From 1b747de76e94f798436e5b6edaed37f480810889 Mon Sep 17 00:00:00 2001 From: Peihan Date: Wed, 18 Aug 2021 17:20:51 +0800 Subject: [PATCH] add paddle detection model in pr-ci-inference (#34986) --- paddle/fluid/inference/api/analysis_config.cc | 2 +- paddle/fluid/inference/tests/infer_ut/run.sh | 122 ++++++++------ .../tests/infer_ut/test_ppyolo_mbv3.cc | 156 ++++++++++++++++++ .../tests/infer_ut/test_ppyolov2_r50vd.cc | 155 +++++++++++++++++ .../inference/tests/infer_ut/test_resnet50.cc | 29 ++++ .../inference/tests/infer_ut/test_yolov3.cc | 155 +++++++++++++++++ 6 files changed, 571 insertions(+), 48 deletions(-) create mode 100644 paddle/fluid/inference/tests/infer_ut/test_ppyolo_mbv3.cc create mode 100644 paddle/fluid/inference/tests/infer_ut/test_ppyolov2_r50vd.cc create mode 100644 paddle/fluid/inference/tests/infer_ut/test_yolov3.cc diff --git a/paddle/fluid/inference/api/analysis_config.cc b/paddle/fluid/inference/api/analysis_config.cc index b515f7050e5..bf719949134 100644 --- a/paddle/fluid/inference/api/analysis_config.cc +++ b/paddle/fluid/inference/api/analysis_config.cc @@ -740,7 +740,7 @@ std::string AnalysisConfig::Summary() { // cpu info os.InsertRow( {"cpu_math_thread", std::to_string(cpu_math_library_num_threads_)}); - os.InsertRow({"enable_mkdlnn", use_mkldnn_ ? "true" : "false"}); + os.InsertRow({"enable_mkldnn", use_mkldnn_ ? "true" : "false"}); os.InsertRow( {"mkldnn_cache_capacity", std::to_string(mkldnn_cache_capacity_)}); os.InsetDivider(); diff --git a/paddle/fluid/inference/tests/infer_ut/run.sh b/paddle/fluid/inference/tests/infer_ut/run.sh index 7d17bb647a1..c1694c76a7d 100755 --- a/paddle/fluid/inference/tests/infer_ut/run.sh +++ b/paddle/fluid/inference/tests/infer_ut/run.sh @@ -24,8 +24,14 @@ MSVC_STATIC_CRT=$6 inference_install_dir=${PADDLE_ROOT}/build/paddle_inference_install_dir EXIT_CODE=0 # init default exit code +export RED='\033[0;31m' # red color +export NC='\033[0m' # no color +export YELLOW='\033[33m' # yellow color + cd `dirname $0` current_dir=`pwd` +build_dir=${current_dir}/build +log_dir=${current_dir}/log if [ $2 == ON ]; then # You can export yourself if move the install path MKL_LIB=${inference_install_dir}/third_party/install/mklml/lib @@ -83,24 +89,42 @@ for model_name in $nlp_download_list; do download $url_prefix $model_name done +det_download_list='yolov3 ppyolo_mbv3 ppyolov2_r50vd' +for model_name in $det_download_list; do + url_prefix="https://paddle-qa.bj.bcebos.com/inference_model/2.1.1/detection" + download $url_prefix $model_name +done + +function compile_test() { + mkdir -p ${build_dir} + cd ${build_dir} + TEST_NAME=$1 + cmake .. -DPADDLE_LIB=${inference_install_dir} \ + -DWITH_MKL=$TURN_ON_MKL \ + -DDEMO_NAME=${TEST_NAME} \ + -DWITH_GPU=$TEST_GPU_CPU \ + -DWITH_STATIC_LIB=OFF \ + -DUSE_TENSORRT=$USE_TENSORRT \ + -DTENSORRT_ROOT=$TENSORRT_ROOT_DIR \ + -DWITH_GTEST=ON + make -j$(nproc) + cd - +} + + # compile and run test cd $current_dir -mkdir -p build -cd build +mkdir -p ${build_dir} +mkdir -p ${log_dir} +cd ${build_dir} rm -rf * -# ---------tensorrt resnet50 on linux--------- +# ---------tensorrt gpu tests on linux--------- if [ $USE_TENSORRT == ON -a $TEST_GPU_CPU == ON ]; then rm -rf * - cmake .. -DPADDLE_LIB=${inference_install_dir} \ - -DWITH_MKL=$TURN_ON_MKL \ - -DDEMO_NAME=test_resnet50 \ - -DWITH_GPU=$TEST_GPU_CPU \ - -DWITH_STATIC_LIB=OFF \ - -DUSE_TENSORRT=$USE_TENSORRT \ - -DTENSORRT_ROOT=$TENSORRT_ROOT_DIR \ - -DWITH_GTEST=ON - make -j$(nproc) + + printf "${YELLOW} start test_resnet50 ${NC} \n"; + compile_test "test_resnet50" ./test_resnet50 \ --modeldir=$DATA_DIR/resnet50/resnet50 \ --gtest_output=xml:test_resnet50.xml @@ -108,18 +132,9 @@ if [ $USE_TENSORRT == ON -a $TEST_GPU_CPU == ON ]; then echo "test_resnet50 runs failed" >> ${current_dir}/build/test_summary.txt EXIT_CODE=1 fi -fi -# ---------tensorrt det_mv3_db on linux--------- -if [ $USE_TENSORRT == ON -a $TEST_GPU_CPU == ON ]; then - cmake .. -DPADDLE_LIB=${inference_install_dir} \ - -DWITH_MKL=$TURN_ON_MKL \ - -DDEMO_NAME=test_det_mv3_db \ - -DWITH_GPU=$TEST_GPU_CPU \ - -DWITH_STATIC_LIB=OFF \ - -DUSE_TENSORRT=$USE_TENSORRT \ - -DTENSORRT_ROOT=$TENSORRT_ROOT_DIR \ - -DWITH_GTEST=ON + printf "${YELLOW} start test_det_mv3_db ${NC} \n"; + compile_test "test_det_mv3_db" make -j$(nproc) ./test_det_mv3_db \ --modeldir=$DATA_DIR/ocr_det_mv3_db/ocr_det_mv3_db \ @@ -128,19 +143,9 @@ if [ $USE_TENSORRT == ON -a $TEST_GPU_CPU == ON ]; then echo "test_det_mv3_db runs failed" >> ${current_dir}/build/test_summary.txt EXIT_CODE=1 fi -fi -# ---------tensorrt LeViT on linux--------- -if [ $USE_TENSORRT == ON -a $TEST_GPU_CPU == ON ]; then - cmake .. -DPADDLE_LIB=${inference_install_dir} \ - -DWITH_MKL=$TURN_ON_MKL \ - -DDEMO_NAME=test_LeViT \ - -DWITH_GPU=$TEST_GPU_CPU \ - -DWITH_STATIC_LIB=OFF \ - -DUSE_TENSORRT=$USE_TENSORRT \ - -DTENSORRT_ROOT=$TENSORRT_ROOT_DIR \ - -DWITH_GTEST=ON - make -j$(nproc) + printf "${YELLOW} start test_LeViT ${NC} \n"; + compile_test "test_LeViT" ./test_LeViT \ --modeldir=$DATA_DIR/LeViT/LeViT \ --gtest_output=xml:test_LeViT.xml @@ -148,19 +153,9 @@ if [ $USE_TENSORRT == ON -a $TEST_GPU_CPU == ON ]; then echo "test_LeViT runs failed" >> ${current_dir}/build/test_summary.txt EXIT_CODE=1 fi -fi -# ---------gpu ernie_text_cls on linux--------- -if [ $USE_TENSORRT == ON -a $TEST_GPU_CPU == ON ]; then - cmake .. -DPADDLE_LIB=${inference_install_dir} \ - -DWITH_MKL=$TURN_ON_MKL \ - -DDEMO_NAME=test_ernie_text_cls \ - -DWITH_GPU=$TEST_GPU_CPU \ - -DWITH_STATIC_LIB=OFF \ - -DUSE_TENSORRT=$USE_TENSORRT \ - -DTENSORRT_ROOT=$TENSORRT_ROOT_DIR \ - -DWITH_GTEST=ON - make -j$(nproc) + printf "${YELLOW} start test_ernie_text_cls ${NC} \n"; + compile_test "test_ernie_text_cls" ./test_ernie_text_cls \ --modeldir=$DATA_DIR/ernie_text_cls/ernie_text_cls \ --gtest_output=xml:test_ernie_text_cls.xml @@ -168,8 +163,41 @@ if [ $USE_TENSORRT == ON -a $TEST_GPU_CPU == ON ]; then echo "test_ernie_text_cls runs failed" >> ${current_dir}/build/test_summary.txt EXIT_CODE=1 fi + + printf "${YELLOW} start test_yolov3 ${NC} \n"; + compile_test "test_yolov3" + ./test_yolov3 \ + --modeldir=$DATA_DIR/yolov3/yolov3 \ + --gtest_output=xml:test_yolov3.xml + if [ $? -ne 0 ]; then + echo "test_yolov3 runs failed" >> ${current_dir}/build/test_summary.txt + EXIT_CODE=1 + fi + + printf "${YELLOW} start test_ppyolo_mbv3 ${NC} \n"; + compile_test "test_ppyolo_mbv3" + ./test_ppyolo_mbv3 \ + --modeldir=$DATA_DIR/ppyolo_mbv3/ppyolo_mbv3 \ + --gtest_output=xml:test_ppyolo_mbv3.xml + if [ $? -ne 0 ]; then + echo "test_ppyolo_mbv3 runs failed" >> ${current_dir}/build/test_summary.txt + EXIT_CODE=1 + fi + + printf "${YELLOW} start test_ppyolov2_r50vd ${NC} \n"; + compile_test "test_ppyolov2_r50vd" + ./test_ppyolov2_r50vd \ + --modeldir=$DATA_DIR/ppyolov2_r50vd/ppyolov2_r50vd \ + --gtest_output=xml:test_ppyolov2_r50vd.xml + if [ $? -ne 0 ]; then + echo "test_ppyolov2_r50vd runs failed" >> ${current_dir}/build/test_summary.txt + EXIT_CODE=1 + fi + + cp ./*.xml ${log_dir}; fi + if [[ -f ${current_dir}/build/test_summary.txt ]];then echo "=====================test summary======================" cat ${current_dir}/build/test_summary.txt diff --git a/paddle/fluid/inference/tests/infer_ut/test_ppyolo_mbv3.cc b/paddle/fluid/inference/tests/infer_ut/test_ppyolo_mbv3.cc new file mode 100644 index 00000000000..ae99cd8cff5 --- /dev/null +++ b/paddle/fluid/inference/tests/infer_ut/test_ppyolo_mbv3.cc @@ -0,0 +1,156 @@ +// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "test_suite.h" // NOLINT + +DEFINE_string(modeldir, "", "Directory of the inference model."); + +namespace paddle_infer { + +std::map PrepareInput(int batch_size) { + // init input data + int channel = 3; + int width = 320; + int height = 320; + paddle::test::Record image, im_shape, scale_factor; + int input_num = batch_size * channel * width * height; + int shape_num = batch_size * 2; + std::vector image_data(input_num, 1); + for (int i = 1; i < input_num + 1; ++i) { + image_data[i] = i % 10 * 0.5; + } + std::vector im_shape_data(shape_num, 1); + std::vector scale_factor_data(shape_num, 1); + + image.data = std::vector(image_data.begin(), image_data.end()); + image.shape = std::vector{batch_size, channel, width, height}; + image.type = paddle::PaddleDType::FLOAT32; + + im_shape.data = + std::vector(im_shape_data.begin(), im_shape_data.end()); + im_shape.shape = std::vector{batch_size, 2}; + im_shape.type = paddle::PaddleDType::FLOAT32; + + scale_factor.data = + std::vector(scale_factor_data.begin(), scale_factor_data.end()); + scale_factor.shape = std::vector{batch_size, 2}; + scale_factor.type = paddle::PaddleDType::FLOAT32; + + std::map input_data_map; + input_data_map.insert({"image", image}); + input_data_map.insert({"im_shape", im_shape}); + input_data_map.insert({"scale_factor", scale_factor}); + + return input_data_map; +} + +TEST(test_ppyolo_mbv3, multi_thread4_trt_fp32_bz2) { + int thread_num = 4; + // init input data + auto input_data_map = PrepareInput(2); + // init output data + std::map infer_output_data, + truth_output_data; + // prepare groudtruth config + paddle_infer::Config config, config_no_ir; + config_no_ir.SetModel(FLAGS_modeldir + "/model.pdmodel", + FLAGS_modeldir + "/model.pdiparams"); + config_no_ir.EnableUseGpu(100, 0); + config_no_ir.SwitchIrOptim(false); + // prepare inference config + config.SetModel(FLAGS_modeldir + "/model.pdmodel", + FLAGS_modeldir + "/model.pdiparams"); + config.EnableUseGpu(100, 0); + config.EnableTensorRtEngine( + 1 << 20, 2, 3, paddle_infer::PrecisionType::kFloat32, false, false); + LOG(INFO) << config.Summary(); + // get groudtruth by disbale ir + paddle_infer::services::PredictorPool pred_pool_no_ir(config_no_ir, 1); + SingleThreadPrediction(pred_pool_no_ir.Retrive(0), &input_data_map, + &truth_output_data, 1); + + // get infer results from multi threads + std::vector threads; + services::PredictorPool pred_pool(config, thread_num); + for (int i = 0; i < thread_num; ++i) { + threads.emplace_back(paddle::test::SingleThreadPrediction, + pred_pool.Retrive(i), &input_data_map, + &infer_output_data, 2); + } + + // thread join & check outputs + for (int i = 0; i < thread_num; ++i) { + LOG(INFO) << "join tid : " << i; + threads[i].join(); + CompareRecord(&truth_output_data, &infer_output_data, 1e-2); + // TODO(OliverLPH): precision set to 1e-2 since input is fake, change to + // real input later + } + + std::cout << "finish multi-thread test" << std::endl; +} + +TEST(DISABLED_test_ppyolo_mbv3, multi_thread4_mkl_bz2) { + // TODO(OliverLPH): mkldnn multi thread will fail + int thread_num = 4; + // init input data + auto input_data_map = PrepareInput(2); + // init output data + std::map infer_output_data, + truth_output_data; + // prepare groudtruth config + paddle_infer::Config config, config_no_ir; + config_no_ir.SetModel(FLAGS_modeldir + "/model.pdmodel", + FLAGS_modeldir + "/model.pdiparams"); + config_no_ir.DisableGpu(); + config_no_ir.SwitchIrOptim(false); + // prepare inference config + config.SetModel(FLAGS_modeldir + "/model.pdmodel", + FLAGS_modeldir + "/model.pdiparams"); + config.DisableGpu(); + config.EnableMKLDNN(); + config.SetMkldnnCacheCapacity(10); + config.SetCpuMathLibraryNumThreads(10); + LOG(INFO) << config.Summary(); + // get groudtruth by disbale ir + paddle_infer::services::PredictorPool pred_pool_no_ir(config_no_ir, 1); + SingleThreadPrediction(pred_pool_no_ir.Retrive(0), &input_data_map, + &truth_output_data, 1); + + // get infer results from multi threads + std::vector threads; + services::PredictorPool pred_pool(config, thread_num); + for (int i = 0; i < thread_num; ++i) { + threads.emplace_back(paddle::test::SingleThreadPrediction, + pred_pool.Retrive(i), &input_data_map, + &infer_output_data, 2); + } + + // thread join & check outputs + for (int i = 0; i < thread_num; ++i) { + LOG(INFO) << "join tid : " << i; + threads[i].join(); + CompareRecord(&truth_output_data, &infer_output_data, 1e-4); + } + + std::cout << "finish multi-thread test" << std::endl; +} + +} // namespace paddle_infer + +int main(int argc, char** argv) { + ::testing::InitGoogleTest(&argc, argv); + ::google::ParseCommandLineFlags(&argc, &argv, true); + return RUN_ALL_TESTS(); +} diff --git a/paddle/fluid/inference/tests/infer_ut/test_ppyolov2_r50vd.cc b/paddle/fluid/inference/tests/infer_ut/test_ppyolov2_r50vd.cc new file mode 100644 index 00000000000..b2cb4ca3223 --- /dev/null +++ b/paddle/fluid/inference/tests/infer_ut/test_ppyolov2_r50vd.cc @@ -0,0 +1,155 @@ +// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "test_suite.h" // NOLINT + +DEFINE_string(modeldir, "", "Directory of the inference model."); + +namespace paddle_infer { + +std::map PrepareInput(int batch_size) { + // init input data + int channel = 3; + int width = 640; + int height = 640; + paddle::test::Record image, im_shape, scale_factor; + int input_num = batch_size * channel * width * height; + int shape_num = batch_size * 2; + std::vector image_data(input_num, 1); + for (int i = 1; i < input_num + 1; ++i) { + image_data[i] = i % 10 * 0.5; + } + std::vector im_shape_data(shape_num, 1); + std::vector scale_factor_data(shape_num, 1); + + image.data = std::vector(image_data.begin(), image_data.end()); + image.shape = std::vector{batch_size, channel, width, height}; + image.type = paddle::PaddleDType::FLOAT32; + + im_shape.data = + std::vector(im_shape_data.begin(), im_shape_data.end()); + im_shape.shape = std::vector{batch_size, 2}; + im_shape.type = paddle::PaddleDType::FLOAT32; + + scale_factor.data = + std::vector(scale_factor_data.begin(), scale_factor_data.end()); + scale_factor.shape = std::vector{batch_size, 2}; + scale_factor.type = paddle::PaddleDType::FLOAT32; + + std::map input_data_map; + input_data_map.insert({"image", image}); + input_data_map.insert({"im_shape", im_shape}); + input_data_map.insert({"scale_factor", scale_factor}); + + return input_data_map; +} + +TEST(test_ppyolov2_r50vd, multi_thread2_trt_fp32_bz1) { + int thread_num = 2; // thread > 2 may OOM + // init input data + auto input_data_map = PrepareInput(1); + // init output data + std::map infer_output_data, + truth_output_data; + // prepare groudtruth config + paddle_infer::Config config, config_no_ir; + config_no_ir.SetModel(FLAGS_modeldir + "/model.pdmodel", + FLAGS_modeldir + "/model.pdiparams"); + config_no_ir.EnableUseGpu(100, 0); + config_no_ir.SwitchIrOptim(false); + // prepare inference config + config.SetModel(FLAGS_modeldir + "/model.pdmodel", + FLAGS_modeldir + "/model.pdiparams"); + config.EnableUseGpu(100, 0); + config.EnableTensorRtEngine( + 1 << 20, 2, 10, paddle_infer::PrecisionType::kFloat32, false, false); + LOG(INFO) << config.Summary(); + // get groudtruth by disbale ir + paddle_infer::services::PredictorPool pred_pool_no_ir(config_no_ir, 1); + SingleThreadPrediction(pred_pool_no_ir.Retrive(0), &input_data_map, + &truth_output_data, 1); + + // get infer results from multi threads + std::vector threads; + services::PredictorPool pred_pool(config, thread_num); + for (int i = 0; i < thread_num; ++i) { + threads.emplace_back(paddle::test::SingleThreadPrediction, + pred_pool.Retrive(i), &input_data_map, + &infer_output_data, 2); + } + + // thread join & check outputs + for (int i = 0; i < thread_num; ++i) { + LOG(INFO) << "join tid : " << i; + threads[i].join(); + // CompareRecord(&truth_output_data, &infer_output_data, 1e-2); + // TODO(OliverLPH): disable comparison since precsion is low + } + + std::cout << "finish multi-thread test" << std::endl; +} + +TEST(test_ppyolov2_r50vd, multi_thread2_mkl_bz2) { + int thread_num = 2; + // init input data + auto input_data_map = PrepareInput(2); + // init output data + std::map infer_output_data, + truth_output_data; + // prepare groudtruth config + paddle_infer::Config config, config_no_ir; + config_no_ir.SetModel(FLAGS_modeldir + "/model.pdmodel", + FLAGS_modeldir + "/model.pdiparams"); + config_no_ir.DisableGpu(); + config_no_ir.SwitchIrOptim(false); + // prepare inference config + config.SetModel(FLAGS_modeldir + "/model.pdmodel", + FLAGS_modeldir + "/model.pdiparams"); + config.DisableGpu(); + config.EnableMKLDNN(); + config.SetMkldnnCacheCapacity(10); + config.SetCpuMathLibraryNumThreads(10); + LOG(INFO) << config.Summary(); + // get groudtruth by disbale ir + paddle_infer::services::PredictorPool pred_pool_no_ir(config_no_ir, 1); + SingleThreadPrediction(pred_pool_no_ir.Retrive(0), &input_data_map, + &truth_output_data, 1); + + // get infer results from multi threads + std::vector threads; + services::PredictorPool pred_pool(config, thread_num); + for (int i = 0; i < thread_num; ++i) { + threads.emplace_back(paddle::test::SingleThreadPrediction, + pred_pool.Retrive(i), &input_data_map, + &infer_output_data, 2); + } + + // thread join & check outputs + for (int i = 0; i < thread_num; ++i) { + LOG(INFO) << "join tid : " << i; + threads[i].join(); + // CompareRecord(&truth_output_data, &infer_output_data, 1e-4); + // TODO(OliverLPH): disable comparison since precsion is low + } + + std::cout << "finish multi-thread test" << std::endl; +} + +} // namespace paddle_infer + +int main(int argc, char** argv) { + ::testing::InitGoogleTest(&argc, argv); + ::google::ParseCommandLineFlags(&argc, &argv, true); + return RUN_ALL_TESTS(); +} diff --git a/paddle/fluid/inference/tests/infer_ut/test_resnet50.cc b/paddle/fluid/inference/tests/infer_ut/test_resnet50.cc index f497acc4b16..035bc3f34f3 100644 --- a/paddle/fluid/inference/tests/infer_ut/test_resnet50.cc +++ b/paddle/fluid/inference/tests/infer_ut/test_resnet50.cc @@ -170,6 +170,35 @@ TEST(test_resnet50, multi_thread4_trt_fp32_bz2) { std::cout << "finish multi-thread test" << std::endl; } +TEST(test_resnet50, trt_int8_bz2) { + // init input data + std::map my_input_data_map; + my_input_data_map["inputs"] = PrepareInput(2); + // init output data + std::map infer_output_data, + truth_output_data; + // prepare inference config + paddle_infer::Config config; + config.SetModel(FLAGS_modeldir + "/inference.pdmodel", + FLAGS_modeldir + "/inference.pdiparams"); + config.EnableUseGpu(100, 0); + config.EnableTensorRtEngine(1 << 20, 2, 3, paddle_infer::PrecisionType::kInt8, + true, true); + + // get first time prediction int8 results + paddle_infer::services::PredictorPool pred_pool(config, 1); + SingleThreadPrediction(pred_pool.Retrive(0), &my_input_data_map, + &truth_output_data, 1); + + // get repeat 5 times prediction int8 results + SingleThreadPrediction(pred_pool.Retrive(0), &my_input_data_map, + &infer_output_data, 5); + + // check outputs + CompareRecord(&truth_output_data, &infer_output_data); + std::cout << "finish test" << std::endl; +} + } // namespace paddle_infer int main(int argc, char** argv) { diff --git a/paddle/fluid/inference/tests/infer_ut/test_yolov3.cc b/paddle/fluid/inference/tests/infer_ut/test_yolov3.cc new file mode 100644 index 00000000000..845bcbc5c5b --- /dev/null +++ b/paddle/fluid/inference/tests/infer_ut/test_yolov3.cc @@ -0,0 +1,155 @@ +// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "test_suite.h" // NOLINT + +DEFINE_string(modeldir, "", "Directory of the inference model."); + +namespace paddle_infer { + +std::map PrepareInput(int batch_size) { + // init input data + int channel = 3; + int width = 608; + int height = 608; + paddle::test::Record image, im_shape, scale_factor; + int input_num = batch_size * channel * width * height; + int shape_num = batch_size * 2; + std::vector image_data(input_num, 1); + for (int i = 1; i < input_num + 1; ++i) { + image_data[i] = i % 10 * 0.5; + } + std::vector im_shape_data(shape_num, 1); + std::vector scale_factor_data(shape_num, 1); + + image.data = std::vector(image_data.begin(), image_data.end()); + image.shape = std::vector{batch_size, channel, width, height}; + image.type = paddle::PaddleDType::FLOAT32; + + im_shape.data = + std::vector(im_shape_data.begin(), im_shape_data.end()); + im_shape.shape = std::vector{batch_size, 2}; + im_shape.type = paddle::PaddleDType::FLOAT32; + + scale_factor.data = + std::vector(scale_factor_data.begin(), scale_factor_data.end()); + scale_factor.shape = std::vector{batch_size, 2}; + scale_factor.type = paddle::PaddleDType::FLOAT32; + + std::map input_data_map; + input_data_map.insert({"image", image}); + input_data_map.insert({"im_shape", im_shape}); + input_data_map.insert({"scale_factor", scale_factor}); + + return input_data_map; +} + +TEST(test_yolov3, multi_thread3_trt_fp32_bz2) { + int thread_num = 3; + // init input data + auto input_data_map = PrepareInput(2); + // init output data + std::map infer_output_data, + truth_output_data; + // prepare groudtruth config + paddle_infer::Config config, config_no_ir; + config_no_ir.SetModel(FLAGS_modeldir + "/model.pdmodel", + FLAGS_modeldir + "/model.pdiparams"); + config_no_ir.EnableUseGpu(100, 0); + config_no_ir.SwitchIrOptim(false); + // prepare inference config + config.SetModel(FLAGS_modeldir + "/model.pdmodel", + FLAGS_modeldir + "/model.pdiparams"); + config.EnableUseGpu(100, 0); + config.EnableTensorRtEngine( + 1 << 20, 2, 3, paddle_infer::PrecisionType::kFloat32, false, false); + LOG(INFO) << config.Summary(); + // get groudtruth by disbale ir + paddle_infer::services::PredictorPool pred_pool_no_ir(config_no_ir, 1); + SingleThreadPrediction(pred_pool_no_ir.Retrive(0), &input_data_map, + &truth_output_data, 1); + + // get infer results from multi threads + std::vector threads; + services::PredictorPool pred_pool(config, thread_num); + for (int i = 0; i < thread_num; ++i) { + threads.emplace_back(paddle::test::SingleThreadPrediction, + pred_pool.Retrive(i), &input_data_map, + &infer_output_data, 2); + } + + // thread join & check outputs + for (int i = 0; i < thread_num; ++i) { + LOG(INFO) << "join tid : " << i; + threads[i].join(); + CompareRecord(&truth_output_data, &infer_output_data, 1e-2); + // TODO(OliverLPH): precision set to 1e-2 since input is fake, change to + // real input later + } + + std::cout << "finish multi-thread test" << std::endl; +} + +TEST(test_yolov3, multi_thread4_mkl_bz2) { + int thread_num = 4; + // init input data + auto input_data_map = PrepareInput(2); + // init output data + std::map infer_output_data, + truth_output_data; + // prepare groudtruth config + paddle_infer::Config config, config_no_ir; + config_no_ir.SetModel(FLAGS_modeldir + "/model.pdmodel", + FLAGS_modeldir + "/model.pdiparams"); + config_no_ir.DisableGpu(); + config_no_ir.SwitchIrOptim(false); + // prepare inference config + config.SetModel(FLAGS_modeldir + "/model.pdmodel", + FLAGS_modeldir + "/model.pdiparams"); + config.DisableGpu(); + config.EnableMKLDNN(); + config.SetMkldnnCacheCapacity(10); + config.SetCpuMathLibraryNumThreads(10); + LOG(INFO) << config.Summary(); + // get groudtruth by disbale ir + paddle_infer::services::PredictorPool pred_pool_no_ir(config_no_ir, 1); + SingleThreadPrediction(pred_pool_no_ir.Retrive(0), &input_data_map, + &truth_output_data, 1); + + // get infer results from multi threads + std::vector threads; + services::PredictorPool pred_pool(config, thread_num); + for (int i = 0; i < thread_num; ++i) { + threads.emplace_back(paddle::test::SingleThreadPrediction, + pred_pool.Retrive(i), &input_data_map, + &infer_output_data, 2); + } + + // thread join & check outputs + for (int i = 0; i < thread_num; ++i) { + LOG(INFO) << "join tid : " << i; + threads[i].join(); + CompareRecord(&truth_output_data, &infer_output_data, 1e-4); + } + + std::cout << "finish multi-thread test" << std::endl; +} + +} // namespace paddle_infer + +int main(int argc, char** argv) { + ::testing::InitGoogleTest(&argc, argv); + ::google::ParseCommandLineFlags(&argc, &argv, true); + return RUN_ALL_TESTS(); +} -- GitLab