Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
2183d017
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2183d017
编写于
6月 13, 2018
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add pool3d and conv3d_trans Python API
上级
3ab32532
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
257 addition
and
16 deletion
+257
-16
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+257
-16
未找到文件。
python/paddle/fluid/layers/nn.py
浏览文件 @
2183d017
...
...
@@ -39,13 +39,16 @@ __all__ = [
'chunk_eval'
,
'sequence_conv'
,
'conv2d'
,
'conv3d'
,
'sequence_pool'
,
'sequence_softmax'
,
'softmax'
,
'pool2d'
,
'pool3d'
,
'batch_norm'
,
'beam_search_decode'
,
'conv2d_transpose'
,
'conv3d_transpose'
,
'sequence_expand'
,
'lstm_unit'
,
'reduce_sum'
,
...
...
@@ -1385,13 +1388,12 @@ def conv3d(input,
The convolution3D layer calculates the output based on the input, filter
and strides, paddings, dilations, groups parameters. Input(Input) and
Output(Output) are in NCHW format. Where N is batch size, C is the number of
channels, H is the height of the feature, and W is the width of the feature.
The details of convolution layer, please refer UFLDL's `convolution,
<http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_ .
If bias attribution and activation type are provided, bias is added to the
output of the convolution, and the corresponding activation function is
applied to the final result.
Output(Output) are in NCDHW format. Where N is batch size C is the number of
channels, D is the depth of the feature, H is the height of the feature,
and W is the width of the feature. Convlution3D is similar with Convlution2D
but adds one dimension(depth). If bias attribution and activation type are
provided, bias is added to the output of the convolution, and the
corresponding activation function is applied to the final result.
For each input :math:`X`, the equation is:
...
...
@@ -1401,8 +1403,8 @@ def conv3d(input,
In the above equation:
* :math:`X`: Input value, a tensor with NCHW format.
* :math:`W`: Filter value, a tensor with MCHW format.
* :math:`X`: Input value, a tensor with NC
D
HW format.
* :math:`W`: Filter value, a tensor with MC
D
HW format.
* :math:`
\\
ast`: Convolution operation.
* :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
* :math:`
\\
sigma`: Activation function.
...
...
@@ -1433,16 +1435,16 @@ def conv3d(input,
num_filters(int): The number of filter. It is as same as the output
image channel.
filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
it must contain t
wo
integers, (filter_size_D, filter_size_H, filter_size_W).
it must contain t
hree
integers, (filter_size_D, filter_size_H, filter_size_W).
Otherwise, the filter will be a square.
stride (int|tuple): The stride size. If stride is a tuple, it must
contain t
wo
integers, (stride_D, stride_H, stride_W). Otherwise, the
contain t
hree
integers, (stride_D, stride_H, stride_W). Otherwise, the
stride_D = stride_H = stride_W = stride. Default: stride = 1.
padding (int|tuple): The padding size. If padding is a tuple, it must
contain t
wo
integers, (padding_D, padding_H, padding_W). Otherwise, the
contain t
hree
integers, (padding_D, padding_H, padding_W). Otherwise, the
padding_D = padding_H = padding_W = padding. Default: padding = 0.
dilation (int|tuple): The dilation size. If dilation is a tuple, it must
contain t
wo
integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
contain t
hree
integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
groups (int): The groups number of the Conv3d Layer. According to grouped
convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
...
...
@@ -1528,7 +1530,7 @@ def conv3d(input,
'use_mkldnn'
:
use_mkldnn
})
pre_act
=
helper
.
append_bias_op
(
pre_bias
,
dim_start
=
1
,
dim_end
=
3
)
pre_act
=
helper
.
append_bias_op
(
pre_bias
,
dim_start
=
1
,
dim_end
=
2
)
return
helper
.
append_activation
(
pre_act
)
...
...
@@ -1720,12 +1722,84 @@ def pool2d(input,
if
not
isinstance
(
use_cudnn
,
bool
):
raise
ValueError
(
"use_cudnn should be True or False"
)
helper
=
LayerHelper
(
'pool2d'
,
**
locals
())
l_type
=
'conv2d'
helper
=
LayerHelper
(
l_type
,
**
locals
())
dtype
=
helper
.
input_dtype
()
pool_out
=
helper
.
create_tmp_variable
(
dtype
)
helper
.
append_op
(
type
=
"pool2d"
,
type
=
l_type
,
inputs
=
{
"X"
:
input
},
outputs
=
{
"Out"
:
pool_out
},
attrs
=
{
"pooling_type"
:
pool_type
,
"ksize"
:
pool_size
,
"global_pooling"
:
global_pooling
,
"strides"
:
pool_stride
,
"paddings"
:
pool_padding
,
"use_cudnn"
:
use_cudnn
,
"ceil_mode"
:
ceil_mode
,
"use_mkldnn"
:
use_mkldnn
})
return
pool_out
def
pool3d
(
input
,
pool_size
=-
1
,
pool_type
=
"max"
,
pool_stride
=
1
,
pool_padding
=
0
,
global_pooling
=
False
,
use_cudnn
=
True
,
ceil_mode
=
False
,
use_mkldnn
=
False
,
name
=
None
):
"""
This function adds the operator for pooling in 3-dimensions, using the
pooling configurations mentioned in input parameters.
Args:
input (Variable): ${input_comment}
pool_size (int): ${ksize_comment}
pool_type (str): ${pooling_type_comment}
pool_stride (int): stride of the pooling layer.
pool_padding (int): padding size.
global_pooling (bool): ${global_pooling_comment}
use_cudnn (bool): ${use_cudnn_comment}
ceil_mode (bool): ${ceil_mode_comment}
use_mkldnn (bool): ${use_mkldnn_comment}
name (str): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: output of pool3d layer.
"""
if
pool_type
not
in
[
"max"
,
"avg"
]:
raise
ValueError
(
"Unknown pool_type: '%s'. It can only be 'max' or 'avg'."
,
str
(
pool_type
))
if
global_pooling
is
False
and
pool_size
==
-
1
:
raise
ValueError
(
"When the global_pooling is False, pool_size must be passed "
"and be a valid value. Received pool_size: "
+
str
(
pool_size
))
pool_size
=
utils
.
convert_to_list
(
pool_size
,
3
,
'pool_size'
)
pool_padding
=
utils
.
convert_to_list
(
pool_padding
,
3
,
'pool_padding'
)
pool_stride
=
utils
.
convert_to_list
(
pool_stride
,
3
,
'pool_stride'
)
if
not
isinstance
(
use_cudnn
,
bool
):
raise
ValueError
(
"use_cudnn should be True or False"
)
l_type
=
"pool3d"
helper
=
LayerHelper
(
l_type
,
**
locals
())
dtype
=
helper
.
input_dtype
()
pool_out
=
helper
.
create_tmp_variable
(
dtype
)
helper
.
append_op
(
type
=
l_type
,
inputs
=
{
"X"
:
input
},
outputs
=
{
"Out"
:
pool_out
},
attrs
=
{
...
...
@@ -2146,6 +2220,173 @@ def conv2d_transpose(input,
return
out
def
conv3d_transpose
(
input
,
num_filters
,
output_size
=
None
,
filter_size
=
None
,
padding
=
0
,
stride
=
1
,
dilation
=
1
,
groups
=
None
,
param_attr
=
None
,
bias_attr
=
None
,
use_cudnn
=
True
,
act
=
None
,
name
=
None
):
"""
**Convlution3D transpose layer**
The convolution3D transpose layer calculates the output based on the input,
filter, and dilations, strides, paddings. Input(Input) and output(Output)
are in NCDHW format. Where N is batch size, C is the number of channels,
D is the depth of the feature, H is the height of the feature, and W
is the width of the feature. Parameters(dilations, strides, paddings) are
two elements. These two elements represent height and width, respectively.
The details of convolution transpose layer, please refer to the following
explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
For each input :math:`X`, the equation is:
.. math::
Out = W
\\
ast X
In the above equation:
* :math:`X`: Input value, a tensor with NCDHW format.
* :math:`W`: Filter value, a tensor with MCDHW format.
* :math:`
\\
ast` : Convolution transpose operation.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be
different.
Example:
- Input:
Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
Filter shape: $(C_{in}, C_{out}, D_f, H_f, W_f)$
- Output:
Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
Where
.. math::
D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1
\\\\
H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1
\\\\
W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Args:
input(Variable): The input image with [N, C, D, H, W] format.
num_filters(int): The number of the filter. It is as same as the output
image channel.
output_size(int|tuple|None): The output image size. If output size is a
tuple, it must contain three integers, (image_D, image_H, image_W). This
parameter only works when filter_size is None.
filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
Otherwise, the filter will be a square. None if use output size to
calculate filter_size.
padding(int|tuple): The padding size. If padding is a tuple, it must
contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
padding_D = padding_H = padding_W = padding. Default: padding = 0.
stride(int|tuple): The stride size. If stride is a tuple, it must
contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
stride_D = stride_H = stride_W = stride. Default: stride = 1.
dilation(int|tuple): The dilation size. If dilation is a tuple, it must
contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
groups(int): The groups number of the Conv3d transpose layer. Inspired by
grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
when group=2, the first half of the filters is only connected to the
first half of the input channels, while the second half of the
filters is only connected to the second half of the input channels.
Default: groups=1
param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
Default: None
bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True
act(str): Activation type. Default: None
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: The tensor variable storing the convolution transpose result.
Raises:
ValueError: If the shapes of input, filter_size, stride, padding and
groups mismatch.
Examples:
.. code-block:: python
data = fluid.layers.data(
name='data', shape=[3, 12, 32, 32], dtype='float32')
conv2d_transpose = fluid.layers.conv3d_transpose(
input=data, num_filters=2, filter_size=3)
"""
l_type
=
"conv3d_transpose"
helper
=
LayerHelper
(
l_type
,
**
locals
())
if
not
isinstance
(
input
,
Variable
):
raise
TypeError
(
"Input of conv3d_transpose must be Variable"
)
input_channel
=
input
.
shape
[
1
]
padding
=
utils
.
convert_to_list
(
padding
,
3
,
'padding'
)
stride
=
utils
.
convert_to_list
(
stride
,
3
,
'stride'
)
dilation
=
utils
.
convert_to_list
(
dilation
,
3
,
'dilation'
)
if
not
isinstance
(
use_cudnn
,
bool
):
raise
ValueError
(
"use_cudnn should be True or False"
)
if
filter_size
is
None
:
if
output_size
is
None
:
raise
ValueError
(
"output_size must be set when filter_size is None"
)
if
isinstance
(
output_size
,
int
):
output_size
=
[
output_size
,
output_size
]
d_in
=
input
.
shape
[
2
]
h_in
=
input
.
shape
[
3
]
w_in
=
input
.
shape
[
4
]
filter_size_d
=
(
output_size
[
0
]
-
(
d_in
-
1
)
*
stride
[
0
]
+
2
*
padding
[
0
]
-
1
)
/
dilation
[
0
]
+
1
filter_size_h
=
(
output_size
[
1
]
-
(
h_in
-
1
)
*
stride
[
1
]
+
2
*
padding
[
1
]
-
1
)
/
dilation
[
1
]
+
1
filter_size_w
=
(
output_size
[
2
]
-
(
w_in
-
1
)
*
stride
[
2
]
+
2
*
padding
[
2
]
-
1
)
/
dilation
[
2
]
+
1
filter_size
=
[
filter_size_d
,
filter_size_h
,
filter_size_w
]
else
:
filter_size
=
utils
.
convert_to_list
(
filter_size
,
3
,
'conv3d_transpose.filter_size'
)
groups
=
1
if
groups
is
None
else
groups
filter_shape
=
[
input_channel
,
num_filters
/
groups
]
+
filter_size
img_filter
=
helper
.
create_parameter
(
dtype
=
input
.
dtype
,
shape
=
filter_shape
,
attr
=
helper
.
param_attr
)
pre_bias
=
helper
.
create_tmp_variable
(
dtype
=
input
.
dtype
)
helper
.
append_op
(
type
=
l_type
,
inputs
=
{
'Input'
:
[
input
],
'Filter'
:
[
img_filter
]},
outputs
=
{
'Output'
:
pre_bias
},
attrs
=
{
'strides'
:
stride
,
'paddings'
:
padding
,
'dilations'
:
dilation
,
'groups'
:
groups
,
'use_cudnn'
:
use_cudnn
})
pre_act
=
helper
.
append_bias_op
(
pre_bias
,
dim_start
=
1
,
dim_end
=
2
)
out
=
helper
.
append_activation
(
pre_act
)
return
out
def
sequence_expand
(
x
,
y
,
ref_level
=-
1
,
name
=
None
):
"""Sequence Expand Layer. This layer will expand the input variable **x**
according to specified level lod of **y**. Please note that lod level of
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录