From 1eab8cce32b61f201098be482359defbfffc941b Mon Sep 17 00:00:00 2001 From: zlx Date: Wed, 21 Jun 2017 14:31:29 +0800 Subject: [PATCH] modify the annotations of HookAttribute, Variable declaration --- paddle/parameter/ParameterUpdaterHook.cpp | 31 ++++++++++--------- python/paddle/trainer_config_helpers/attrs.py | 20 +++++++----- 2 files changed, 29 insertions(+), 22 deletions(-) diff --git a/paddle/parameter/ParameterUpdaterHook.cpp b/paddle/parameter/ParameterUpdaterHook.cpp index 738e86a6221..66e554a70d9 100644 --- a/paddle/parameter/ParameterUpdaterHook.cpp +++ b/paddle/parameter/ParameterUpdaterHook.cpp @@ -31,9 +31,9 @@ namespace paddle { /** * The static pruning hook - * Static means user specific a sparsity_ratio before training start, and the + * Static means user specify a sparsity_ratio before training started, and the * network will prune the parameters based on the sparsity_ratio. More deatils - * can see https://arxiv.org/pdf/1506.02626.pdf. + * can be found https://arxiv.org/pdf/1506.02626.pdf. */ class StaticPruningHook : public IParameterUpdaterHook { @@ -57,29 +57,31 @@ public: } void generateMask(Parameter* para) { - VectorPtr vec = para->getBuf(PARAMETER_VALUE); - maskTemp_ = Vector::create(para->getSize(), false); - maskTemp_->zeroMem(); - real* dataPtr = maskTemp_->getData(); + + VectorPtr maskTemp = Vector::create(para->getSize(), false); + maskTemp->zeroMem(); + real* maskTempData = maskTemp->getData(); size_t nonZeroNum = para->getSize() * (1 - sparsityRatio_); - VectorPtr vecCpu = Vector::create(para->getSize(), false); - vecCpu->copyFrom(*vec); + VectorPtr paraVec = para->getBuf(PARAMETER_VALUE); + VectorPtr paraCpuCopy = Vector::create(para->getSize(), false); + + paraCpuCopy->copyFrom(*paraVec); std::vector> param; for (size_t i = 0; i < para->getSize(); i++) - param.push_back(std::make_pair(fabs(vecCpu->getData()[i]), i)); + param.push_back(std::make_pair(fabs(paraCpuCopy->getData()[i]), i)); std::partial_sort( param.begin(), param.begin() + nonZeroNum, param.end(), sortPairAscend); - for (size_t i = 0; i < nonZeroNum; i++) dataPtr[param[i].second] = 1.0; + for (size_t i = 0; i < nonZeroNum; i++) maskTempData[param[i].second] = 1.0; // Currently just use a mask vector for hack. if (para->useGpu()) { maskVec_ = Vector::create(para->getSize(), para->useGpu()); - maskVec_->copyFrom(*maskTemp_); + maskVec_->copyFrom(*maskTemp); } else { - maskVec_ = maskTemp_; + maskVec_ = maskTemp; } } @@ -91,15 +93,14 @@ public: VLOG(3) << "Initialize Parameter " << para; SetDevice device(para->getDeviceId()); - auto& vec = para->getBuf(PARAMETER_VALUE); - vec->dotMul(*maskVec_); + auto& paraVec = para->getBuf(PARAMETER_VALUE); + paraVec->dotMul(*maskVec_); } private: SameThreadChecker updateThreadChecker_; std::atomic initCount_; VectorPtr maskVec_; - VectorPtr maskTemp_; real sparsityRatio_; }; diff --git a/python/paddle/trainer_config_helpers/attrs.py b/python/paddle/trainer_config_helpers/attrs.py index bf12ad644dc..66163bdc8dc 100644 --- a/python/paddle/trainer_config_helpers/attrs.py +++ b/python/paddle/trainer_config_helpers/attrs.py @@ -58,15 +58,21 @@ def is_compatible_with(x, Type): class HookAttribute(object): """ - Hook Attribute object. The hook is an auxiliary operation that occurs - during network propagation. - NOTE: IT IS A HIGH LEVEL USER INTERFACE. - - :param type: Hook type, eg: 'pruning' + Hook Attribute object. As a member of ParameterAttribute class, the hook is an auxiliary operation that occurs + during training process of a layer with parameters, such as img_conv layer, fc layer. + + :param type: Hook type, currently supported types: + 'pruning' : user specify a sparsity_ratio before training started, and the + network will prune the parameters based on the sparsity_ratio. + eg: The definition of Hook object can be hk = HookAttribute('pruning', 0.6) + The specific usage can be paddle.layer.img_conv(input=img, filter_size=3, + num_channels=3, num_filters=64, + param_attr=ParameterAttribute(update_hooks=hk) ) + The pruning deatils can be found https://arxiv.org/pdf/1506.02626.pdf :type type: string :param sparsity_ratio: Must be specified if hook type is 'pruning', - it represents the ratio of the zero elements to be set by the Parameter. + it represents the ratio of the zero elements to be set by the Parameter. :type sparsity_ratio: float or None """ @@ -78,7 +84,7 @@ class HookAttribute(object): assert is_compatible_with( self.sparsity_ratio, float), 'sparisity_ratio must be float type' - assert self.sparsity_ratio <= 1 and self.sparsity_ratio >= 0, 'sparisity must be a flaot between [0, 1] ' + assert self.sparsity_ratio <= 1 and self.sparsity_ratio >= 0, 'sparisity_ratio must be a float between [0, 1] ' def __call__(self): return ParameterHook(self.type, sparsity_ratio=self.sparsity_ratio) -- GitLab