; i < global_block->OpSize(); ++i) { auto op_origin = global_block->Op(i); - auto op_copy = global_block->Op(i); + auto op_copy = global_block_copy->Op(i); ASSERT_EQ(op_origin->Type(), op_copy->Type()); ASSERT_EQ(op_origin->Inputs(), op_copy->Inputs()); @@ -131,7 +131,7 @@ TEST(ProgramDescBind, serialize_and_deserialize) { for (size_t i = 0; i < global_block->OpSize(); ++i) { auto op_origin = global_block->Op(i); - auto op_restored = global_block->Op(i); + auto op_restored = global_block_restored->Op(i); ASSERT_EQ(op_origin->Type(), op_restored->Type()); ASSERT_EQ(op_origin->Inputs(), op_restored->Inputs()); diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 5c2c2dd7abebf8960d68b4c4dfd746a4e27acd03..bba8b64bd88c3edc6eda110dde38c0ced50439f6 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -77,6 +77,7 @@ __all__ = [ 'lod_reset', 'lrn', 'pad', + 'label_smooth', ] @@ -3678,3 +3679,68 @@ def pad(x, paddings, pad_value=0., name=None): attrs={'paddings': paddings, 'pad_value': float(pad_value)}) return out + + +def label_smooth(label, + prior_dist=None, + epsilon=0.1, + dtype="float32", + name=None): + """ + Label smoothing is a mechanism to regularize the classifier layer and is + called label-smoothing regularization (LSR). + + Label smoothing is proposed to encourage the model to be less confident, + since optimizing the log-likelihood of the correct label directly may + cause overfitting and reduce the ability of the model to adapt. Label + smoothing replaces the ground-truth label :math:`y` with the weighted sum + of itself and some fixed distribution :math:`\mu`. For class :math:`k`, + i.e. + + .. math:: + + \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k, + + where :math:`1 - \epsilon` and :math:`\epsilon` are the weights + respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually + uniform distribution is used for :math:`\mu`. + + See more details about label smoothing in https://arxiv.org/abs/1512.00567. + + Args: + label(Variable): The input variable containing the label data. The + label data should use one-hot representation. + prior_dist(Variable): The prior distribution to be used to smooth + labels. If not provided, an uniform distribution + is used. The shape of :attr:`prior_dist` should + be :math:`(1, class\_num)`. + epsilon(float): The weight used to mix up the original ground-truth + distribution and the fixed distribution. + dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, + float_64, int etc. + name(str|None): A name for this layer(optional). If set None, the layer + will be named automatically. + + Returns: + Variable: The tensor variable containing the smoothed labels. + + Examples: + .. code-block:: python + + label = layers.data(name="label", shape=[1], dtype="float32") + one_hot_label = layers.one_hot(input=label, depth=10) + smooth_label = layers.label_smooth( + label=one_hot_label, epsilon=0.1, dtype="float32") + """ + if epsilon > 1. or epsilon < 0.: + raise ValueError("The value of epsilon must be between 0 and 1.") + helper = LayerHelper("label_smooth", **locals()) + label.stop_gradient = True + smooth_label = helper.create_tmp_variable(dtype) + helper.append_op( + type="label_smooth", + inputs={"X": label, + "PriorDist": prior_dist} if prior_dist else {"X": label}, + outputs={"Out": smooth_label}, + attrs={"epsilon": float(epsilon)}) + return smooth_label diff --git a/python/paddle/fluid/metrics.py b/python/paddle/fluid/metrics.py index 99a81c1d4244b919a53dfec36fc5a6659c10adae..c618b02a768f2ca3e2b2914d8ee0134836d5c0d2 100644 --- a/python/paddle/fluid/metrics.py +++ b/python/paddle/fluid/metrics.py @@ -169,7 +169,7 @@ class Accuracy(MetricBase): return self.value / self.weight -class ChunkEvalutor(MetricBase): +class ChunkEvaluator(MetricBase): """ Accumulate counter numbers output by chunk_eval from mini-batches and compute the precision recall and F1-score using the accumulated counter @@ -177,7 +177,7 @@ class ChunkEvalutor(MetricBase): """ def __init__(self, name=None): - super(ChunkEvalutor, self).__init__(name) + super(ChunkEvaluator, self).__init__(name) self.num_infer_chunks = 0 self.num_label_chunks = 0 self.num_correct_chunks = 0 diff --git a/python/paddle/fluid/tests/unittests/test_layers.py b/python/paddle/fluid/tests/unittests/test_layers.py index f88a6f1ce6e953c54da29f9e96199169b2cecd8b..a1be2d671ddc5c689b16319fcf5bf12dca5dde7e 100644 --- a/python/paddle/fluid/tests/unittests/test_layers.py +++ b/python/paddle/fluid/tests/unittests/test_layers.py @@ -340,6 +340,16 @@ class TestBook(unittest.TestCase): print(layers.lod_reset(x=x, y=y)) print(str(program)) + def test_label_smooth(self): + program = Program() + with program_guard(program): + label = layers.data(name="label", shape=[1], dtype="float32") + one_hot_label = layers.one_hot(input=label, depth=10) + smooth_label = layers.label_smooth( + label=one_hot_label, epsilon=0.1, dtype="float32") + self.assertIsNotNone(smooth_label) + print(str(program)) + if __name__ == '__main__': unittest.main()