提交 22f2519e 编写于 作者: D dangqingqing

refine documents

上级 737b4e68
...@@ -5286,10 +5286,7 @@ def multi_binary_label_cross_entropy(input, ...@@ -5286,10 +5286,7 @@ def multi_binary_label_cross_entropy(input,
def smooth_l1_cost(input, label, name=None, layer_attr=None): def smooth_l1_cost(input, label, name=None, layer_attr=None):
""" """
This is a L1 loss but more smooth. It requires that the This is a L1 loss but more smooth. It requires that the
size of input and label are equal. size of input and label are equal. The formula is as follows,
More details can be found by referring to `Fast R-CNN
<https://arxiv.org/pdf/1504.08083v2.pdf>`_
.. math:: .. math::
...@@ -5305,6 +5302,9 @@ def smooth_l1_cost(input, label, name=None, layer_attr=None): ...@@ -5305,6 +5302,9 @@ def smooth_l1_cost(input, label, name=None, layer_attr=None):
|x|-0.5& \text{otherwise} |x|-0.5& \text{otherwise}
\end{cases} \end{cases}
More details can be found by referring to `Fast R-CNN
<https://arxiv.org/pdf/1504.08083v2.pdf>`_
.. code-block:: python .. code-block:: python
cost = smooth_l1_cost(input=input_layer, cost = smooth_l1_cost(input=input_layer,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册