Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
27df3a9f
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
27df3a9f
编写于
8月 07, 2018
作者:
F
fengjiayi
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
make cross_entropy_op supporting tensors
上级
7834b4a4
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
115 addition
and
3 deletion
+115
-3
paddle/fluid/framework/tensor.cc
paddle/fluid/framework/tensor.cc
+1
-0
paddle/fluid/operators/cross_entropy_op.h
paddle/fluid/operators/cross_entropy_op.h
+12
-3
python/paddle/fluid/tests/unittests/test_cross_entropy_op.py
python/paddle/fluid/tests/unittests/test_cross_entropy_op.py
+102
-0
未找到文件。
paddle/fluid/framework/tensor.cc
浏览文件 @
27df3a9f
...
...
@@ -112,5 +112,6 @@ Tensor& Tensor::Resize(const DDim& dims) {
const
DDim
&
Tensor
::
dims
()
const
{
return
dims_
;
}
int64_t
Tensor
::
numel
()
const
{
return
product
(
dims_
);
}
}
// namespace framework
}
// namespace paddle
paddle/fluid/operators/cross_entropy_op.h
浏览文件 @
27df3a9f
...
...
@@ -33,8 +33,14 @@ class CrossEntropyOpKernel : public framework::OpKernel<T> {
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
rank
=
x
->
dims
().
size
();
Tensor
x_2d
=
rank
>
2
?
framework
::
ReshapeToMatrix
(
*
x
,
rank
-
1
)
:
*
x
;
Tensor
labels_2d
=
rank
>
2
?
framework
::
ReshapeToMatrix
(
*
labels
,
rank
-
1
)
:
*
labels
;
Tensor
y_2d
=
rank
>
2
?
framework
::
ReshapeToMatrix
(
*
y
,
rank
-
1
)
:
*
y
;
math
::
CrossEntropyFunctor
<
DeviceContext
,
T
>
()(
ctx
.
template
device_context
<
DeviceContext
>(),
y
,
x
,
labels
,
ctx
.
template
device_context
<
DeviceContext
>(),
&
y_2d
,
&
x_2d
,
&
labels_2d
,
ctx
.
Attr
<
bool
>
(
"soft_label"
));
}
};
...
...
@@ -98,9 +104,12 @@ class CrossEntropyGradientOpKernel : public framework::OpKernel<T> {
auto
*
dy
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
label
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dx_data
=
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
dx_data
=
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int64_t
class_num
=
x
->
dims
()[
1
];
// Following computation only depends on the last dimension size. So it's
// unnecessary to convert tensors to 2-D views.
int
rank
=
x
->
dims
().
size
();
int64_t
class_num
=
x
->
dims
()[
rank
-
1
];
if
(
ctx
.
Attr
<
bool
>
(
"soft_label"
))
{
XeSoftlabelGradFunctor
<
T
>
functor
(
dx_data
,
dy
->
data
<
T
>
(),
x
->
data
<
T
>
(),
label
->
data
<
T
>
(),
...
...
python/paddle/fluid/tests/unittests/test_cross_entropy_op.py
浏览文件 @
27df3a9f
...
...
@@ -105,5 +105,107 @@ class TestCrossEntropyOp3(OpTest):
[
"X"
],
"Y"
,
max_relative_error
=
0.05
,
numeric_grad_delta
=
0.001
)
class
TestCrossEntropyOp4
(
OpTest
):
"""Test high rank tensor cross-entropy with discrete one-hot labels.
"""
def
setUp
(
self
):
self
.
op_type
=
"cross_entropy"
shape
=
[
10
,
2
,
4
]
ins_num
=
np
.
prod
(
np
.
array
(
shape
))
class_num
=
10
X_2d
=
randomize_probability
(
ins_num
,
class_num
,
dtype
=
'float64'
)
label_2d
=
np
.
random
.
randint
(
0
,
class_num
,
(
ins_num
,
1
),
dtype
=
"int64"
)
cross_entropy_2d
=
np
.
asmatrix
(
[[
-
np
.
log
(
X_2d
[
i
][
label_2d
[
i
][
0
]])]
for
i
in
range
(
X_2d
.
shape
[
0
])],
dtype
=
"float64"
)
X
=
X_2d
.
reshape
(
shape
+
[
class_num
])
label
=
label_2d
.
reshape
(
shape
+
[
1
])
cross_entropy
=
np
.
array
(
cross_entropy_2d
).
reshape
(
shape
+
[
1
])
self
.
inputs
=
{
"X"
:
X
,
"Label"
:
label
}
self
.
outputs
=
{
"Y"
:
cross_entropy
}
self
.
attrs
=
{
"soft_label"
:
False
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
"X"
],
"Y"
,
numeric_grad_delta
=
0.001
)
class
TestCrossEntropyOp5
(
OpTest
):
"""Test high rank tensor cross-entropy with vectorized soft labels.
"""
def
setUp
(
self
):
self
.
op_type
=
"cross_entropy"
shape
=
[
4
,
3
]
ins_num
=
np
.
prod
(
np
.
array
(
shape
))
class_num
=
37
X_2d
=
randomize_probability
(
ins_num
,
class_num
)
label_2d
=
np
.
random
.
uniform
(
0.1
,
1.0
,
[
ins_num
,
class_num
]).
astype
(
"float32"
)
label_2d
/=
label_2d
.
sum
(
axis
=
1
,
keepdims
=
True
)
cross_entropy_2d
=
(
-
label_2d
*
np
.
log
(
X_2d
)).
sum
(
axis
=
1
,
keepdims
=
True
).
astype
(
"float32"
)
X
=
X_2d
.
reshape
(
shape
+
[
class_num
])
label
=
label_2d
.
reshape
(
shape
+
[
class_num
])
cross_entropy
=
np
.
array
(
cross_entropy_2d
).
reshape
(
shape
+
[
1
])
self
.
inputs
=
{
"X"
:
X
,
"Label"
:
label
}
self
.
outputs
=
{
"Y"
:
cross_entropy
}
self
.
attrs
=
{
"soft_label"
:
True
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
(
[
"X"
],
"Y"
,
max_relative_error
=
0.05
,
numeric_grad_delta
=
0.001
)
class
TestCrossEntropyOp6
(
OpTest
):
"""Test high rank tensor cross-entropy with vectorized one-hot representation of labels.
"""
def
setUp
(
self
):
self
.
op_type
=
"cross_entropy"
shape
=
[
4
,
3
,
2
]
ins_num
=
np
.
prod
(
np
.
array
(
shape
))
class_num
=
17
X_2d
=
randomize_probability
(
ins_num
,
class_num
)
label_index_2d
=
np
.
random
.
randint
(
0
,
class_num
,
(
ins_num
),
dtype
=
"int32"
)
label_2d
=
np
.
zeros
(
X_2d
.
shape
)
label_2d
[
np
.
arange
(
ins_num
),
label_index_2d
]
=
1
cross_entropy_2d
=
np
.
asmatrix
(
[[
-
np
.
log
(
X_2d
[
i
][
label_index_2d
[
i
]])]
for
i
in
range
(
X_2d
.
shape
[
0
])],
dtype
=
"float32"
)
X
=
X_2d
.
reshape
(
shape
+
[
class_num
])
label
=
label_2d
.
reshape
(
shape
+
[
class_num
])
cross_entropy
=
np
.
array
(
cross_entropy_2d
).
reshape
(
shape
+
[
1
])
self
.
inputs
=
{
"X"
:
X
,
"Label"
:
label
.
astype
(
np
.
float32
)}
self
.
outputs
=
{
"Y"
:
cross_entropy
}
self
.
attrs
=
{
"soft_label"
:
True
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
(
[
"X"
],
"Y"
,
max_relative_error
=
0.05
,
numeric_grad_delta
=
0.001
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录