提交 1b372d9b 编写于 作者: M minqiyang

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into change_requirements

test=develop
python/paddle/fluid/tests/unittests/reader_reset_test.recordio
paddle/operators/check_t.save
paddle/operators/check_tensor.ls
paddle/operators/tensor.save
python/paddle/v2/fluid/tests/book/image_classification_resnet.inference.model/
python/paddle/v2/fluid/tests/book/image_classification_vgg.inference.model/
python/paddle/v2/fluid/tests/book/label_semantic_roles.inference.model/
paddle/fluid/operators/distributed/send_recv.proto
*.DS_Store
*.vs
build/
......@@ -28,4 +30,5 @@ third_party/
build_*
# clion workspace.
cmake-build-*
paddle/fluid/operators/distributed/send_recv.proto
model_test
......@@ -42,6 +42,7 @@
| QiJune | Jun Qi |
| qingqing01 | Qing-Qing Dang |
| reyoung | Yang Yu |
| Sand3r- | Michal Gallus |
| Superjom | Chun-Wei Yan |
| tensor-tang | Jian Tang |
| tianbingsz | Tian-Bing Xu |
......
......@@ -302,6 +302,14 @@ set(PADDLE_PYTHON_BUILD_DIR "${CMAKE_CURRENT_BINARY_DIR}/python/build")
set(CMAKE_CXX_FLAGS_RELWITHDEBINFO "-O3 -g -DNDEBUG")
set(CMAKE_C_FLAGS_RELWITHDEBINFO "-O3 -g -DNDEBUG")
if (ON_INFER)
message(STATUS "On inference mode, will take place some specific optimization.")
add_definitions(-DPADDLE_ON_INFERENCE)
else()
#TODO(luotao), combine this warning with `make inference_lib_dist` command.
message(WARNING "On inference mode, will take place some specific optimization. Turn on the ON_INFER flag when building inference_lib only.")
endif()
add_subdirectory(paddle)
if(WITH_PYTHON)
add_subdirectory(python)
......@@ -312,11 +320,3 @@ if(WITH_DOC)
find_python_module(recommonmark REQUIRED)
add_subdirectory(doc)
endif()
if (ON_INFER)
message(STATUS "On inference mode, will take place some specific optimization.")
add_definitions(-DPADDLE_ON_INFERENCE)
else()
#TODO(luotao), combine this warning with `make inference_lib_dist` command.
message(WARNING "On inference mode, will take place some specific optimization. Turn on the ON_INFER flag when building inference_lib only.")
endif()
......@@ -218,3 +218,7 @@ endif(WITH_GRPC)
if(WITH_BRPC_RDMA)
add_definitions(-DPADDLE_WITH_BRPC_RDMA)
endif(WITH_BRPC_RDMA)
if(ON_INFER)
add_definitions(-DPADDLE_ON_INFERENCE)
endif(ON_INFER)
......@@ -166,8 +166,8 @@ copy(framework_lib DEPS ${framework_lib_deps}
set(module "memory")
copy(memory_lib
SRCS ${src_dir}/${module}/*.h ${src_dir}/${module}/detail/*.h
DSTS ${dst_dir}/${module} ${dst_dir}/${module}/detail
SRCS ${src_dir}/${module}/*.h ${src_dir}/${module}/detail/*.h ${src_dir}/${module}/allocation/*.h
DSTS ${dst_dir}/${module} ${dst_dir}/${module}/detail ${dst_dir}/${module}/allocation
)
set(inference_deps paddle_fluid_shared paddle_fluid)
......
set(PART_CUDA_KERNEL_FILES)
function(op_library TARGET)
# op_library is a function to create op library. The interface is same as
# cc_library. But it handle split GPU/CPU code and link some common library
# for ops.
set(cc_srcs)
set(cu_srcs)
set(hip_cu_srcs)
set(miopen_hip_cc_srcs)
set(cu_cc_srcs)
set(cudnn_cu_cc_srcs)
set(CUDNN_FILE)
set(mkldnn_cc_srcs)
set(MKLDNN_FILE)
set(op_common_deps operator op_registry math_function)
set(options "")
set(oneValueArgs "")
set(multiValueArgs SRCS DEPS)
set(pybind_flag 0)
cmake_parse_arguments(op_library "${options}" "${oneValueArgs}"
"${multiValueArgs}" ${ARGN})
list(LENGTH op_library_SRCS op_library_SRCS_len)
if (${op_library_SRCS_len} EQUAL 0)
if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${TARGET}.cc)
list(APPEND cc_srcs ${TARGET}.cc)
endif()
if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${TARGET}.cu.cc)
list(APPEND cu_cc_srcs ${TARGET}.cu.cc)
endif()
if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${TARGET}.cu)
list(APPEND cu_srcs ${TARGET}.cu)
endif()
if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${TARGET}.part.cu)
set(PART_CUDA_KERNEL_FILES ${CMAKE_CURRENT_SOURCE_DIR}/${TARGET}.part.cu
${PART_CUDA_KERNEL_FILES} PARENT_SCOPE)
list(APPEND cu_srcs ${CMAKE_CURRENT_SOURCE_DIR}/${TARGET}.part.cu)
endif()
if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${TARGET}.hip.cu)
list(APPEND hip_cu_srcs ${TARGET}.hip.cu)
endif()
string(REPLACE "_op" "_cudnn_op" CUDNN_FILE "${TARGET}")
if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${CUDNN_FILE}.cu.cc)
list(APPEND cudnn_cu_cc_srcs ${CUDNN_FILE}.cu.cc)
endif()
if(WITH_AMD_GPU)
string(REPLACE "_op" "_miopen_op" MIOPEN_FILE "${TARGET}")
if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${MIOPEN_FILE}.hip.cc)
list(APPEND miopen_hip_cc_srcs ${MIOPEN_FILE}.hip.cc)
endif()
endif()
if(WITH_MKLDNN)
string(REPLACE "_op" "_mkldnn_op" MKLDNN_FILE "${TARGET}")
if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${MKLDNN_FILE}.cc)
list(APPEND mkldnn_cc_srcs ${MKLDNN_FILE}.cc)
endif()
endif()
else()
foreach(src ${op_library_SRCS})
if (${src} MATCHES ".*\\.hip.cu$")
list(APPEND hip_cu_srcs ${src})
elseif (${src} MATCHES ".*\\.cu$")
list(APPEND cu_srcs ${src})
elseif(${src} MATCHES ".*_cudnn_op.cu.cc$")
list(APPEND cudnn_cu_cc_srcs ${src})
elseif(WITH_AMD_GPU AND ${src} MATCHES ".*_miopen_op.hip.cc$")
list(APPEND miopen_hip_cc_srcs ${src})
elseif(WITH_MKLDNN AND ${src} MATCHES ".*_mkldnn_op.cc$")
list(APPEND mkldnn_cc_srcs ${src})
elseif(${src} MATCHES ".*\\.cu.cc$")
list(APPEND cu_cc_srcs ${src})
elseif(${src} MATCHES ".*\\.cc$")
list(APPEND cc_srcs ${src})
else()
message(FATAL_ERROR "${TARGET} Source file ${src} should only be .cc or .cu")
endif()
endforeach()
endif()
list(LENGTH cc_srcs cc_srcs_len)
if (${cc_srcs_len} EQUAL 0)
message(FATAL_ERROR "The op library ${TARGET} should contains at least one .cc file")
endif()
if (WIN32)
# remove windows unsupported op, because windows has no nccl, no warpctc such ops.
foreach(windows_unsupport_op "nccl_op" "gen_nccl_id_op" "warpctc_op" "hierarchical_sigmoid_op"
"crf_decoding_op" "select_op" "lstmp_op" "gru_op" "fusion_gru_op" "lstm_op" "fusion_lstm_op" "cumsum_op"
"fusion_seqconv_eltadd_relu_op" "channel_send_op" "channel_create_op" "channel_close_op" "channel_recv_op")
if ("${TARGET}" STREQUAL "${windows_unsupport_op}")
return()
endif()
endforeach()
endif(WIN32)
set(OP_LIBRARY ${TARGET} ${OP_LIBRARY} CACHE INTERNAL "op libs")
list(LENGTH op_library_DEPS op_library_DEPS_len)
if (${op_library_DEPS_len} GREATER 0)
set(DEPS_OPS ${TARGET} ${DEPS_OPS} PARENT_SCOPE)
endif()
if (WITH_GPU)
nv_library(${TARGET} SRCS ${cc_srcs} ${cu_cc_srcs} ${cudnn_cu_cc_srcs} ${mkldnn_cc_srcs} ${cu_srcs} DEPS ${op_library_DEPS}
${op_common_deps})
elseif (WITH_AMD_GPU)
hip_library(${TARGET} SRCS ${cc_srcs} ${hip_cu_srcs} ${miopen_hip_cc_srcs} ${mkldnn_cc_srcs} DEPS ${op_library_DEPS}
${op_common_deps})
else()
cc_library(${TARGET} SRCS ${cc_srcs} ${mkldnn_cc_srcs} DEPS ${op_library_DEPS}
${op_common_deps})
endif()
# Define operators that don't need pybind here.
foreach(manual_pybind_op "compare_op" "logical_op" "nccl_op"
"tensor_array_read_write_op" "tensorrt_engine_op" "conv_fusion_op")
if ("${TARGET}" STREQUAL "${manual_pybind_op}")
set(pybind_flag 1)
endif()
endforeach()
# The registration of USE_OP, please refer to paddle/fluid/framework/op_registry.h.
# Note that it's enough to just adding one operator to pybind in a *_op.cc file.
# And for detail pybind information, please see generated paddle/pybind/pybind.h.
file(READ ${TARGET}.cc TARGET_CONTENT)
string(REGEX MATCH "REGISTER_OPERATOR\\(.*REGISTER_OPERATOR\\(" multi_register "${TARGET_CONTENT}")
string(REGEX MATCH "REGISTER_OPERATOR\\([a-z0-9_]*," one_register "${multi_register}")
if (one_register STREQUAL "")
string(REPLACE "_op" "" TARGET "${TARGET}")
else ()
string(REPLACE "REGISTER_OPERATOR(" "" TARGET "${one_register}")
string(REPLACE "," "" TARGET "${TARGET}")
endif()
# pybind USE_NO_KERNEL_OP
# HACK: if REGISTER_OP_CPU_KERNEL presents the operator must have kernel
string(REGEX MATCH "REGISTER_OP_CPU_KERNEL" regex_result "${TARGET_CONTENT}")
string(REPLACE "_op" "" TARGET "${TARGET}")
if (${pybind_flag} EQUAL 0 AND regex_result STREQUAL "")
file(APPEND ${pybind_file} "USE_NO_KERNEL_OP(${TARGET});\n")
set(pybind_flag 1)
endif()
# pybind USE_CPU_ONLY_OP
list(LENGTH cu_srcs cu_srcs_len)
list(LENGTH cu_cc_srcs cu_cc_srcs_len)
list(LENGTH mkldnn_cc_srcs mkldnn_cc_srcs_len)
list(LENGTH hip_cu_srcs hip_cu_srcs_len)
list(LENGTH miopen_hip_cc_srcs miopen_hip_cc_srcs_len)
if (${pybind_flag} EQUAL 0 AND ${mkldnn_cc_srcs_len} EQUAL 0 AND ${cu_srcs_len} EQUAL 0 AND ${cu_cc_srcs_len} EQUAL 0 AND
${hip_cu_srcs_len} EQUAL 0 AND ${miopen_hip_cc_srcs_len} EQUAL 0)
file(APPEND ${pybind_file} "USE_CPU_ONLY_OP(${TARGET});\n")
set(pybind_flag 1)
endif()
# pybind USE_OP_DEVICE_KERNEL for CUDNN
list(LENGTH cudnn_cu_cc_srcs cudnn_cu_cc_srcs_len)
if (WITH_GPU AND ${cudnn_cu_cc_srcs_len} GREATER 0)
file(APPEND ${pybind_file} "USE_OP_DEVICE_KERNEL(${TARGET}, CUDNN);\n")
endif()
# pybind USE_OP_DEVICE_KERNEL for MIOPEN
if (WITH_AMD_GPU AND ${miopen_hip_cc_srcs_len} GREATER 0)
file(APPEND ${pybind_file} "USE_OP_DEVICE_KERNEL(${TARGET}, MIOPEN);\n")
endif()
# pybind USE_OP_DEVICE_KERNEL for MKLDNN
if (WITH_MKLDNN AND ${mkldnn_cc_srcs_len} GREATER 0)
# Append first implemented MKLDNN activation operator
if (${MKLDNN_FILE} STREQUAL "activation_mkldnn_op")
file(APPEND ${pybind_file} "USE_OP_DEVICE_KERNEL(relu, MKLDNN);\n")
else()
file(APPEND ${pybind_file} "USE_OP_DEVICE_KERNEL(${TARGET}, MKLDNN);\n")
endif()
endif()
# pybind USE_OP
if (${pybind_flag} EQUAL 0)
# NOTE(*): activation use macro to regist the kernels, set use_op manually.
if(${TARGET} STREQUAL "activation")
file(APPEND ${pybind_file} "USE_OP(relu);\n")
elseif(${TARGET} STREQUAL "fake_dequantize")
file(APPEND ${pybind_file} "USE_OP(fake_dequantize_max_abs);\n")
elseif(${TARGET} STREQUAL "fake_quantize")
file(APPEND ${pybind_file} "USE_OP(fake_quantize_abs_max);\n")
elseif(${TARGET} STREQUAL "tensorrt_engine_op")
message(STATUS "Pybind skips [tensorrt_engine_op], for this OP is only used in inference")
elseif(${TARGET} STREQUAL "fc")
# HACK: fc only have mkldnn and cpu, which would mismatch the cpu only condition
file(APPEND ${pybind_file} "USE_CPU_ONLY_OP(${TARGET});\n")
else()
file(APPEND ${pybind_file} "USE_OP(${TARGET});\n")
endif()
endif()
endfunction()
function(register_operators)
set(options "")
set(oneValueArgs "")
set(multiValueArgs EXCLUDES DEPS)
cmake_parse_arguments(register_operators "${options}" "${oneValueArgs}"
"${multiValueArgs}" ${ARGN})
file(GLOB OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "*_op.cc")
string(REPLACE "_mkldnn" "" OPS "${OPS}")
string(REPLACE ".cc" "" OPS "${OPS}")
list(REMOVE_DUPLICATES OPS)
list(LENGTH register_operators_DEPS register_operators_DEPS_len)
foreach(src ${OPS})
list(FIND register_operators_EXCLUDES ${src} _index)
if (${_index} EQUAL -1)
if (${register_operators_DEPS_len} GREATER 0)
op_library(${src} DEPS ${register_operators_DEPS})
else()
op_library(${src})
endif()
endif()
endforeach()
endfunction()
......@@ -93,11 +93,11 @@ paddle.fluid.layers.edit_distance ArgSpec(args=['input', 'label', 'normalized',
paddle.fluid.layers.l2_normalize ArgSpec(args=['x', 'axis', 'epsilon', 'name'], varargs=None, keywords=None, defaults=(1e-12, None))
paddle.fluid.layers.matmul ArgSpec(args=['x', 'y', 'transpose_x', 'transpose_y', 'alpha', 'name'], varargs=None, keywords=None, defaults=(False, False, 1.0, None))
paddle.fluid.layers.topk ArgSpec(args=['input', 'k', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.warpctc ArgSpec(args=['input', 'label', 'blank', 'norm_by_times'], varargs=None, keywords=None, defaults=(0, False))
paddle.fluid.layers.warpctc ArgSpec(args=['input', 'label', 'blank', 'norm_by_times', 'use_cudnn'], varargs=None, keywords=None, defaults=(0, False, False))
paddle.fluid.layers.sequence_reshape ArgSpec(args=['input', 'new_dim'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.transpose ArgSpec(args=['x', 'perm', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.im2sequence ArgSpec(args=['input', 'filter_size', 'stride', 'padding', 'input_image_size', 'out_stride', 'name'], varargs=None, keywords=None, defaults=(1, 1, 0, None, 1, None))
paddle.fluid.layers.nce ArgSpec(args=['input', 'label', 'num_total_classes', 'sample_weight', 'param_attr', 'bias_attr', 'num_neg_samples', 'name'], varargs=None, keywords=None, defaults=(None, None, None, None, None))
paddle.fluid.layers.nce ArgSpec(args=['input', 'label', 'num_total_classes', 'sample_weight', 'param_attr', 'bias_attr', 'num_neg_samples', 'name', 'sampler', 'custom_dist', 'seed'], varargs=None, keywords=None, defaults=(None, None, None, None, None, 'uniform', None, 0))
paddle.fluid.layers.hsigmoid ArgSpec(args=['input', 'label', 'num_classes', 'param_attr', 'bias_attr', 'name'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.layers.beam_search ArgSpec(args=['pre_ids', 'pre_scores', 'ids', 'scores', 'beam_size', 'end_id', 'level', 'name'], varargs=None, keywords=None, defaults=(0, None))
paddle.fluid.layers.row_conv ArgSpec(args=['input', 'future_context_size', 'param_attr', 'act'], varargs=None, keywords=None, defaults=(None, None))
......@@ -128,6 +128,7 @@ paddle.fluid.layers.sequence_scatter ArgSpec(args=['input', 'index', 'updates',
paddle.fluid.layers.random_crop ArgSpec(args=['x', 'shape', 'seed'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.mean_iou ArgSpec(args=['input', 'label', 'num_classes'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.relu ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.selu ArgSpec(args=['x', 'scale', 'alpha', 'name'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.layers.log ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.crop ArgSpec(args=['x', 'shape', 'offsets', 'name'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.layers.rank_loss ArgSpec(args=['label', 'left', 'right', 'name'], varargs=None, keywords=None, defaults=(None,))
......
......@@ -17,7 +17,7 @@ limitations under the License. */
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/elementwise_op_function.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/init.h"
......
......@@ -30,6 +30,8 @@ class ExceptionHolder {
Catch(exp);
} catch (platform::EnforceNotMet exp) {
Catch(exp);
} catch (std::exception& ex) {
LOG(FATAL) << "std::exception caught, " << ex.what();
} catch (...) {
LOG(FATAL) << "Unknown exception caught";
}
......
......@@ -418,11 +418,6 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
DeleteUnusedTensors(*local_scope, op.get(), gc.get(),
&(ctx->cur_ref_cnts_));
}
if (FLAGS_benchmark) {
VLOG(20) << "Memory used after operator " + op->Type() + " running: "
<< memory::memory_usage(place_);
}
}
if (gc != nullptr) {
......@@ -444,13 +439,6 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
scope->DropKids();
}
}
if (FLAGS_benchmark) {
VLOG(20) << "-------------------------------------------------------";
VLOG(20) << "Memory used after deleting local scope: "
<< memory::memory_usage(place_);
VLOG(20) << "-------------------------------------------------------";
}
}
void Executor::RunPreparedContext(
......
......@@ -41,6 +41,7 @@ pass_library(seq_concat_fc_fuse_pass inference)
pass_library(multi_batch_merge_pass base)
pass_library(conv_bn_fuse_pass inference)
pass_library(seqconv_eltadd_relu_fuse_pass inference)
pass_library(is_test_pass base)
if(WITH_MKLDNN)
pass_library(mkldnn_placement_pass base)
pass_library(depthwise_conv_mkldnn_pass base)
......@@ -62,6 +63,7 @@ cc_test(graph_helper_test SRCS graph_helper_test.cc DEPS graph graph_helper op_r
cc_test(graph_to_program_pass_test SRCS graph_to_program_pass_test.cc DEPS graph_to_program_pass)
cc_test(test_graph_pattern_detector SRCS graph_pattern_detector_tester.cc DEPS graph_pattern_detector)
cc_test(test_fc_fuse_pass SRCS fc_fuse_pass_tester.cc DEPS fc_fuse_pass framework_proto)
cc_test(test_is_test_pass SRCS is_test_pass_tester.cc DEPS is_test_pass)
if (WITH_MKLDNN)
cc_test(test_depthwise_conv_mkldnn_pass SRCS depthwise_conv_mkldnn_pass_tester.cc DEPS depthwise_conv_mkldnn_pass)
cc_test(test_conv_relu_mkldnn_fuse_pass SRCS conv_relu_mkldnn_fuse_pass_tester.cc DEPS conv_relu_mkldnn_fuse_pass)
......
......@@ -14,14 +14,15 @@
#include "paddle/fluid/framework/ir/conv_elementwise_add_mkldnn_fuse_pass.h"
#include <functional>
#include <utility>
#include <list>
#include <map>
#include <tuple>
#include "paddle/fluid/framework/ir/graph_traits.h"
namespace paddle {
namespace framework {
namespace ir {
namespace {
// The function keeps the graph consistent by replacing
// a node 'from' in the set of inputs nodes
......@@ -51,74 +52,117 @@ void CorrectGraphEdges(Graph* graph, Node* from, Node* to) {
}
}
}
} // namespace
using graph_ptr = std::unique_ptr<ir::Graph>;
graph_ptr ConvElementwiseAddMKLDNNFusePass::ApplyImpl(graph_ptr graph) const {
FusePassBase::Init(name_scope_, graph.get());
bool IsReachable(ir::Graph* graph, Node* from, Node* to) {
auto find_node = [](ir::Graph* graph, const Node* node) -> Node* {
for (auto n : graph->Nodes()) {
if (n == node) {
return n;
}
}
GraphPatternDetector gpd;
auto pattern = gpd.mutable_pattern();
return nullptr;
};
patterns::Conv conv_pattern{pattern, name_scope_};
auto conv_output = conv_pattern();
if (from == to) {
return true;
}
patterns::ElementwiseAdd elementwise_add_pattern{pattern, name_scope_};
elementwise_add_pattern(conv_output);
std::map<Node*, bool> visited;
conv_output->AsIntermediate();
for (auto& node : GraphTraits::DFS(*graph)) {
visited[&node] = false;
}
visited[from] = true;
std::list<Node*> queue;
queue.push_back(from);
while (!queue.empty()) {
auto cur = find_node(graph, queue.front());
queue.pop_front();
if (!cur) return false;
auto conv_op_has_bias = [](const Node& conv_op) -> std::pair<bool, Node*> {
auto bias_input_names = conv_op.Op()->Inputs();
auto bias_it = bias_input_names.find("Bias");
for (auto n : cur->outputs) {
if (n == to) {
return true;
}
if (!visited[n]) {
visited[n] = true;
queue.push_back(n);
}
}
}
return false;
}
boost::optional<Node*> HasBias(const Node& op, const std::string& bias_name) {
auto bias_input_names = op.Op()->Inputs();
auto bias_it = bias_input_names.find(bias_name);
if (bias_it != std::end(bias_input_names)) {
bool has_bias = !bias_it->second.empty();
if (has_bias) {
auto conv_bias_names = bias_it->second;
auto conv_bias_names_it =
std::find_if(std::begin(conv_op.inputs), std::end(conv_op.inputs),
[&conv_bias_names](Node* n) -> bool {
return n->Name() == conv_bias_names[0];
auto bias_names = bias_it->second;
auto bias_names_it =
std::find_if(std::begin(op.inputs), std::end(op.inputs),
[&bias_names](Node* n) -> bool {
return n->Name() == bias_names[0];
});
return std::make_pair(has_bias, *conv_bias_names_it);
return *bias_names_it;
}
}
return std::make_pair(false, nullptr);
};
auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
Graph* g) {
GET_IR_NODE_FROM_SUBGRAPH(conv_op, conv_op, conv_pattern);
GET_IR_NODE_FROM_SUBGRAPH(conv_input, conv_input, conv_pattern);
GET_IR_NODE_FROM_SUBGRAPH(conv_filter, conv_filter, conv_pattern);
GET_IR_NODE_FROM_SUBGRAPH(conv_output, conv_output, conv_pattern);
GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_op, elementwise_add_op,
elementwise_add_pattern);
GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_x, elementwise_add_x,
elementwise_add_pattern);
GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_out, elementwise_add_out,
elementwise_add_pattern);
return boost::none;
}
if (FindFuseOption(*conv_op, *elementwise_add_op) != FUSE_MKLDNN) return;
ResidualConnectionMKLDNNFusePass::IdentityFuseHandle::IdentityFuseHandle(
const ResidualConnectionMKLDNNFusePass::CanFuseFunc& can_fuse_func,
const ResidualConnectionMKLDNNFusePass::IdentityConvFunc&
get_node_from_conv_op,
const ResidualConnectionMKLDNNFusePass::IdentityElementwiseAddFunc&
get_node_from_elementwise_add_op)
: fusion_stats{std::make_shared<int>(0)},
can_fuse_func{can_fuse_func},
get_node_from_conv_op{get_node_from_conv_op},
get_node_from_elementwise_add_op{get_node_from_elementwise_add_op} {}
void ResidualConnectionMKLDNNFusePass::IdentityFuseHandle::operator()(
const GraphPatternDetector::subgraph_t& subgraph, Graph* graph) {
Node* conv_op;
Node* conv_input;
Node* conv_filter;
Node* conv_output;
Node* elementwise_add_op;
Node* elementwise_add_identity;
Node* elementwise_add_out;
std::tie(conv_op, conv_input, conv_filter, conv_output) =
get_node_from_conv_op(subgraph);
std::tie(elementwise_add_op, elementwise_add_identity, elementwise_add_out) =
get_node_from_elementwise_add_op(subgraph);
if (!can_fuse_func(conv_op, elementwise_add_op)) return;
if (!IsReachable(graph, elementwise_add_identity, conv_output)) return;
OpDesc op_desc;
op_desc.SetType("conv2d");
op_desc.SetInput("Input", {conv_input->Name()});
op_desc.SetInput("Filter", {conv_filter->Name()});
op_desc.SetInput("ResidualData", {elementwise_add_x->Name()});
op_desc.SetInput("ResidualData", {elementwise_add_identity->Name()});
op_desc.SetOutput("Output", {conv_output->Name()});
bool has_bias;
Node* conv_bias;
std::tie(has_bias, conv_bias) = conv_op_has_bias(*conv_op);
auto conv_bias = HasBias(*conv_op, "Bias");
if (has_bias) {
op_desc.SetInput("Bias", {conv_bias->Name()});
if (conv_bias) {
op_desc.SetInput("Bias", {(*conv_bias)->Name()});
}
for (const auto& attr : conv_op->Op()->GetAttrMap()) {
......@@ -127,23 +171,263 @@ graph_ptr ConvElementwiseAddMKLDNNFusePass::ApplyImpl(graph_ptr graph) const {
op_desc.SetAttr("fuse_residual_connection", true);
auto fused_conv_op = g->CreateOpNode(&op_desc);
auto fused_conv_op = graph->CreateOpNode(&op_desc);
IR_NODE_LINK_TO(conv_input, fused_conv_op);
IR_NODE_LINK_TO(conv_filter, fused_conv_op);
IR_NODE_LINK_TO(elementwise_add_x, fused_conv_op);
IR_NODE_LINK_TO(elementwise_add_identity, fused_conv_op);
IR_NODE_LINK_TO(fused_conv_op, conv_output);
if (has_bias) {
IR_NODE_LINK_TO(conv_bias, fused_conv_op);
if (conv_bias) {
IR_NODE_LINK_TO((*conv_bias), fused_conv_op);
}
CorrectGraphEdges(g, elementwise_add_out, conv_output);
GraphSafeRemoveNodes(g, {elementwise_add_out, conv_op, elementwise_add_op});
CorrectGraphEdges(graph, elementwise_add_out, conv_output);
GraphSafeRemoveNodes(graph,
{elementwise_add_out, conv_op, elementwise_add_op});
(*fusion_stats)++;
}
ResidualConnectionMKLDNNFusePass::ProjectionFuseHandle::ProjectionFuseHandle(
const ResidualConnectionMKLDNNFusePass::CanFuseFunc& can_fuse_func,
const ResidualConnectionMKLDNNFusePass::ProjectionConvFunc&
get_node_from_conv_x_op,
const ResidualConnectionMKLDNNFusePass::ProjectionConvFunc&
get_node_from_conv_y_op,
const ResidualConnectionMKLDNNFusePass::ProjectionElementwiseAddFunc&
get_node_from_elementwise_add_op)
: fusion_stats{std::make_shared<int>(0)},
can_fuse_func{can_fuse_func},
get_node_from_conv_x_op{get_node_from_conv_x_op},
get_node_from_conv_y_op{get_node_from_conv_y_op},
get_node_from_elementwise_add_op{get_node_from_elementwise_add_op} {}
void ResidualConnectionMKLDNNFusePass::ProjectionFuseHandle::operator()(
const GraphPatternDetector::subgraph_t& subgraph, Graph* graph) {
Node* conv_x_op;
Node* conv_x_input;
Node* conv_x_filter;
Node* conv_x_output;
Node* conv_y_op;
Node* conv_y_input;
Node* conv_y_filter;
Node* conv_y_output;
Node* elementwise_add_op;
Node* elementwise_add_out;
std::tie(conv_x_op, conv_x_input, conv_x_filter, conv_x_output) =
get_node_from_conv_x_op(subgraph);
std::tie(conv_y_op, conv_y_input, conv_y_filter, conv_y_output) =
get_node_from_conv_y_op(subgraph);
std::tie(elementwise_add_op, elementwise_add_out) =
get_node_from_elementwise_add_op(subgraph);
if (!can_fuse_func(conv_x_op, elementwise_add_op)) return;
if (!can_fuse_func(conv_y_op, elementwise_add_op)) return;
Node* projection_node;
Node* residual_conv_op;
Node* residual_conv_input;
Node* residual_conv_filter;
Node* residual_conv_output;
if (IsReachable(graph, conv_x_input, conv_y_output)) {
projection_node = conv_x_output;
residual_conv_op = conv_y_op;
residual_conv_input = conv_y_input;
residual_conv_filter = conv_y_filter;
residual_conv_output = conv_y_output;
} else if (IsReachable(graph, conv_y_input, conv_x_output)) {
projection_node = conv_y_output;
residual_conv_op = conv_x_op;
residual_conv_input = conv_x_input;
residual_conv_filter = conv_x_filter;
residual_conv_output = conv_x_output;
} else {
return;
}
OpDesc op_desc;
op_desc.SetType("conv2d");
op_desc.SetInput("Input", {residual_conv_input->Name()});
op_desc.SetInput("Filter", {residual_conv_filter->Name()});
op_desc.SetInput("ResidualData", {projection_node->Name()});
op_desc.SetOutput("Output", {residual_conv_output->Name()});
auto residual_conv_bias = HasBias(*residual_conv_op, "Bias");
if (residual_conv_bias) {
op_desc.SetInput("Bias", {(*residual_conv_bias)->Name()});
}
for (const auto& attr : residual_conv_op->Op()->GetAttrMap()) {
op_desc.SetAttr(attr.first, attr.second);
}
op_desc.SetAttr("fuse_residual_connection", true);
auto fused_conv_op = graph->CreateOpNode(&op_desc);
IR_NODE_LINK_TO(residual_conv_input, fused_conv_op);
IR_NODE_LINK_TO(residual_conv_filter, fused_conv_op);
IR_NODE_LINK_TO(projection_node, fused_conv_op);
IR_NODE_LINK_TO(fused_conv_op, residual_conv_output);
if (residual_conv_bias) {
IR_NODE_LINK_TO((*residual_conv_bias), fused_conv_op);
}
CorrectGraphEdges(graph, elementwise_add_out, residual_conv_output);
GraphSafeRemoveNodes(
graph, {elementwise_add_out, residual_conv_op, elementwise_add_op});
(*fusion_stats)++;
}
std::tuple<Node*, Node*, Node*, Node*>
ResidualConnectionMKLDNNFusePass::GetNodesFromConv(
const patterns::Conv& conv_pattern,
const GraphPatternDetector::subgraph_t& subgraph) const {
GET_IR_NODE_FROM_SUBGRAPH(conv_op, conv_op, conv_pattern);
GET_IR_NODE_FROM_SUBGRAPH(conv_input, conv_input, conv_pattern);
GET_IR_NODE_FROM_SUBGRAPH(conv_filter, conv_filter, conv_pattern);
GET_IR_NODE_FROM_SUBGRAPH(conv_output, conv_output, conv_pattern);
return std::make_tuple(conv_op, conv_input, conv_filter, conv_output);
}
GraphWithStats ResidualConnectionMKLDNNFusePass::FuseConvAsX(
const std::string& name_scope,
const GraphWithStats& graph_with_stats) const {
ir::Graph* graph;
int stats;
std::tie(graph, stats) = graph_with_stats;
GraphPatternDetector gpd;
auto pattern = gpd.mutable_pattern();
patterns::Conv conv_pattern{pattern, name_scope};
auto conv_output = conv_pattern();
patterns::ElementwiseAdd elementwise_add_pattern{pattern, name_scope};
elementwise_add_pattern(
conv_output,
pattern->NewNode(elementwise_add_pattern.elementwise_add_y_repr()));
conv_output->AsIntermediate();
auto get_node_from_elementwise_add = [&elementwise_add_pattern](
const GraphPatternDetector::subgraph_t& subgraph)
-> std::tuple<Node*, Node*, Node*> {
GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_op, elementwise_add_op,
elementwise_add_pattern);
GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_y, elementwise_add_y,
elementwise_add_pattern);
GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_out, elementwise_add_out,
elementwise_add_pattern);
return std::make_tuple(elementwise_add_op, elementwise_add_y,
elementwise_add_out);
};
return ExecuteHandleOnGraph<IdentityFuseHandle>(
&gpd, graph_with_stats,
[this, &conv_pattern](const GraphPatternDetector::subgraph_t& subgraph) {
return GetNodesFromConv(conv_pattern, subgraph);
},
get_node_from_elementwise_add);
}
GraphWithStats ResidualConnectionMKLDNNFusePass::FuseConvAsY(
const std::string& name_scope,
const GraphWithStats& graph_with_stats) const {
GraphPatternDetector gpd;
auto pattern = gpd.mutable_pattern();
patterns::Conv conv_pattern{pattern, name_scope};
auto conv_output = conv_pattern();
patterns::ElementwiseAdd elementwise_add_pattern{pattern, name_scope};
elementwise_add_pattern(
pattern->NewNode(elementwise_add_pattern.elementwise_add_x_repr()),
conv_output);
conv_output->AsIntermediate();
auto get_node_from_elementwise_add = [&elementwise_add_pattern](
const GraphPatternDetector::subgraph_t& subgraph)
-> std::tuple<Node*, Node*, Node*> {
GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_op, elementwise_add_op,
elementwise_add_pattern);
GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_x, elementwise_add_x,
elementwise_add_pattern);
GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_out, elementwise_add_out,
elementwise_add_pattern);
return std::make_tuple(elementwise_add_op, elementwise_add_x,
elementwise_add_out);
};
gpd(graph.get(), handler);
return ExecuteHandleOnGraph<IdentityFuseHandle>(
&gpd, graph_with_stats,
[this, &conv_pattern](const GraphPatternDetector::subgraph_t& subgraph) {
return GetNodesFromConv(conv_pattern, subgraph);
},
get_node_from_elementwise_add);
}
GraphWithStats ResidualConnectionMKLDNNFusePass::FuseProjectionConv(
const std::string& name_scope,
const GraphWithStats& graph_with_stats) const {
GraphPatternDetector gpd;
auto pattern = gpd.mutable_pattern();
patterns::Conv conv_x_pattern{pattern, name_scope};
auto conv_x_output = conv_x_pattern();
patterns::Conv conv_y_pattern{pattern, name_scope};
auto conv_y_output = conv_y_pattern();
patterns::ElementwiseAdd elementwise_add_pattern{pattern, name_scope};
elementwise_add_pattern(conv_x_output, conv_y_output);
conv_x_output->AsIntermediate();
conv_y_output->AsIntermediate();
auto get_node_from_elementwise_add = [&elementwise_add_pattern](
const GraphPatternDetector::subgraph_t& subgraph)
-> std::tuple<Node*, Node*> {
GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_op, elementwise_add_op,
elementwise_add_pattern);
GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_out, elementwise_add_out,
elementwise_add_pattern);
return std::make_tuple(elementwise_add_op, elementwise_add_out);
};
return ExecuteHandleOnGraph<ProjectionFuseHandle>(
&gpd, graph_with_stats,
[this,
&conv_x_pattern](const GraphPatternDetector::subgraph_t& subgraph) {
return GetNodesFromConv(conv_x_pattern, subgraph);
},
[this,
&conv_y_pattern](const GraphPatternDetector::subgraph_t& subgraph) {
return GetNodesFromConv(conv_y_pattern, subgraph);
},
get_node_from_elementwise_add);
}
graph_ptr ResidualConnectionMKLDNNFusePass::ApplyImpl(graph_ptr graph) const {
FusePassBase::Init(name_scope_, graph.get());
auto fused_graph_with_stats = FuseConvAsY(
name_scope_,
FuseConvAsX(
name_scope_,
FuseProjectionConv(name_scope_, std::make_pair(graph.get(), 0))));
std::cout << "Fused graph " << fused_graph_with_stats.second << std::endl;
AddStatis(fused_graph_with_stats.second);
return graph;
}
} // namespace ir
......@@ -151,4 +435,4 @@ graph_ptr ConvElementwiseAddMKLDNNFusePass::ApplyImpl(graph_ptr graph) const {
} // namespace paddle
REGISTER_PASS(conv_elementwise_add_mkldnn_fuse_pass,
paddle::framework::ir::ConvElementwiseAddMKLDNNFusePass);
paddle::framework::ir::ResidualConnectionMKLDNNFusePass);
......@@ -15,24 +15,119 @@
#pragma once
#include <string>
#include <tuple>
#include <utility>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include <boost/optional.hpp>
namespace paddle {
namespace framework {
namespace ir {
class ConvElementwiseAddMKLDNNFusePass : public FusePassBase {
using graph_ptr = std::unique_ptr<ir::Graph>;
using GraphWithStats = std::pair<ir::Graph*, int>;
void CorrectGraphEdges(Graph* graph, Node* from, Node* to);
bool IsReachable(ir::Graph* graph, Node* from, Node* to);
boost::optional<Node*> HasBias(const Node& op, const std::string& bias_name);
class ResidualConnectionMKLDNNFusePass : public FusePassBase {
private:
GraphWithStats FuseConvAsX(const std::string& name_scope,
const GraphWithStats& graph_with_stats) const;
GraphWithStats FuseConvAsY(const std::string& name_scope,
const GraphWithStats& graph_with_stats) const;
GraphWithStats FuseProjectionConv(
const std::string& name_scope,
const GraphWithStats& graph_with_stats) const;
template <typename RetType>
using GetNodeFunc =
std::function<RetType(const GraphPatternDetector::subgraph_t& subgraph)>;
using IdentityConvFunc = GetNodeFunc<std::tuple<Node*, Node*, Node*, Node*>>;
using IdentityElementwiseAddFunc =
GetNodeFunc<std::tuple<Node*, Node*, Node*>>;
using ProjectionConvFunc = IdentityConvFunc;
using ProjectionElementwiseAddFunc = GetNodeFunc<std::tuple<Node*, Node*>>;
using CanFuseFunc = std::function<bool(Node*, Node*)>;
std::tuple<Node*, Node*, Node*, Node*> GetNodesFromConv(
const patterns::Conv& conv_pattern,
const GraphPatternDetector::subgraph_t& subgraph) const;
std::tuple<Node*, Node*, Node*, Node*> GetNodesFromProjectionConv(
const patterns::Conv& conv_pattern,
const GraphPatternDetector::subgraph_t& subgraph) const;
template <typename HandleType, typename... OpFuncs>
GraphWithStats ExecuteHandleOnGraph(GraphPatternDetector* gpd,
const GraphWithStats& graph_with_stats,
OpFuncs&&... op_funcs) const {
ir::Graph* graph;
int stats;
std::tie(graph, stats) = graph_with_stats;
auto can_fuse = [this](Node* op1, Node* op2) -> bool {
return this->FindFuseOption(*op1, *op2) == FUSE_MKLDNN;
};
auto fuse_handle = HandleType{can_fuse, std::forward<OpFuncs>(op_funcs)...};
(*gpd)(graph, fuse_handle);
return std::make_pair(graph, stats + fuse_handle.get_stats());
}
struct IdentityFuseHandle {
IdentityFuseHandle(
const CanFuseFunc& can_fuse_func,
const IdentityConvFunc& get_node_from_conv_op,
const IdentityElementwiseAddFunc& get_node_from_elementwise_add_op);
void operator()(const GraphPatternDetector::subgraph_t& subgraph,
Graph* graph);
int get_stats() const { return *fusion_stats; }
private:
std::shared_ptr<int> fusion_stats;
CanFuseFunc can_fuse_func;
IdentityConvFunc get_node_from_conv_op;
IdentityElementwiseAddFunc get_node_from_elementwise_add_op;
};
struct ProjectionFuseHandle {
ProjectionFuseHandle(
const CanFuseFunc& can_fuse_func,
const ProjectionConvFunc& get_node_from_conv_x_op,
const ProjectionConvFunc& get_node_from_conv_y_op,
const ProjectionElementwiseAddFunc& get_node_from_elementwise_add_op);
void operator()(const GraphPatternDetector::subgraph_t& subgraph,
Graph* graph);
int get_stats() const { return *fusion_stats; }
private:
std::shared_ptr<int> fusion_stats;
CanFuseFunc can_fuse_func;
ProjectionConvFunc get_node_from_conv_x_op;
ProjectionConvFunc get_node_from_conv_y_op;
ProjectionElementwiseAddFunc get_node_from_elementwise_add_op;
};
public:
virtual ~ConvElementwiseAddMKLDNNFusePass() {}
virtual ~ResidualConnectionMKLDNNFusePass() {}
protected:
std::unique_ptr<ir::Graph> ApplyImpl(std::unique_ptr<ir::Graph> graph) const;
std::unique_ptr<ir::Graph> ApplyImpl(graph_ptr graph) const;
const std::string name_scope_{"residual_connections_fuse_pass"};
const std::string name_scope_{"residual_connection_fuse_pass"};
};
} // namespace ir
} // namespace framework
} // namespace paddle
......@@ -40,7 +40,7 @@ void SetOp(ProgramDesc* prog, const std::string& type,
op->SetOutput(output.first, {output.second});
}
struct IsReachable {
struct TestIsReachable {
using func = std::function<bool(const std::string&, const std::string&)>;
auto operator()(const std::unique_ptr<ir::Graph>& graph) -> func {
......@@ -89,7 +89,9 @@ struct IsReachable {
}
};
void AssertOpsCount(const std::unique_ptr<ir::Graph>& graph) {
void AssertOpsCount(const std::unique_ptr<ir::Graph>& graph,
int expected_conv_count,
int expected_elementwise_add_count = 0) {
int conv_count = 0;
int elementwise_add_count = 0;
......@@ -101,8 +103,8 @@ void AssertOpsCount(const std::unique_ptr<ir::Graph>& graph) {
++elementwise_add_count;
}
}
EXPECT_EQ(conv_count, 1);
EXPECT_EQ(elementwise_add_count, 0);
EXPECT_EQ(conv_count, expected_conv_count);
EXPECT_EQ(elementwise_add_count, expected_elementwise_add_count);
}
ProgramDesc BuildProgramDesc(const std::vector<std::string>& transient_vars,
......@@ -127,22 +129,13 @@ ProgramDesc BuildProgramDesc(const std::vector<std::string>& transient_vars,
return prog;
}
} // namespace
TEST(ConvElementwiseAddMKLDNNFusePass, ConvolutionWithElementwiseAddRelu) {
auto prog =
BuildProgramDesc({"a", "b", "c", "d", "e", "f"}, {"bias", "weights"});
SetOp(&prog, "conv2d",
{{"Input", "a"}, {"Bias", "bias"}, {"Filter", "weights"}},
{"Output", "b"});
SetOp(&prog, "elementwise_add", {{"X", "b"}, {"Y", "c"}}, {"Out", "d"});
SetOp(&prog, "relu", {{"X", "d"}}, {"Out", "e"});
std::unique_ptr<ir::Graph> graph(new ir::Graph(prog));
void RunPassAndAssert(ProgramDesc* prog, const std::string& from,
const std::string& to, int expected_conv_num) {
std::unique_ptr<ir::Graph> graph(new ir::Graph(*prog));
IsReachable is_reachable;
EXPECT_TRUE(is_reachable(graph)("a", "relu"));
TestIsReachable is_reachable;
EXPECT_TRUE(is_reachable(graph)(from, to));
auto pass =
PassRegistry::Instance().Get("conv_elementwise_add_mkldnn_fuse_pass");
......@@ -150,82 +143,87 @@ TEST(ConvElementwiseAddMKLDNNFusePass, ConvolutionWithElementwiseAddRelu) {
graph = pass->Apply(std::move(graph));
int current_nodes_num = graph->Nodes().size();
EXPECT_TRUE(is_reachable(graph)("a", "relu"));
EXPECT_TRUE(is_reachable(graph)(from, to));
EXPECT_EQ(original_nodes_num - nodes_removed + nodes_added,
current_nodes_num);
AssertOpsCount(graph);
AssertOpsCount(graph, expected_conv_num);
}
} // namespace
TEST(ConvElementwiseAddMKLDNNFusePass,
ConvolutionWithElementwiseAddReluNoBias) {
auto prog = BuildProgramDesc({"a", "b", "c", "d", "e"}, {"weights"});
SetOp(&prog, "conv2d", {{"Input", "a"}, {"Filter", "weights"}},
{"Output", "b"});
SetOp(&prog, "elementwise_add", {{"X", "b"}, {"Y", "c"}}, {"Out", "d"});
SetOp(&prog, "relu", {{"X", "d"}}, {"Out", "e"});
std::unique_ptr<ir::Graph> graph(new ir::Graph(prog));
TEST(ConvElementwiseAddMKLDNNFusePass, ConvolutionAsYWithElementwiseAddRelu) {
auto prog = BuildProgramDesc({"a", "b", "c", "d", "e"}, {"bias", "weights"});
IsReachable is_reachable;
SetOp(&prog, "sigmoid", {{"X", "a"}}, {"Out", "b"});
SetOp(&prog, "conv2d",
{{"Input", "b"}, {"Bias", "bias"}, {"Filter", "weights"}},
{"Output", "c"});
EXPECT_TRUE(is_reachable(graph)("a", "relu"));
SetOp(&prog, "elementwise_add", {{"X", "a"}, {"Y", "c"}}, {"Out", "d"});
SetOp(&prog, "relu", {{"X", "d"}}, {"Out", "e"});
auto pass =
PassRegistry::Instance().Get("conv_elementwise_add_mkldnn_fuse_pass");
int original_nodes_num = graph->Nodes().size();
graph = pass->Apply(std::move(graph));
int current_nodes_num = graph->Nodes().size();
RunPassAndAssert(&prog, "a", "relu", 1);
}
EXPECT_TRUE(is_reachable(graph)("a", "relu"));
TEST(ConvElementwiseAddMKLDNNFusePass,
ConvolutionAsYWithElementwiseAddReluNoBias) {
auto prog = BuildProgramDesc({"a", "b", "c", "d", "e"}, {"weights"});
EXPECT_EQ(original_nodes_num - nodes_removed + nodes_added,
current_nodes_num);
SetOp(&prog, "sigmoid", {{"X", "a"}}, {"Out", "b"});
SetOp(&prog, "conv2d", {{"Input", "b"}, {"Filter", "weights"}},
{"Output", "c"});
SetOp(&prog, "elementwise_add", {{"X", "a"}, {"Y", "c"}}, {"Out", "d"});
SetOp(&prog, "relu", {{"X", "d"}}, {"Out", "e"});
AssertOpsCount(graph);
RunPassAndAssert(&prog, "a", "relu", 1);
}
TEST(ConvElementwiseAddMKLDNNFusePass, ConvolutionElementwiseAdd) {
auto prog = BuildProgramDesc({"a", "b", "c", "d"}, {"bias", "weights"});
TEST(ConvElementwiseAddMKLDNNFusePass, ConvolutionAsXWithElementwiseAddRelu) {
auto prog = BuildProgramDesc({"a", "b", "c", "d", "e"}, {"bias", "weights"});
SetOp(&prog, "sigmoid", {{"X", "a"}}, {"Out", "b"});
SetOp(&prog, "conv2d",
{{"Input", "a"}, {"Bias", "bias"}, {"Filter", "weights"}},
{"Output", "b"});
SetOp(&prog, "elementwise_add", {{"X", "b"}, {"Y", "c"}}, {"Out", "d"});
{{"Input", "b"}, {"Bias", "bias"}, {"Filter", "weights"}},
{"Output", "c"});
std::unique_ptr<ir::Graph> graph(new ir::Graph(prog));
SetOp(&prog, "elementwise_add", {{"X", "c"}, {"Y", "a"}}, {"Out", "d"});
SetOp(&prog, "relu", {{"X", "d"}}, {"Out", "e"});
IsReachable is_reachable;
EXPECT_TRUE(is_reachable(graph)("a", "d"));
RunPassAndAssert(&prog, "a", "relu", 1);
}
auto pass =
PassRegistry::Instance().Get("conv_elementwise_add_mkldnn_fuse_pass");
int original_nodes_num = graph->Nodes().size();
graph = pass->Apply(std::move(graph));
int current_nodes_num = graph->Nodes().size();
TEST(ConvElementwiseAddMKLDNNFusePass,
ConvolutionAsXWithElementwiseAddReluNoBias) {
auto prog = BuildProgramDesc({"a", "b", "c", "d", "e"}, {"weights"});
EXPECT_FALSE(is_reachable(graph)("a", "d"));
SetOp(&prog, "sigmoid", {{"X", "a"}}, {"Out", "b"});
SetOp(&prog, "conv2d", {{"Input", "b"}, {"Filter", "weights"}},
{"Output", "c"});
SetOp(&prog, "elementwise_add", {{"X", "c"}, {"Y", "a"}}, {"Out", "d"});
SetOp(&prog, "relu", {{"X", "d"}}, {"Out", "e"});
EXPECT_EQ(original_nodes_num - nodes_removed + nodes_added,
current_nodes_num);
AssertOpsCount(graph);
RunPassAndAssert(&prog, "a", "relu", 1);
}
TEST(ConvElementwiseAddMKLDNNFusePass, SigmoidConvolutionAddElementwiseRelu) {
TEST(ConvElementwiseAddMKLDNNFusePass, NoFusion) {
auto prog =
BuildProgramDesc({"a", "b", "c", "d", "e", "f"}, {"bias", "weights"});
BuildProgramDesc({"a", "b", "c", "d", "e", "f", "g"}, {"weights"});
SetOp(&prog, "sigmoid", {{"X", "a"}}, {"Out", "b"});
SetOp(&prog, "conv2d",
{{"Input", "b"}, {"Bias", "bias"}, {"Filter", "weights"}},
SetOp(&prog, "conv2d", {{"Input", "b"}, {"Filter", "weights"}},
{"Output", "c"});
SetOp(&prog, "elementwise_add", {{"X", "c"}, {"Y", "d"}}, {"Out", "e"});
SetOp(&prog, "relu", {{"X", "e"}}, {"Out", "f"});
std::unique_ptr<ir::Graph> graph(new ir::Graph(prog));
SetOp(&prog, "conv2d", {{"Input", "d"}, {"Filter", "weights"}},
{"Output", "e"});
IsReachable is_reachable;
SetOp(&prog, "elementwise_add", {{"X", "c"}, {"Y", "e"}}, {"Out", "f"});
SetOp(&prog, "relu", {{"X", "f"}}, {"Out", "g"});
EXPECT_TRUE(is_reachable(graph)("a", "f"));
std::unique_ptr<ir::Graph> graph(new ir::Graph(prog));
TestIsReachable is_reachable;
EXPECT_TRUE(is_reachable(graph)("a", "g"));
auto pass =
PassRegistry::Instance().Get("conv_elementwise_add_mkldnn_fuse_pass");
......@@ -233,11 +231,10 @@ TEST(ConvElementwiseAddMKLDNNFusePass, SigmoidConvolutionAddElementwiseRelu) {
graph = pass->Apply(std::move(graph));
int current_nodes_num = graph->Nodes().size();
EXPECT_TRUE(is_reachable(graph)("a", "f"));
EXPECT_TRUE(is_reachable(graph)("a", "g"));
EXPECT_EQ(original_nodes_num, current_nodes_num);
EXPECT_EQ(original_nodes_num - nodes_removed + nodes_added,
current_nodes_num);
AssertOpsCount(graph);
AssertOpsCount(graph, 2, 1);
}
} // namespace ir
......
......@@ -15,8 +15,15 @@ limitations under the License. */
#include "paddle/fluid/framework/ir/graph_helper.h"
#include <algorithm>
#include <deque>
#include <fstream>
#include <iosfwd>
#include <ostream>
#include <unordered_set>
DEFINE_string(print_sub_graph_dir, "",
"FLAGS_print_sub_graph_dir is used "
"to print the nodes of sub_graphs.");
namespace paddle {
namespace framework {
namespace ir {
......@@ -164,12 +171,15 @@ size_t GraphNum(const Graph &graph) {
graph_nodes.emplace_back(g_nodes);
}
if (VLOG_IS_ON(100)) {
VLOG(100) << "graph_num: " << graph_nodes.size();
for (auto &g_n : graph_nodes) {
VLOG(100) << "graph_nodes: " << g_n.size();
if (g_n.size() < 10) {
if (FLAGS_print_sub_graph_dir.size()) {
if (graph_nodes.size() > 1) {
std::stringstream out;
for (auto &g_n : graph_nodes) {
out << "graph_nodes: " << g_n.size() << "\n";
}
out << "\n\n";
for (auto &g_n : graph_nodes) {
out << "graph_nodes: " << g_n.size();
for (auto &node : g_n) {
out << "\nNode: " << node->Name() << " in [";
for (auto &n : node->inputs) {
......@@ -181,8 +191,12 @@ size_t GraphNum(const Graph &graph) {
}
out << "]";
}
VLOG(100) << out.str();
out << "\n\n\n";
}
std::unique_ptr<std::ostream> fout(
new std::ofstream(FLAGS_print_sub_graph_dir));
PADDLE_ENFORCE(fout->good());
*fout << out.str();
}
}
......
......@@ -1084,16 +1084,12 @@ PDNode *patterns::Conv::operator()() {
return output_var;
}
PDNode *patterns::ElementwiseAdd::operator()(PDNode *x_var) {
PDNode *patterns::ElementwiseAdd::operator()(PDNode *x_var, PDNode *y_var) {
auto elementwise_add_op = pattern->NewNode(elementwise_add_op_repr())
->assert_is_op("elementwise_add");
x_var->assert_is_op_input("elementwise_add", "X");
auto y_var = pattern->NewNode(elementwise_add_x_repr())
->AsInput()
->assert_is_op_input("elementwise_add", "Y");
x_var->AsInput()->assert_is_op_input("elementwise_add", "X");
y_var->AsInput()->assert_is_op_input("elementwise_add", "Y");
auto out_var = pattern->NewNode(elementwise_add_out_repr())
->AsOutput()
->assert_is_op_output("elementwise_add", "Out");
......
......@@ -664,7 +664,7 @@ struct ElementwiseAdd : public PatternBase {
ElementwiseAdd(PDPattern* pattern, const std::string& name_scope)
: PatternBase(pattern, name_scope, "elementwise_add") {}
PDNode* operator()(PDNode* x_var);
PDNode* operator()(PDNode* x_var, PDNode* y_var);
PATTERN_DECL_NODE(elementwise_add_op);
PATTERN_DECL_NODE(elementwise_add_x);
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/ir/is_test_pass.h"
#include <string>
#include <utility>
namespace paddle {
namespace framework {
namespace ir {
std::unique_ptr<ir::Graph> IsTestPass::ApplyImpl(
std::unique_ptr<ir::Graph> graph) const {
VLOG(3) << "Sets is_test attrbiute to true and if it is missing, inserts it "
"for activations and pooling.";
auto op_list = {"pool2d", "sigmoid", "logsigmoid",
"softshrink", "exp", "brelu",
"pow", "leaky_relu", "stanh",
"relu", "tanh", "tanh_shrink",
"sqrt", "abs", "ceil",
"elu", "floor", "cos",
"sin", "round", "reciprocal",
"hard_shrink", "hard_sigmoid", "relu6",
"soft_relu", "swish", "thresholded_relu",
"log", "square", "softplus",
"softsign"};
for (const Node* n : graph->Nodes()) {
if (n->IsOp()) {
auto* op = n->Op();
if (op->HasAttr("is_test")) {
op->SetAttr("is_test", true);
} else if (std::find(begin(op_list), end(op_list), op->Type()) !=
end(op_list)) {
op->MutableAttrMap()->insert(
std::pair<std::string, Attribute>("is_test", true));
}
}
}
return graph;
}
} // namespace ir
} // namespace framework
} // namespace paddle
REGISTER_PASS(is_test_pass, paddle::framework::ir::IsTestPass);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/ir/pass.h"
namespace paddle {
namespace framework {
namespace ir {
class IsTestPass : public Pass {
protected:
std::unique_ptr<ir::Graph> ApplyImpl(
std::unique_ptr<ir::Graph> graph) const override;
};
} // namespace ir
} // namespace framework
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/is_test_pass.h"
#include <gtest/gtest.h>
namespace paddle {
namespace framework {
namespace ir {
enum class ISTEST_STATE { FALSE, TRUE, UNSET };
void SetOp(ProgramDesc* prog, const std::string& type, const std::string& name,
const std::vector<std::string>& inputs,
const std::vector<std::string>& outputs, bool use_mkldnn = false,
ISTEST_STATE is_test = ISTEST_STATE::UNSET) {
auto* op = prog->MutableBlock(0)->AppendOp();
op->SetType(type);
op->SetAttr("name", name);
op->SetInput("X", inputs);
op->SetOutput("Out", outputs);
op->SetAttr("use_mkldnn", use_mkldnn);
if (is_test == ISTEST_STATE::UNSET)
op->MutableAttrMap()->erase("is_test");
else if (is_test == ISTEST_STATE::FALSE)
op->SetAttr("is_test", false);
else
op->SetAttr("is_test", true);
}
// a->pool2d->b
// b->relu->c
// c,weights1)->conv2d->d
//
// d->pool2d->e
// e->hard_sigmoid->f
// (f,weights2)->conv2d->g
//
// g->pool2d->h
// h->tanh->i
// (i,weights3)->conv2d->j
ProgramDesc BuildProgramDesc() {
ProgramDesc prog;
for (auto& v :
std::vector<std::string>({"a", "b", "c", "d", "e", "f", "g", "h", "i",
"j", "weights1", "weights2", "weights3"})) {
auto* var = prog.MutableBlock(0)->Var(v);
var->SetType(proto::VarType::SELECTED_ROWS);
if (v == "weights1" || v == "weights2" || v == "weights3") {
var->SetPersistable(true);
}
}
SetOp(&prog, "pool2d", "pooling1", std::vector<std::string>({"a"}),
std::vector<std::string>({"b"}), true, ISTEST_STATE::TRUE);
SetOp(&prog, "relu", "activation1", std::vector<std::string>({"b"}),
std::vector<std::string>({"c"}), true, ISTEST_STATE::TRUE);
SetOp(&prog, "conv2d", "conv1", std::vector<std::string>({"c", "weights1"}),
std::vector<std::string>({"d"}), true, ISTEST_STATE::TRUE);
SetOp(&prog, "pool2d", "pooling2", std::vector<std::string>({"d"}),
std::vector<std::string>({"e"}), false, ISTEST_STATE::FALSE);
SetOp(&prog, "hard_sigmoid", "activation2", std::vector<std::string>({"e"}),
std::vector<std::string>({"f"}), false, ISTEST_STATE::FALSE);
SetOp(&prog, "conv2d", "conv2", std::vector<std::string>({"f", "weights2"}),
std::vector<std::string>({"g"}), false, ISTEST_STATE::FALSE);
SetOp(&prog, "pool2d", "pooling3", std::vector<std::string>({"g"}),
std::vector<std::string>({"h"}), false, ISTEST_STATE::UNSET);
SetOp(&prog, "tanh", "activation3", std::vector<std::string>({"h"}),
std::vector<std::string>({"i"}), true, ISTEST_STATE::UNSET);
SetOp(&prog, "conv2d", "conv3", std::vector<std::string>({"i", "weights3"}),
std::vector<std::string>({"j"}), false, ISTEST_STATE::UNSET);
return prog;
}
TEST(IsTestPass, basic) {
auto prog = BuildProgramDesc();
std::unique_ptr<ir::Graph> graph(new ir::Graph(prog));
auto pass = PassRegistry::Instance().Get("is_test_pass");
graph = pass->Apply(std::move(graph));
for (auto* node : graph->Nodes()) {
if (node->IsOp()) {
auto* op = node->Op();
auto op_name = boost::get<std::string>(op->GetAttr("name"));
if (op_name == "conv3") {
ASSERT_FALSE(op->HasAttr("is_test"));
} else {
ASSERT_TRUE(op->HasAttr("is_test"));
EXPECT_TRUE(boost::get<bool>(op->GetAttr("is_test")));
}
}
}
}
} // namespace ir
} // namespace framework
} // namespace paddle
USE_PASS(is_test_pass);
......@@ -111,9 +111,6 @@ class LoDTensor : public Tensor {
public:
LoDTensor() : Tensor() {}
/* Constructor with place should only be used in pybind */
explicit LoDTensor(const platform::Place& place) : Tensor(place) {}
explicit LoDTensor(const LoD& lod) : lod_(lod) {}
void set_lod(const LoD& lod) { lod_ = lod; }
......
......@@ -23,6 +23,7 @@
#include "paddle/fluid/framework/details/cow_ptr.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/memory/memcpy.h"
#include "glog/logging.h"
......@@ -31,46 +32,6 @@ namespace paddle {
namespace framework {
#if defined(PADDLE_WITH_CUDA)
namespace details {
struct CUDABuffer {
void *data_{nullptr};
size_t size_{0};
platform::CUDAPlace place_;
CUDABuffer() {}
CUDABuffer(platform::Place place, size_t size)
: size_(size), place_(boost::get<platform::CUDAPlace>(place)) {
data_ = memory::Alloc(place_, size);
}
~CUDABuffer() { ClearMemory(); }
CUDABuffer(const CUDABuffer &o) = delete;
CUDABuffer &operator=(const CUDABuffer &o) = delete;
void Resize(platform::Place place, size_t size) {
ClearMemory();
place_ = boost::get<platform::CUDAPlace>(place);
data_ = memory::Alloc(place_, size);
PADDLE_ENFORCE_NOT_NULL(data_);
size_ = size;
}
void Swap(CUDABuffer &o) {
std::swap(data_, o.data_);
std::swap(place_, o.place_);
std::swap(size_, o.size_);
}
private:
void ClearMemory() const {
if (data_ != nullptr) {
memory::Free(place_, data_);
}
}
};
} // namespace details
// Vector<T> implements the std::vector interface, and can get Data or
// MutableData from any place. The data will be synced implicitly inside.
template <typename T>
......@@ -103,8 +64,6 @@ class Vector {
o.ImmutableCPU();
cpu_ = o.cpu_;
flag_ = kDataInCPU;
details::CUDABuffer null;
gpu_.Swap(null);
return *this;
}
......@@ -199,7 +158,7 @@ class Vector {
PADDLE_ENFORCE(platform::is_gpu_place(place),
"CUDA Data must on CUDA place");
ImmutableCUDA(place);
return reinterpret_cast<T *>(gpu_.data_);
return reinterpret_cast<T *>(gpu_->ptr());
}
// get cuda ptr. mutable
......@@ -234,13 +193,11 @@ class Vector {
std::mutex &Mutex() const { return mtx_; }
std::unique_ptr<platform::CUDAPlace> CUDAPlace() const {
if (gpu_.data_ == nullptr) {
return nullptr;
} else {
return std::unique_ptr<platform::CUDAPlace>(
new platform::CUDAPlace(gpu_.place_));
}
boost::optional<platform::CUDAPlace> CUDAPlace() const {
return gpu_ == nullptr
? boost::none
: boost::optional<platform::CUDAPlace>(
boost::get<platform::CUDAPlace>(gpu_->place()));
}
private:
......@@ -254,13 +211,12 @@ class Vector {
void CopyToCPU() const {
// COPY GPU Data To CPU
auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
platform::DeviceContextPool::Instance().Get(
platform::Place(gpu_.place_)));
platform::DeviceContextPool::Instance().Get(gpu_->place()));
auto stream = dev_ctx->stream();
void *src = gpu_.data_;
void *src = gpu_->ptr();
void *dst = cpu_.data();
memory::Copy(platform::CPUPlace(), dst, gpu_.place_, src, gpu_.size_,
stream);
memory::Copy(platform::CPUPlace(), dst, CUDAPlace().get(), src,
gpu_->size(), stream);
dev_ctx->Wait();
}
......@@ -277,8 +233,7 @@ class Vector {
CopyCPUDataToCUDA(place);
UnsetFlag(kDirty);
SetFlag(kDataInCUDA);
} else if (IsInCUDA() &&
!(boost::get<platform::CUDAPlace>(place) == gpu_.place_)) {
} else if (IsInCUDA() && !(place == gpu_->place())) {
PADDLE_THROW("This situation should not happen");
// Still dirty
} else {
......@@ -290,7 +245,7 @@ class Vector {
// Even data is not dirty. However, data is not in CUDA. Copy data.
CopyCPUDataToCUDA(place);
SetFlag(kDataInCUDA);
} else if (!(boost::get<platform::CUDAPlace>(place) == gpu_.place_)) {
} else if (!(place == gpu_->place())) {
PADDLE_THROW("This situation should not happen.");
} else {
// Not Dirty && DataInCUDA && Device is same
......@@ -301,13 +256,13 @@ class Vector {
void CopyCPUDataToCUDA(const platform::Place &place) const {
void *src = cpu_.data();
gpu_.Resize(place, cpu_.size() * sizeof(T));
void *dst = gpu_.data_;
gpu_ = memory::Alloc(place, cpu_.size() * sizeof(T));
void *dst = gpu_->ptr();
auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
platform::DeviceContextPool::Instance().Get(place));
auto stream = dev_ctx->stream();
memory::Copy(gpu_.place_, dst, platform::CPUPlace(), src, gpu_.size_,
stream);
memory::Copy(CUDAPlace().get(), dst, platform::CPUPlace(), src,
gpu_->size(), stream);
}
void ImmutableCPU() const {
......@@ -329,7 +284,7 @@ class Vector {
bool IsInCPU() const { return flag_ & kDataInCPU; }
mutable std::vector<T> cpu_;
mutable details::CUDABuffer gpu_;
mutable memory::AllocationPtr gpu_;
mutable int flag_;
mutable std::mutex mtx_;
......@@ -428,8 +383,8 @@ class Vector {
auto &mtx = m_.Data().Mutex();
std::lock_guard<std::mutex> guard(mtx);
auto cuda_place = m_.Data().CUDAPlace();
if (cuda_place == nullptr ||
*cuda_place == boost::get<platform::CUDAPlace>(place)) {
if (cuda_place == boost::none ||
cuda_place == boost::get<platform::CUDAPlace>(place)) {
return m_.Data().CUDAData(place);
}
}
......@@ -444,8 +399,8 @@ class Vector {
auto &mtx = m_.Data().Mutex();
std::lock_guard<std::mutex> guard(mtx);
auto cuda_place = m_.Data().CUDAPlace();
if (cuda_place == nullptr ||
*cuda_place == boost::get<platform::CUDAPlace>(place)) {
if (cuda_place == boost::none ||
cuda_place == boost::get<platform::CUDAPlace>(place)) {
return m_.MutableData()->CUDAMutableData(place);
}
}
......
......@@ -70,6 +70,16 @@ void NaiveExecutor::Prepare(Scope *scope, const ProgramDesc &program_desc,
}
void NaiveExecutor::Run() {
#ifndef PADDLE_ON_INFERENCE
LOG_FIRST_N(WARNING, 15) << "The NaiveExecutor can not work properly if the "
"cmake flag ON_INFER is not set.";
LOG_FIRST_N(WARNING, 15) << "Unlike the training phase, all the scopes and "
"variables will be reused to save the allocation "
"overhead.";
LOG_FIRST_N(WARNING, 15) << "Please re-compile the inference library by "
"setting the cmake flag ON_INFER=ON if you are "
"running Paddle Inference";
#endif // PADDLE_ON_INFERENCE
for (auto &op : ops_) {
VLOG(3) << std::this_thread::get_id() << " run " << op->Type()
<< " on scope " << scope_;
......
......@@ -63,6 +63,8 @@ struct OpKernelType {
place_(dev_ctx.GetPlace()),
library_type_(library_type) {}
size_t hash_key() const { return Hash()(*this); }
bool operator==(const OpKernelType& o) const {
return platform::places_are_same_class(place_, o.place_) &&
data_type_ == o.data_type_ && data_layout_ == o.data_layout_ &&
......
......@@ -35,6 +35,11 @@ DEFINE_bool(check_nan_inf, false,
namespace paddle {
namespace framework {
// Combine two hash values to a single hash.
inline size_t CombineHash(size_t seed, size_t a) {
return (seed ^ a) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
}
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
......@@ -794,6 +799,17 @@ void OperatorWithKernel::TransferInplaceVarsBack(
Scope* OperatorWithKernel::TryTransferData(
const Scope& scope, const OpKernelType& expected_kernel_key,
std::vector<std::string>* transfered_inplace_vars) const {
// In the inference scenerio, the scopes will be reused across the batches, so
// the `new_scope` here will result in GPU memroy explosion over the running of
// operators.
// We use a thread_local cache to fix that issue, the key in the cache is the
// combination of the `scope` argument, from_kernel_type, target_kernel_type.
// Have a discussion with @Superjomn or the inference developers if some changes
// on this logic for this macro might not tested on the other scenerios.
#ifdef PADDLE_ON_INFERENCE
thread_local std::unordered_map<size_t, Scope*> infer_transfer_scope_cache;
#endif
Scope* new_scope = nullptr;
for (auto& var_name_item : Inputs()) {
for (auto& var_name : var_name_item.second) {
......@@ -824,11 +840,28 @@ Scope* OperatorWithKernel::TryTransferData(
VLOG(30) << "Transform Variable " << var_name << " from "
<< kernel_type_for_var << " to " << expected_kernel_key;
#ifdef PADDLE_ON_INFERENCE
size_t infer_cache_key =
CombineHash(OpKernelType::Hash()(kernel_type_for_var),
OpKernelType::Hash()(expected_kernel_key));
infer_cache_key =
CombineHash(infer_cache_key, std::hash<const Scope*>()(&scope));
auto it = infer_transfer_scope_cache.find(infer_cache_key);
if (it != infer_transfer_scope_cache.end()) {
new_scope = infer_transfer_scope_cache[infer_cache_key];
} else {
new_scope = &scope.NewScope();
infer_transfer_scope_cache[infer_cache_key] = new_scope;
}
#endif
if (new_scope == nullptr) {
new_scope = &scope.NewScope();
}
auto* trans_var = new_scope->Var(var_name);
Tensor out;
TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
SetTensorToVariable(*var, out, trans_var);
......
......@@ -100,6 +100,7 @@ class OperatorBase {
const std::string& Type() const { return type_; }
bool HasAttr(const std::string& name) const { return attrs_.count(name); }
template <typename T>
inline const T& Attr(const std::string& name) const {
PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
......
......@@ -171,8 +171,17 @@ ParallelExecutor::ParallelExecutor(
}
// If the loss_var_name is given, the number of graph should be only one.
if (loss_var_name.size()) {
PADDLE_ENFORCE_EQ(ir::GraphNum(*graph), 1,
"The number of graph should be only one");
size_t graph_num = ir::GraphNum(*graph);
if (graph_num > 1) {
LOG(WARNING)
<< "The number of graph should be only one, "
"but the current graph has "
<< ir::GraphNum(*graph)
<< " sub_graphs. If you want to see the nodes of the "
"sub_graphs, you should use 'FLAGS_print_sub_graph_dir' "
"to specify the output dir. NOTES: if you not do training, "
"please don't pass loss_var_name.";
}
}
if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
......
......@@ -42,7 +42,7 @@ DEFINE_double(
// a mean time, but a scope may be read by multiple threads concurrently, and
// the mutex will cause serious performance issue.
// So the mutex is disabled when `ON_INFER`.
#ifdef ON_INFER
#ifdef PADDLE_ON_INFERENCE
#define SCOPE_LOCK_GUARD
#else
#define SCOPE_LOCK_GUARD std::lock_guard<std::mutex> lock(mutex_);
......
......@@ -32,10 +32,9 @@ size_t Tensor::memory_size() const {
}
void* Tensor::mutable_data(platform::Place place, std::type_index type,
memory::Allocator::Attr attr,
size_t requested_size) {
if (holder_ != nullptr) {
holder_->set_type(type);
}
type_ = type;
PADDLE_ENFORCE_GE(numel(), 0,
"When calling this method, the Tensor's numel must be "
"equal or larger than zero. "
......@@ -48,35 +47,18 @@ void* Tensor::mutable_data(platform::Place place, std::type_index type,
/* some versions of boost::variant don't have operator!= */
if (holder_ == nullptr || !(holder_->place() == place) ||
holder_->size() < size + offset_) {
if (platform::is_cpu_place(place)) {
holder_.reset(new PlaceholderImpl<platform::CPUPlace>(
boost::get<platform::CPUPlace>(place), size, type));
} else if (platform::is_gpu_place(place) ||
platform::is_cuda_pinned_place(place)) {
#ifndef PADDLE_WITH_CUDA
PADDLE_THROW(
"CUDAPlace or CUDAPinnedPlace is not supported in CPU-only mode.");
}
#else
if (platform::is_gpu_place(place)) {
holder_.reset(new PlaceholderImpl<platform::CUDAPlace>(
boost::get<platform::CUDAPlace>(place), size, type));
} else if (platform::is_cuda_pinned_place(place)) {
holder_.reset(new PlaceholderImpl<platform::CUDAPinnedPlace>(
boost::get<platform::CUDAPinnedPlace>(place), size, type));
}
}
#endif
holder_ = memory::AllocShared(place, size, attr);
offset_ = 0;
}
return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(holder_->ptr()) +
offset_);
}
void* Tensor::mutable_data(platform::Place place, size_t requested_size) {
void* Tensor::mutable_data(platform::Place place, memory::Allocator::Attr attr,
size_t requested_size) {
PADDLE_ENFORCE(this->holder_ != nullptr,
"Cannot invoke mutable data if current hold nothing.");
return mutable_data(place, holder_->type(), requested_size);
return mutable_data(place, type_, attr, requested_size);
}
Tensor& Tensor::ShareDataWith(const Tensor& src) {
......@@ -101,6 +83,7 @@ Tensor Tensor::Slice(int begin_idx, int end_idx) const {
Tensor dst;
dst.holder_ = holder_;
dst.set_layout(layout_);
dst.type_ = type_;
DDim dst_dims = dims_;
dst_dims[0] = end_idx - begin_idx;
dst.Resize(dst_dims);
......
......@@ -67,12 +67,7 @@ class Tensor {
friend struct EigenVector;
public:
Tensor() : offset_(0) {}
/*! Constructor with place should only be used in pybind. */
explicit Tensor(const platform::Place& place) : offset_(0) {
holder_->set_place(place);
}
Tensor() : type_(typeid(float)), offset_(0) {}
/*! Return a pointer to mutable memory block. */
template <typename T>
......@@ -89,12 +84,17 @@ class Tensor {
* @note If not exist, then allocation.
*/
template <typename T>
T* mutable_data(platform::Place place, size_t requested_size = 0);
T* mutable_data(platform::Place place,
memory::Allocator::Attr attr = memory::Allocator::kDefault,
size_t requested_size = 0);
void* mutable_data(platform::Place place, std::type_index type,
memory::Allocator::Attr attr = memory::Allocator::kDefault,
size_t requested_size = 0);
void* mutable_data(platform::Place place, size_t requested_size = 0);
void* mutable_data(platform::Place place,
memory::Allocator::Attr attr = memory::Allocator::kDefault,
size_t requested_size = 0);
/**
* @brief Return a pointer to mutable memory block.
......@@ -106,7 +106,9 @@ class Tensor {
* @note If not exist, then allocation.
*/
template <typename T>
T* mutable_data(DDim dims, platform::Place place, size_t requested_size = 0);
T* mutable_data(DDim dims, platform::Place place,
memory::Allocator::Attr attr = memory::Allocator::kDefault,
size_t requested_size = 0);
/*! Return the dimensions of the memory block. */
const DDim& dims() const;
......@@ -139,7 +141,7 @@ class Tensor {
std::type_index type() const {
PADDLE_ENFORCE_NOT_NULL(
holder_, "Tensor not initialized yet when Tensor::type() is called.");
return holder_->type();
return type_;
}
// memory size returns the holding memory size in byte.
......@@ -153,56 +155,13 @@ class Tensor {
void clear() { holder_ = nullptr; }
private:
/**
* @note Placeholder hides type T, so it doesn't appear as a template
* parameter of Variable.
*/
struct Placeholder {
virtual ~Placeholder() = default;
virtual void* ptr() const = 0;
virtual size_t size() const = 0;
virtual std::type_index type() const = 0;
virtual platform::Place place() const = 0;
virtual void set_type(std::type_index type) = 0;
virtual void set_place(platform::Place place) = 0;
};
template <typename Place>
struct PlaceholderImpl : public Placeholder {
PlaceholderImpl(Place place, size_t size, std::type_index type)
: ptr_(static_cast<uint8_t*>(memory::Alloc(place, size)),
memory::PODDeleter<uint8_t, Place>(place)),
place_(place),
size_(size),
type_(type) {
PADDLE_ENFORCE_NOT_NULL(ptr_, "Insufficient %s memory to allocation.",
(is_cpu_place(place_) ? "CPU" : "GPU"));
}
virtual size_t size() const { return size_; }
virtual platform::Place place() const { return place_; }
virtual void* ptr() const { return static_cast<void*>(ptr_.get()); }
virtual std::type_index type() const { return type_; }
virtual void set_type(std::type_index type) { type_ = type; }
virtual void set_place(platform::Place place) { place_ = place; }
/*! the pointer of memory block. */
std::unique_ptr<uint8_t, memory::PODDeleter<uint8_t, Place>> ptr_;
/*! the place of memory block. */
platform::Place place_;
/*! the size of memory block. */
size_t size_;
/* the current type of memory */
std::type_index type_;
};
const std::shared_ptr<memory::Allocation>& Holder() const { return holder_; }
size_t offset() const { return offset_; }
private:
/*! holds the memory block if allocated. */
std::shared_ptr<Placeholder> holder_;
std::shared_ptr<memory::Allocation> holder_;
std::type_index type_;
/**
* @brief points to elements dimensions.
*
......
......@@ -23,10 +23,10 @@ namespace framework {
template <typename T>
inline const T* Tensor::data() const {
check_memory_size();
bool valid = std::is_same<T, void>::value ||
holder_->type() == std::type_index(typeid(T));
bool valid =
std::is_same<T, void>::value || type_ == std::type_index(typeid(T));
PADDLE_ENFORCE(valid, "Tensor holds the wrong type, it holds %s",
this->holder_->type().name());
type_.name());
return reinterpret_cast<const T*>(
reinterpret_cast<uintptr_t>(holder_->ptr()) + offset_);
......@@ -37,26 +37,30 @@ inline bool Tensor::IsInitialized() const { return holder_ != nullptr; }
template <typename T>
inline T* Tensor::data() {
check_memory_size();
bool valid = std::is_same<T, void>::value ||
holder_->type() == std::type_index(typeid(T));
bool valid =
std::is_same<T, void>::value || type_ == std::type_index(typeid(T));
PADDLE_ENFORCE(valid, "Tensor holds the wrong type, it holds %s",
this->holder_->type().name());
type_.name());
return reinterpret_cast<T*>(reinterpret_cast<uintptr_t>(holder_->ptr()) +
offset_);
}
template <typename T>
inline T* Tensor::mutable_data(DDim dims, platform::Place place,
memory::Allocator::Attr attr,
size_t requested_size) {
static_assert(std::is_pod<T>::value, "T must be POD");
Resize(dims);
return mutable_data<T>(place, requested_size);
return mutable_data<T>(place, attr, requested_size);
}
template <typename T>
inline T* Tensor::mutable_data(platform::Place place, size_t requested_size) {
inline T* Tensor::mutable_data(platform::Place place,
memory::Allocator::Attr attr,
size_t requested_size) {
static_assert(std::is_pod<T>::value, "T must be POD");
return reinterpret_cast<T*>(mutable_data(place, typeid(T), requested_size));
return reinterpret_cast<T*>(
mutable_data(place, typeid(T), attr, requested_size));
}
inline Tensor ReshapeToMatrix(const Tensor& src, int num_col_dims) {
......
......@@ -379,7 +379,9 @@ TEST(Tensor, FromAndToStream) {
TensorToStream(oss, gpu_tensor, gpu_ctx);
std::istringstream iss(oss.str());
TensorFromStream(iss, &dst_tensor, gpu_ctx);
TensorFromStream(
iss, &dst_tensor,
*platform::DeviceContextPool::Instance().Get(platform::CPUPlace()));
int* dst_ptr = dst_tensor.mutable_data<int>(platform::CPUPlace());
for (int i = 0; i < 6; ++i) {
......
......@@ -13,7 +13,7 @@ set(FLUID_CORE_MODULES proto_desc memory lod_tensor executor)
# TODO(panyx0718): Should this be called paddle_fluid_inference_api_internal?
cc_library(paddle_fluid_api
SRCS io.cc
DEPS ${FLUID_CORE_MODULES} ${GLOB_OP_LIB})
DEPS ${FLUID_CORE_MODULES} ${GLOB_OP_LIB} ${GLOB_OPERATOR_DEPS})
get_property(fluid_modules GLOBAL PROPERTY FLUID_MODULES)
get_property(cuda_modules GLOBAL PROPERTY CUDA_MODULES)
......
......@@ -7,16 +7,17 @@ set(analysis_deps # analysis_deps can be extended accross the project
add_subdirectory(ir_passes)
add_subdirectory(passes)
cc_library(ir_pass_manager SRCS ir_pass_manager.cc DEPS graph pass ${INFER_IR_PASSES})
cc_library(analysis_helper SRCS helper.cc DEPS framework_proto proto_desc graph paddle_fluid_api)
cc_library(ir_pass_manager SRCS ir_pass_manager.cc DEPS graph pass ${INFER_IR_PASSES} analysis_helper)
cc_library(argument SRCS argument.cc DEPS scope proto_desc)
cc_library(analysis_pass SRCS analysis_pass.cc DEPS proto_desc)
cc_library(analysis SRCS
analyzer.cc
helper.cc
analysis_pass
DEPS ${analysis_deps}
DEPS ${analysis_deps} analysis_helper
)
cc_test(test_dot SRCS dot_tester.cc DEPS analysis)
......
......@@ -30,6 +30,7 @@ TEST(Analyzer, analysis_without_tensorrt) {
Argument argument;
argument.SetModelDir(FLAGS_inference_model_dir);
argument.SetIrAnalysisPasses({"infer_clean_graph_pass"});
argument.SetUseGPU(false);
Analyzer analyser;
analyser.Run(&argument);
......@@ -41,6 +42,7 @@ TEST(Analyzer, analysis_with_tensorrt) {
argument.SetTensorRtWorkspaceSize(1 << 20);
argument.SetModelDir(FLAGS_inference_model_dir);
argument.SetIrAnalysisPasses({"infer_clean_graph_pass"});
argument.SetUseGPU(false);
Analyzer analyser;
analyser.Run(&argument);
......
......@@ -116,6 +116,7 @@ struct Argument {
std::vector<std::string>);
DECL_ARGUMENT_FIELD(use_gpu, UseGPU, bool);
DECL_ARGUMENT_FIELD(gpu_device_id, GPUDeviceId, int);
DECL_ARGUMENT_FIELD(use_tensorrt, UseTensorRT, bool);
DECL_ARGUMENT_FIELD(tensorrt_node_teller, TensorRtNodeTeller,
std::function<bool(const framework::ir::Node*)>);
......
......@@ -4,4 +4,6 @@ set(analysis_deps ${analysis_deps}
subgraph_detector tensorrt_subgraph_pass
CACHE INTERNAL "")
set(pass_file ${PADDLE_BINARY_DIR}/paddle/fluid/inference/api/paddle_inference_pass.h)
file(APPEND ${pass_file} "USE_PASS(tensorrt_subgraph_pass);\n")
set(INFER_IR_PASSES ${INFER_IR_PASSES} tensorrt_subgraph_pass CACHE INTERNAL "")
......@@ -114,7 +114,7 @@ void TensorRtSubgraphPass::CreateTensorRTOp(framework::ir::Node *node,
// it is either an OP's input or an OP's output.
auto &subgraph_nodes = *Agent(node).subgraph();
for (size_t index = 0; index < block_desc.OpSize(); index++) {
for (size_t index = 0; index < block_desc.OpSize(); ++index) {
framework::proto::OpDesc *op = block_desc.Op(index)->Proto();
auto correspond_node = subgraph_nodes[index];
PADDLE_ENFORCE_EQ(correspond_node->Name(), op->type());
......
......@@ -45,7 +45,8 @@ void IrAnalysisComposePass::InitTensorRTAttrs(Argument *argument) {
std::unordered_set<std::string> teller_set(
{"mul", "conv2d", "pool2d", "relu", "softmax", "sigmoid",
"depthwise_conv2d", "batch_norm", "concat", "tanh", "pad",
"elementwise_add", "dropout", "split"});
"elementwise_add", "elementwise_mul", "dropout", "split", "prelu",
"conv2d_transpose", "leaky_relu"});
if (!node->IsOp()) return false;
if (teller_set.count(node->Op()->Type())) {
......
......@@ -30,15 +30,28 @@ void IrGraphBuildPass::RunImpl(Argument *argument) {
if (!argument->scope_valid()) {
argument->SetScope(new framework::Scope);
}
PADDLE_ENFORCE(argument->use_gpu_valid());
// The load program should run on the same device with the inference program,
// so that the parameters will on the same device, or they will keep copying
// between difference devices.
platform::Place place;
if (argument->use_gpu()) {
PADDLE_ENFORCE(argument->gpu_device_id_valid());
place = platform::CUDAPlace(argument->gpu_device_id());
} else {
place = platform::CPUPlace();
}
if (argument->model_dir_valid()) {
auto program = LoadModel(argument->model_dir(), argument->scope_ptr());
auto program =
LoadModel(argument->model_dir(), argument->scope_ptr(), place);
argument->SetMainProgram(program.release());
} else if (argument->model_program_path_valid() &&
argument->model_params_path_valid()) {
auto program =
LoadModel(argument->model_program_path(), argument->model_params_path(),
argument->scope_ptr());
argument->scope_ptr(), place);
argument->SetMainProgram(program.release());
} else {
PADDLE_THROW(
......@@ -52,16 +65,15 @@ void IrGraphBuildPass::RunImpl(Argument *argument) {
}
std::unique_ptr<framework::ProgramDesc> IrGraphBuildPass::LoadModel(
const std::string &path, framework::Scope *scope) {
platform::CPUPlace place;
const std::string &path, framework::Scope *scope,
const platform::Place &place) {
framework::Executor exe(place);
return Load(&exe, scope, path);
}
std::unique_ptr<framework::ProgramDesc> IrGraphBuildPass::LoadModel(
const std::string &program_path, const std::string &params_path,
framework::Scope *scope) {
platform::CPUPlace place;
framework::Scope *scope, const platform::Place &place) {
framework::Executor exe(place);
return Load(&exe, scope, program_path, params_path);
}
......
......@@ -17,6 +17,7 @@
#include <string>
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/analysis/analysis_pass.h"
#include "paddle/fluid/platform/place.h"
namespace paddle {
namespace inference {
......@@ -32,11 +33,12 @@ class IrGraphBuildPass : public AnalysisPass {
std::string repr() const override;
private:
std::unique_ptr<framework::ProgramDesc> LoadModel(const std::string &path,
framework::Scope *scope);
std::unique_ptr<framework::ProgramDesc> LoadModel(
const std::string &path, framework::Scope *scope,
const platform::Place &place);
std::unique_ptr<framework::ProgramDesc> LoadModel(
const std::string &program_path, const std::string &params_path,
framework::Scope *scope);
framework::Scope *scope, const platform::Place &place);
std::string model_binary_str_;
};
......
......@@ -27,11 +27,10 @@ endif()
cc_library(reset_tensor_array SRCS details/reset_tensor_array.cc DEPS lod_tensor scope)
cc_library(analysis_config SRCS analysis_config.cc DEPS lod_tensor paddle_pass_builder)
cc_library(paddle_pass_builder SRCS paddle_pass_builder.cc)
cc_library(paddle_inference_api SRCS api.cc api_impl.cc helper.cc DEPS lod_tensor scope paddle_pass_builder reset_tensor_array analysis_config analysis_config paddle_pass_builder)
cc_library(analysis_predictor SRCS analysis_predictor.cc DEPS paddle_inference_api analysis naive_executor zero_copy_tensor reset_tensor_array analysis_config paddle_pass_builder)
cc_library(zero_copy_tensor SRCS details/zero_copy_tensor.cc DEPS paddle_inference_api)
cc_library(zero_copy_tensor_dummy SRCS details/zero_copy_tensor_dummy.cc DEPS paddle_inference_api)
cc_library(analysis_predictor SRCS analysis_predictor.cc DEPS paddle_inference_api analysis naive_executor zero_copy_tensor reset_tensor_array analysis_config paddle_pass_builder ir_pass_manager)
cc_library(zero_copy_tensor SRCS details/zero_copy_tensor.cc DEPS scope lod_tensor enforce)
cc_library(zero_copy_tensor_dummy SRCS details/zero_copy_tensor_dummy.cc)
cc_library(paddle_inference_api SRCS api.cc api_impl.cc helper.cc DEPS lod_tensor scope paddle_pass_builder reset_tensor_array analysis_config analysis_config paddle_pass_builder DEPS zero_copy_tensor)
cc_test(test_paddle_inference_api
SRCS api_tester.cc
......
......@@ -285,6 +285,7 @@ void AnalysisPredictor::OptimizeInferenceProgram() {
status_program_optimized_ = true;
argument_.SetUseGPU(config_.use_gpu);
argument_.SetGPUDeviceId(config_.device);
// Analyze inference_program
if (!config_.model_dir.empty()) {
argument_.SetModelDir(config_.model_dir);
......@@ -491,8 +492,7 @@ bool AnalysisPredictor::LoadParameters() {
}
// Use NaiveExecutor to Load parameters.
platform::CPUPlace place;
framework::NaiveExecutor e(place);
framework::NaiveExecutor e(place_);
e.Prepare(scope_.get(), *load_program, 0, false);
e.Run();
VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";
......@@ -549,4 +549,7 @@ USE_TRT_CONVERTER(concat);
USE_TRT_CONVERTER(dropout);
USE_TRT_CONVERTER(pad);
USE_TRT_CONVERTER(split);
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
USE_TRT_CONVERTER(leaky_relu);
#endif
......@@ -86,6 +86,7 @@ class CpuPassStrategy : public PassStrategy {
"fc_fuse_pass", //
"conv_bn_fuse_pass", //
"conv_eltwiseadd_bn_fuse_pass", //
"is_test_pass", //
});
}
......@@ -115,8 +116,12 @@ class CpuPassStrategy : public PassStrategy {
class GpuPassStrategy : public PassStrategy {
public:
GpuPassStrategy() : PassStrategy({}) {
// TODO(NHZlX) Problem with Data synchronization between GPU and CPU
// When running in GPU mode, the parameters are all on GPU. But the
// opearations of "conv_bn_fuse_pass" are on CPU.
passes_.assign({
"infer_clean_graph_pass", "conv_bn_fuse_pass",
"infer_clean_graph_pass",
// "infer_clean_graph_pass", "conv_bn_fuse_pass",
});
}
......
nv_library(tensorrt_engine SRCS engine.cc DEPS framework_proto device_context)
nv_library(tensorrt_engine SRCS engine.cc DEPS ${GLOB_OPERATOR_DEPS} framework_proto device_context)
nv_test(test_tensorrt SRCS test_tensorrt.cc DEPS dynload_cuda device_context dynamic_loader)
nv_test(test_tensorrt_engine SRCS test_engine.cc DEPS dynload_cuda tensorrt_engine)
add_subdirectory(plugin)
......
# Add TRT tests
nv_library(tensorrt_converter
SRCS mul_op.cc conv2d_op.cc fc_op.cc pool2d_op.cc elementwise_op.cc
batch_norm_op.cc activation_op.cc softmax_op.cc concat_op.cc dropout_op.cc
pad_op.cc split_op.cc
batch_norm_op.cc activation_op.cc softmax_op.cc concat_op.cc dropout_op.cc
pad_op.cc split_op.cc prelu_op.cc leaky_relu_op.cc
DEPS tensorrt_engine tensorrt_plugin operator scope framework_proto op_registry)
nv_test(test_op_converter SRCS test_op_converter.cc DEPS
${FLUID_CORE_MODULES} tensorrt_engine tensorrt_converter)
${FLUID_CORE_MODULES} ${GLOB_OPERATOR_DEPS} tensorrt_engine tensorrt_converter)
nv_test(test_io_converter SRCS test_io_converter.cc io_converter.cc DEPS dynload_cuda dynamic_loader lod_tensor)
nv_test(test_trt_mul_op SRCS test_mul_op.cc mul_op.cc
DEPS ${FLUID_CORE_MODULES} tensorrt_engine mul_op SERIAL)
DEPS ${FLUID_CORE_MODULES} ${GLOB_OPERATOR_DEPS} tensorrt_engine mul_op SERIAL)
nv_test(test_trt_fc_op SRCS test_fc_op.cc fc_op.cc
DEPS ${FLUID_CORE_MODULES} tensorrt_engine mul_op SERIAL)
DEPS ${FLUID_CORE_MODULES} ${GLOB_OPERATOR_DEPS} tensorrt_engine mul_op SERIAL)
nv_test(test_trt_activation_op SRCS test_activation_op.cc activation_op.cc
DEPS ${FLUID_CORE_MODULES} tensorrt_engine activation_op SERIAL)
DEPS ${FLUID_CORE_MODULES} ${GLOB_OPERATOR_DEPS} tensorrt_engine activation_op SERIAL)
nv_test(test_trt_conv_op SRCS test_conv2d_op.cc conv2d_op.cc
DEPS ${FLUID_CORE_MODULES} tensorrt_engine conv_op SERIAL)
DEPS ${FLUID_CORE_MODULES} ${GLOB_OPERATOR_DEPS} tensorrt_engine conv_op conv_transpose_op SERIAL)
nv_test(test_trt_pool2d_op SRCS test_pool2d_op.cc pool2d_op.cc
DEPS ${FLUID_CORE_MODULES} tensorrt_engine pool_op SERIAL)
DEPS ${FLUID_CORE_MODULES} ${GLOB_OPERATOR_DEPS} tensorrt_engine pool_op SERIAL)
nv_test(test_trt_elementwise_op SRCS test_elementwise_op.cc elementwise_op.cc
DEPS ${FLUID_CORE_MODULES} tensorrt_engine elementwise_add_op SERIAL)
DEPS ${FLUID_CORE_MODULES} ${GLOB_OPERATOR_DEPS} tensorrt_engine tensorrt_plugin
elementwise_add_op elementwise_mul_op SERIAL)
nv_test(test_trt_softmax_op SRCS test_softmax_op.cc softmax_op.cc
DEPS ${FLUID_CORE_MODULES} tensorrt_engine softmax_op SERIAL)
DEPS ${FLUID_CORE_MODULES} ${GLOB_OPERATOR_DEPS} tensorrt_engine softmax_op SERIAL)
nv_test(test_trt_batch_norm_op SRCS test_batch_norm_op.cc batch_norm_op.cc
DEPS ${FLUID_CORE_MODULES} tensorrt_engine batch_norm_op SERIAL)
DEPS ${FLUID_CORE_MODULES} ${GLOB_OPERATOR_DEPS} tensorrt_engine batch_norm_op SERIAL)
nv_test(test_trt_concat_op SRCS test_concat_op.cc concat_op.cc
DEPS ${FLUID_CORE_MODULES} tensorrt_engine concat_op SERIAL)
DEPS ${FLUID_CORE_MODULES} ${GLOB_OPERATOR_DEPS} tensorrt_engine concat_op SERIAL)
nv_test(test_trt_dropout_op SRCS test_dropout_op.cc dropout_op.cc
DEPS ${FLUID_CORE_MODULES} tensorrt_engine dropout_op SERIAL)
DEPS ${FLUID_CORE_MODULES} ${GLOB_OPERATOR_DEPS} tensorrt_engine dropout_op SERIAL)
nv_test(test_trt_pad_op SRCS test_pad_op.cc pad_op.cc
DEPS ${FLUID_CORE_MODULES} tensorrt_engine pad_op SERIAL)
DEPS ${FLUID_CORE_MODULES} ${GLOB_OPERATOR_DEPS} tensorrt_engine pad_op SERIAL)
nv_test(test_trt_split_op SRCS test_split_op.cc split_op.cc
DEPS ${FLUID_CORE_MODULES} tensorrt_engine tensorrt_plugin
split_op concat_op SERIAL)
DEPS ${FLUID_CORE_MODULES} ${GLOB_OPERATOR_DEPS} tensorrt_engine tensorrt_plugin
split_op concat_op SERIAL)
nv_test(test_trt_prelu_op SRCS test_prelu_op.cc prelu_op.cc
DEPS ${FLUID_CORE_MODULES} ${GLOB_OPERATOR_DEPS} tensorrt_engine tensorrt_plugin
prelu_op SERIAL)
nv_test(test_trt_leaky_relu_op SRCS test_leaky_relu_op.cc leaky_relu_op.cc
DEPS ${FLUID_CORE_MODULES} ${GLOB_OPERATOR_DEPS} tensorrt_engine activation_op SERIAL)
......@@ -18,33 +18,35 @@ namespace paddle {
namespace inference {
namespace tensorrt {
bool to_skip_merging_optimize(TensorRTEngine* engine_,
bool to_skip_merging_optimize(TensorRTEngine* engine,
const std::vector<int>& filters,
const std::vector<int>& strides,
const std::vector<int>& paddings,
std::string input_name) {
if (engine_->itensor_quote_num[input_name] > 0) {
if (engine->itensor_quote_num[input_name] > 0) {
return true;
}
if (filters[0] == 1 && filters[1] == 1 && strides[0] == 1 &&
strides[1] == 1 && paddings[0] == 0 && paddings[1] == 0)
engine_->itensor_quote_num[input_name] += 1;
engine->itensor_quote_num[input_name] += 1;
return false;
}
class Conv2dOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope, bool test_mode) override {
VLOG(3) << "convert a fluid conv2d op to tensorrt conv layer without bias";
template <typename RegistFunc, typename SetDilationFunc>
void ConvertConv2d(TensorRTEngine* engine, const framework::proto::OpDesc& op,
const framework::Scope& scope, bool test_mode,
RegistFunc fadd_layer, SetDilationFunc fset_dilation,
const std::string& name) {
VLOG(3) << "convert a fluid " << name << " op to tensorrt layer without bias";
framework::OpDesc op_desc(op, nullptr);
PADDLE_ENFORCE_EQ(op_desc.Input("Input").size(), 1);
PADDLE_ENFORCE_EQ(op_desc.Input("Filter").size(), 1); // Y is a weight
PADDLE_ENFORCE_EQ(op_desc.Output("Output").size(), 1);
auto* X = engine_->GetITensor(op_desc.Input("Input").front());
PADDLE_ENFORCE(engine != nullptr);
auto* X = engine->GetITensor(op_desc.Input("Input").front());
// Declare weights
auto* Y_v = scope.FindVar(op_desc.Input("Filter").front());
......@@ -57,14 +59,13 @@ class Conv2dOpConverter : public OpConverter {
weight_tensor->Resize(Y_t->dims());
TensorCopySync((*Y_t), cpu_place, weight_tensor.get());
auto* weight_data =
weight_tensor->mutable_data<float>(platform::CPUPlace());
auto* weight_data = weight_tensor->mutable_data<float>(platform::CPUPlace());
PADDLE_ENFORCE_EQ(weight_tensor->dims().size(), 4UL);
const int n_output = weight_tensor->dims()[0];
const int n_input = weight_tensor->dims()[1];
const int filter_h = weight_tensor->dims()[2];
const int filter_w = weight_tensor->dims()[3];
const int groups = boost::get<int>(op_desc.GetAttr("groups"));
const std::vector<int> dilations =
boost::get<std::vector<int>>(op_desc.GetAttr("dilations"));
......@@ -80,30 +81,76 @@ class Conv2dOpConverter : public OpConverter {
TensorRTEngine::Weight weight{nvinfer1::DataType::kFLOAT,
static_cast<void*>(weight_data),
weight_tensor->memory_size() / sizeof(float)};
static_cast<size_t>(weight_tensor->numel())};
TensorRTEngine::Weight bias{nvinfer1::DataType::kFLOAT, nullptr, 0};
auto* layer = TRT_ENGINE_ADD_LAYER(
engine_, Convolution, *const_cast<nvinfer1::ITensor*>(X), n_output,
nv_ksize, weight.get(), bias.get());
auto* layer = fadd_layer(const_cast<nvinfer1::ITensor*>(X), n_output, n_input,
nv_ksize, weight, bias);
PADDLE_ENFORCE(layer != nullptr);
layer->setStride(nv_strides);
layer->setPadding(nv_paddings);
layer->setDilation(nv_dilations);
layer->setNbGroups(groups);
// set dilations
fset_dilation(layer, nv_dilations);
auto output_name = op_desc.Output("Output").front();
layer->setName(("conv2d (Output: " + output_name + ")").c_str());
engine_->weight_map[op_desc.Input("Filter").front()] =
layer->setName((name + " (Output: " + output_name + ")").c_str());
engine->weight_map[op_desc.Input("Filter").front()] =
std::move(weight_tensor);
layer->getOutput(0)->setName(output_name.c_str());
engine_->SetITensor(output_name, layer->getOutput(0));
engine->SetITensor(output_name, layer->getOutput(0));
if (test_mode ||
to_skip_merging_optimize(engine_, {filter_h, filter_w}, strides,
paddings, op_desc.Input("Input").front())) {
engine_->DeclareOutput(output_name);
to_skip_merging_optimize(engine, {filter_h, filter_w}, strides, paddings,
op_desc.Input("Input").front())) {
engine->DeclareOutput(output_name);
}
}
class Conv2dOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope, bool test_mode) override {
ConvertConv2d(
engine_, op, scope, test_mode,
[&](nvinfer1::ITensor* inputs, int n_output, /* Conv output maps */
int n_input, /* Conv input maps */
nvinfer1::DimsHW& ksize, TensorRTEngine::Weight& weight,
TensorRTEngine::Weight& bias) -> nvinfer1::IConvolutionLayer* {
auto* layer =
TRT_ENGINE_ADD_LAYER(engine_, Convolution, *inputs, n_output,
ksize, weight.get(), bias.get());
return layer;
},
[](nvinfer1::IConvolutionLayer* layer, nvinfer1::DimsHW& dilations) {
layer->setDilation(dilations);
},
"conv2d");
}
};
class Deconv2dOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope, bool test_mode) override {
ConvertConv2d(
engine_, op, scope, test_mode,
[&](nvinfer1::ITensor* inputs, int n_output, /* Deconv input maps */
int n_input, /* Deconv output maps */
nvinfer1::DimsHW& ksize, TensorRTEngine::Weight& weight,
TensorRTEngine::Weight& bias) -> nvinfer1::IDeconvolutionLayer* {
auto* layer =
TRT_ENGINE_ADD_LAYER(engine_, Deconvolution, *inputs, n_input,
ksize, weight.get(), bias.get());
return layer;
},
[](nvinfer1::IDeconvolutionLayer* layer, nvinfer1::DimsHW& dilations) {
PADDLE_ENFORCE(
dilations.d[0] == 1 && dilations.d[1] == 1,
"Dilations must be (1, 1) for tensorRT, but given (%d, %d)",
dilations.d[0], dilations.d[1]);
},
"conv2d_transpose");
}
};
......@@ -112,3 +159,4 @@ class Conv2dOpConverter : public OpConverter {
} // namespace paddle
REGISTER_TRT_OP_CONVERTER(conv2d, Conv2dOpConverter);
REGISTER_TRT_OP_CONVERTER(conv2d_transpose, Deconv2dOpConverter);
......@@ -4,7 +4,7 @@ Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
......@@ -13,11 +13,25 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/plugin/elementwise_op_plugin.h"
namespace paddle {
namespace inference {
namespace tensorrt {
static bool CheckDims(const nvinfer1::Dims& dims_x,
const nvinfer1::Dims& dims_y) {
if (dims_x.nbDims != dims_y.nbDims) {
return false;
}
for (int i = 0; i < dims_x.nbDims; i++) {
if (dims_x.d[i] != dims_y.d[i]) {
return false;
}
}
return true;
}
class ElementwiseWeightOpConverter : public OpConverter {
public:
ElementwiseWeightOpConverter() {}
......@@ -26,7 +40,7 @@ class ElementwiseWeightOpConverter : public OpConverter {
// Here the two nullptr looks strange, that's because the
// framework::OpDesc's constructor is strange.
framework::OpDesc op_desc(op, nullptr);
VLOG(3) << "convert a fluid elementwise op to tensorrt IScaleLayer";
VLOG(3) << "Convert a fluid elementwise op to TensorRT IScaleLayer";
PADDLE_ENFORCE_EQ(op_desc.Input("X").size(), 1);
PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1); // Y is a weight
......@@ -34,7 +48,8 @@ class ElementwiseWeightOpConverter : public OpConverter {
auto* X = engine_->GetITensor(op_desc.Input("X").front());
nvinfer1::Dims dims_x = X->getDimensions();
PADDLE_ENFORCE(dims_x.nbDims >= 3);
PADDLE_ENFORCE(dims_x.nbDims >= 3, "x dims experts 3, but %d is given.",
dims_x.nbDims);
auto* Y_v = scope.FindVar(op_desc.Input("Y").front());
PADDLE_ENFORCE_NOT_NULL(Y_v);
......@@ -105,10 +120,12 @@ class ElementwiseTensorOpConverter : public OpConverter {
ElementwiseTensorOpConverter() {}
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope, bool test_mode) override {
auto op_pair = ops.find(op_type_);
PADDLE_ENFORCE(op_pair != ops.end(), "Wrong elementwise op type!");
// Here the two nullptr looks strange, that's because the
// framework::OpDesc's constructor is strange.
framework::OpDesc op_desc(op, nullptr);
VLOG(3) << "convert a fluid elementwise op to tensorrt IScaleLayer";
PADDLE_ENFORCE_EQ(op_desc.Input("X").size(), 1);
PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1); // Y is a weight
......@@ -119,29 +136,35 @@ class ElementwiseTensorOpConverter : public OpConverter {
nvinfer1::Dims dims_x = X->getDimensions();
nvinfer1::Dims dims_y = Y->getDimensions();
int axis = boost::get<int>(op_desc.GetAttr("axis"));
auto output_name = op_desc.Output("Out")[0];
if (CheckDims(dims_x, dims_y)) {
// The two input tensor should have the same dims
PADDLE_ENFORCE(dims_x.nbDims >= 3);
if (dims_x.nbDims == dims_y.nbDims) {
for (int i = 0; i < dims_x.nbDims; i++) {
if (dims_x.d[i] != dims_y.d[i])
PADDLE_THROW("TensorRT unsupported tensor shape for Elementwise op!");
}
} else {
PADDLE_THROW("TensorRT unsupported tensor shape for Elementwise op!");
}
VLOG(3) << "Convert a fluid elementwise op to TensorRT IElementWiseLayer";
auto op_pair = ops.find(op_type_);
if (op_pair == ops.end()) {
PADDLE_THROW("Wrong elementwise op type!");
}
nvinfer1::IElementWiseLayer* layer = TRT_ENGINE_ADD_LAYER(
engine_, ElementWise, *const_cast<nvinfer1::ITensor*>(X),
*const_cast<nvinfer1::ITensor*>(Y), op_pair->second);
auto output_name = op_desc.Output("Out")[0];
layer->setName(("elementwise (Output: " + output_name + ")").c_str());
layer->getOutput(0)->setName(output_name.c_str());
engine_->SetITensor(output_name, layer->getOutput(0));
} else {
VLOG(3) << "Convert a fluid elementwise op to TensorRT "
"ElementWisePluginLayer";
plugin::ElementWisePlugin* plugin =
new plugin::ElementWisePlugin(op_pair->second, dims_x, dims_y, axis);
plugin->AddInput(X);
plugin->AddInput(Y);
nvinfer1::IPluginLayer* layer = engine_->AddPlugin(
const_cast<nvinfer1::ITensor* const*>(plugin->GetInputs().data()), 2,
reinterpret_cast<plugin::PluginTensorRT*>(plugin));
layer->setName(("elementwise (Output: " + output_name + ")").c_str());
layer->getOutput(0)->setName(output_name.c_str());
engine_->SetITensor(output_name, layer->getOutput(0));
}
if (test_mode) { // the test framework can not determine which is the
// output, so place the declaration inside.
engine_->DeclareOutput(output_name);
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace paddle {
namespace inference {
namespace tensorrt {
// LeakyRelu converter from fluid to tensorRT
class LeakyReluOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope, bool test_mode) override {
VLOG(4) << "convert fluid leaky_relu op to tensorrt layer";
framework::OpDesc op_desc(op, nullptr);
// Declare inputs
int input_num = op_desc.Input("X").size();
PADDLE_ENFORCE(input_num == 1);
auto* input = engine_->GetITensor(op_desc.Input("X")[0]);
// Get output
size_t output_num = op_desc.Output("Out").size();
PADDLE_ENFORCE(output_num == 1);
// Get attrs
float alpha = boost::get<float>(op_desc.GetAttr("alpha"));
platform::CPUPlace place;
std::unique_ptr<framework::LoDTensor> alpha_tensor(
new framework::LoDTensor());
alpha_tensor->Resize(framework::make_ddim({2}));
float* alpha_data = alpha_tensor->mutable_data<float>(place);
alpha_data[0] = alpha;
alpha_data[1] = 1.f - alpha;
// the leaky relu formula y = (x > 0) ? x : alpha * x is equal to
// y = alpha * x + (x > 0) ? (1 - alpha) * x : 0
TensorRTEngine::Weight scale{nvinfer1::DataType::kFLOAT, &alpha_data[0], 1};
TensorRTEngine::Weight shift{nvinfer1::DataType::kFLOAT, nullptr, 0};
TensorRTEngine::Weight power{nvinfer1::DataType::kFLOAT, nullptr, 0};
// y_scale = alpha * x
auto* scale_layer = TRT_ENGINE_ADD_LAYER(
engine_, Scale, *input, nvinfer1::ScaleMode::kUNIFORM, shift.get(),
scale.get(), power.get());
PADDLE_ENFORCE(nullptr != scale_layer);
// y_relu = (x > 0) : x : 0
auto* relu_layer = TRT_ENGINE_ADD_LAYER(engine_, Activation, *input,
nvinfer1::ActivationType::kRELU);
PADDLE_ENFORCE(nullptr != relu_layer);
//
TensorRTEngine::Weight sub_scale{nvinfer1::DataType::kFLOAT, &alpha_data[1],
1};
auto* scale_relu_layer =
TRT_ENGINE_ADD_LAYER(engine_, Scale, *(relu_layer->getOutput(0)),
nvinfer1::ScaleMode::kUNIFORM, shift.get(),
sub_scale.get(), power.get());
PADDLE_ENFORCE(nullptr != scale_relu_layer);
auto* output_layer =
TRT_ENGINE_ADD_LAYER(engine_, ElementWise, *(scale_layer->getOutput(0)),
*(scale_relu_layer->getOutput(0)),
nvinfer1::ElementWiseOperation::kSUM);
PADDLE_ENFORCE(nullptr != output_layer);
// keep alpha tensor to avoid release it's memory
std::string alpha_name = op_desc.Output("Out")[0] + "_alpha";
PADDLE_ENFORCE(engine_->weight_map.find(alpha_name) ==
engine_->weight_map.end());
engine_->weight_map[alpha_name] = std::move(alpha_tensor);
std::string layer_name = "leaky_relu (Output: ";
auto output_name = op_desc.Output("Out")[0];
output_layer->getOutput(0)->setName(output_name.c_str());
engine_->SetITensor(output_name, output_layer->getOutput(0));
layer_name += output_name;
if (test_mode) {
engine_->DeclareOutput(output_name);
}
output_layer->setName((layer_name + ")").c_str());
}
};
} // namespace tensorrt
} // namespace inference
} // namespace paddle
REGISTER_TRT_OP_CONVERTER(leaky_relu, LeakyReluOpConverter);
......@@ -61,7 +61,7 @@ class OpConverter {
// TODO(xingzhaolong): all mul, sub, div
// static std::unordered_set<std::string> add_weight_op_set {"add", "mul",
// "sub", "div"};
static std::unordered_set<std::string> add_weight_op_set{"add"};
static std::unordered_set<std::string> add_weight_op_set{"add", "mul"};
PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1UL);
int op_type_len = op_desc.Type().size();
std::string op_type = op_desc.Type().substr(op_type_len - 3, op_type_len);
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/plugin/prelu_op_plugin.h"
namespace paddle {
namespace inference {
namespace tensorrt {
/*
* PRelu converter from fluid to tensorRT.
*/
class PReluOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope, bool test_mode) override {
VLOG(4) << "convert fluid prelu op to tensorrt prelu layer";
framework::OpDesc op_desc(op, nullptr);
// Declare inputs
int input_num = op_desc.Input("X").size();
PADDLE_ENFORCE(input_num == 1);
auto* input = engine_->GetITensor(op_desc.Input("X")[0]);
// Get output
size_t output_num = op_desc.Output("Out").size();
PADDLE_ENFORCE(output_num == 1);
// Get attrs
std::string mode = boost::get<std::string>(op_desc.GetAttr("mode"));
//
auto* alpha_var = scope.FindVar(op_desc.Input("Alpha")[0]);
PADDLE_ENFORCE_NOT_NULL(alpha_var);
auto* alpha_tensor = alpha_var->GetMutable<framework::LoDTensor>();
platform::CUDAPlace place;
std::unique_ptr<framework::LoDTensor> alpha_tensor_device(
new framework::LoDTensor());
alpha_tensor_device->Resize(alpha_tensor->dims());
TensorCopySync(*alpha_tensor, place, alpha_tensor_device.get());
float* alpha_data = alpha_tensor_device->mutable_data<float>(place);
// Transform alpha to TensorRTEngine::Weight
TensorRTEngine::Weight alpha_rt(nvinfer1::DataType::kFLOAT,
static_cast<void*>(alpha_data),
alpha_tensor_device->numel());
plugin::PReluPlugin* plugin = new plugin::PReluPlugin(alpha_rt, mode);
nvinfer1::IPluginLayer* layer =
engine_->AddPlugin(&input, input_num, plugin);
// keep alpha tensor to avoid release it's memory
engine_->weight_map[op_desc.Input("Alpha")[0]] =
std::move(alpha_tensor_device);
std::string layer_name = "prelu (Output: ";
auto output_name = op_desc.Output("Out")[0];
layer->getOutput(0)->setName(output_name.c_str());
engine_->SetITensor(output_name, layer->getOutput(0));
layer_name += output_name;
if (test_mode) {
engine_->DeclareOutput(output_name);
}
layer->setName((layer_name + ")").c_str());
}
};
} // namespace tensorrt
} // namespace inference
} // namespace paddle
REGISTER_TRT_OP_CONVERTER(prelu, PReluOpConverter);
......@@ -26,7 +26,7 @@ class SplitOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope, bool test_mode) override {
VLOG(40) << "convert a fluid split op to tensorrt split layer";
VLOG(4) << "convert a fluid split op to tensorrt split layer";
framework::OpDesc op_desc(op, nullptr);
// Declare inputs
......@@ -50,7 +50,7 @@ class SplitOpConverter : public OpConverter {
PADDLE_ENFORCE(output_lengths.size() == output_num);
//
SplitPlugin* plugin = new SplitPlugin(axis, output_lengths);
plugin::SplitPlugin* plugin = new plugin::SplitPlugin(axis, output_lengths);
nvinfer1::IPluginLayer* layer =
engine_->AddPlugin(&input, input_num, plugin);
......
......@@ -16,6 +16,9 @@ limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/convert/ut_helper.h"
USE_OP(conv2d);
USE_OP(conv2d_transpose);
namespace paddle {
namespace inference {
namespace tensorrt {
......@@ -51,7 +54,37 @@ TEST(conv2d_op, test) {
validator.Execute(3);
}
TEST(conv2d_transpose_op, test) {
std::unordered_set<std::string> parameters({"deconv2d-Y"});
framework::Scope scope;
TRTConvertValidation validator(5, parameters, scope, 1 << 15);
validator.DeclInputVar("deconv2d-X", nvinfer1::Dims3(3, 5, 5));
validator.DeclParamVar("deconv2d-Y", nvinfer1::Dims4(3, 2, 3, 3));
validator.DeclOutputVar("deconv2d-Out", nvinfer1::Dims3(2, 5, 5));
// Prepare Op description
framework::OpDesc desc;
desc.SetType("conv2d_transpose");
desc.SetInput("Input", {"deconv2d-X"});
desc.SetInput("Filter", {"deconv2d-Y"});
desc.SetOutput("Output", {"deconv2d-Out"});
const std::vector<int> strides({1, 1});
const std::vector<int> paddings({1, 1});
const std::vector<int> dilations({1, 1});
const int groups = 1;
desc.SetAttr("strides", strides);
desc.SetAttr("paddings", paddings);
desc.SetAttr("dilations", dilations);
desc.SetAttr("groups", groups);
validator.SetOp(*desc.Proto());
validator.Execute(3);
}
} // namespace tensorrt
} // namespace inference
} // namespace paddle
USE_OP(conv2d);
......@@ -20,13 +20,12 @@ namespace paddle {
namespace inference {
namespace tensorrt {
TEST(elementwise_op, add_weight_test) {
TEST(elementwise_op, add_weight) {
std::unordered_set<std::string> parameters({"elementwise_add-Y"});
framework::Scope scope;
TRTConvertValidation validator(10, parameters, scope, 1 << 15);
validator.DeclInputVar("elementwise_add-X", nvinfer1::DimsCHW(10, 3, 3));
validator.DeclParamVar("elementwise_add-Y", nvinfer1::Dims3(10, 1, 1));
// validator.DeclParamVar("mul-Y", nvinfer1::Dims2(8, 2));
validator.DeclOutputVar("elementwise_add-Out", nvinfer1::DimsCHW(10, 3, 3));
// Prepare Op description
......@@ -44,30 +43,65 @@ TEST(elementwise_op, add_weight_test) {
validator.Execute(8);
}
TEST(elementwise_op, add_tensor_test) {
TEST(elementwise_op, native) {
for (std::string type : {"add", "mul"}) {
int batch_size = 8;
std::unordered_set<std::string> parameters;
framework::Scope scope;
TRTConvertValidation validator(8, parameters, scope, 1 << 15);
validator.DeclInputVar("elementwise_add-X", nvinfer1::DimsCHW(10, 3, 3));
validator.DeclInputVar("elementwise_add-Y", nvinfer1::Dims3(10, 3, 3));
// validator.DeclParamVar("mul-Y", nvinfer1::Dims2(8, 2));
validator.DeclOutputVar("elementwise_add-Out", nvinfer1::DimsCHW(10, 3, 3));
TRTConvertValidation validator(batch_size, parameters, scope, 1 << 15);
validator.DeclInputVar("elementwise_" + type + "-X",
nvinfer1::DimsCHW(10, 3, 3));
validator.DeclInputVar("elementwise_" + type + "-Y",
nvinfer1::Dims3(10, 3, 3));
validator.DeclOutputVar("elementwise_" + type + "-Out",
nvinfer1::DimsCHW(10, 3, 3));
// Prepare Op description
framework::OpDesc desc;
desc.SetType("elementwise_add");
desc.SetInput("X", {"elementwise_add-X"});
desc.SetInput("Y", {"elementwise_add-Y"});
desc.SetOutput("Out", {"elementwise_add-Out"});
desc.SetType("elementwise_" + type);
desc.SetInput("X", {"elementwise_" + type + "-X"});
desc.SetInput("Y", {"elementwise_" + type + "-Y"});
desc.SetOutput("Out", {"elementwise_" + type + "-Out"});
// the defalut axis of elementwise op is -1
int axis = -1;
desc.SetAttr("axis", axis);
validator.SetOp(*desc.Proto());
validator.Execute(batch_size);
}
}
validator.Execute(8);
TEST(elementwise_op, plugin) {
for (std::string type : {"add", "mul"}) {
int batch_size = 8;
std::unordered_set<std::string> parameters;
framework::Scope scope;
TRTConvertValidation validator(batch_size, parameters, scope, 1 << 15);
validator.DeclInputVar("elementwise_" + type + "-X",
nvinfer1::DimsCHW(10, 3, 3));
validator.DeclInputVar("elementwise_" + type + "-Y",
nvinfer1::Dims3(10, 1, 1));
validator.DeclOutputVar("elementwise_" + type + "-Out",
nvinfer1::DimsCHW(10, 3, 3));
// Prepare Op description
framework::OpDesc desc;
desc.SetType("elementwise_" + type);
desc.SetInput("X", {"elementwise_" + type + "-X"});
desc.SetInput("Y", {"elementwise_" + type + "-Y"});
desc.SetOutput("Out", {"elementwise_" + type + "-Out"});
int axis = -1;
desc.SetAttr("axis", axis);
validator.SetOp(*desc.Proto());
validator.Execute(batch_size);
}
}
} // namespace tensorrt
} // namespace inference
} // namespace paddle
USE_OP(elementwise_add);
USE_OP(elementwise_mul);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/convert/ut_helper.h"
namespace paddle {
namespace inference {
namespace tensorrt {
TEST(leaky_relu_op, test_leaky_relu) {
std::unordered_set<std::string> parameters;
framework::Scope scope;
TRTConvertValidation validator(10, parameters, scope, 1000);
validator.DeclInputVar("leaky_relu_input", nvinfer1::DimsCHW(3, 2, 2));
validator.DeclOutputVar("leaky_relu_out", nvinfer1::DimsCHW(3, 2, 2));
// Prepare Op description
framework::OpDesc desc;
desc.SetType("leaky_relu");
desc.SetInput("X", {"leaky_relu_input"});
desc.SetOutput("Out", {"leaky_relu_out"});
desc.SetAttr("alpha", 0.1f);
validator.SetOp(*desc.Proto());
validator.Execute(1);
}
} // namespace tensorrt
} // namespace inference
} // namespace paddle
// USE_OP(leaky_relu);
USE_OP(leaky_relu);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "paddle/fluid/framework/op_registry.h"
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/convert/ut_helper.h"
namespace paddle {
namespace inference {
namespace tensorrt {
TEST(prelu_op, test_channel_wise) {
std::unordered_set<std::string> parameters({"prelu_alpha"});
framework::Scope scope;
TRTConvertValidation validator(10, parameters, scope, 1000);
validator.DeclInputVar("prelu_input", nvinfer1::DimsCHW(3, 2, 2));
validator.DeclParamVar("prelu_alpha", nvinfer1::Dims3(3, 1, 1));
validator.DeclOutputVar("prelu_out", nvinfer1::DimsCHW(3, 2, 2));
// Prepare Op description
framework::OpDesc desc;
desc.SetType("prelu");
desc.SetInput("X", {"prelu_input"});
desc.SetInput("Alpha", {"prelu_alpha"});
desc.SetOutput("Out", {"prelu_out"});
desc.SetAttr("mode", std::string("channel"));
validator.SetOp(*desc.Proto());
validator.Execute(1);
}
TEST(prelu_op, test_element_wise) {
std::unordered_set<std::string> parameters({"prelu_alpha"});
framework::Scope scope;
TRTConvertValidation validator(10, parameters, scope, 1000);
validator.DeclInputVar("prelu_input", nvinfer1::DimsCHW(3, 2, 2));
validator.DeclParamVar("prelu_alpha", nvinfer1::Dims4(10, 3, 2, 2));
validator.DeclOutputVar("prelu_out", nvinfer1::DimsCHW(3, 2, 2));
// Prepare Op description
framework::OpDesc desc;
desc.SetType("prelu");
desc.SetInput("X", {"prelu_input"});
desc.SetInput("Alpha", {"prelu_alpha"});
desc.SetOutput("Out", {"prelu_out"});
desc.SetAttr("mode", std::string("element"));
validator.SetOp(*desc.Proto());
validator.Execute(1);
}
TEST(prelu_op, test_scalar) {
std::unordered_set<std::string> parameters({"prelu_alpha"});
framework::Scope scope;
TRTConvertValidation validator(10, parameters, scope, 1000);
validator.DeclInputVar("prelu_input", nvinfer1::DimsCHW(3, 2, 2));
validator.DeclParamVar("prelu_alpha", nvinfer1::Dims3(1, 1, 1));
validator.DeclOutputVar("prelu_out", nvinfer1::DimsCHW(3, 2, 2));
// Prepare Op description
framework::OpDesc desc;
desc.SetType("prelu");
desc.SetInput("X", {"prelu_input"});
desc.SetInput("Alpha", {"prelu_alpha"});
desc.SetOutput("Out", {"prelu_out"});
desc.SetAttr("mode", std::string("all"));
validator.SetOp(*desc.Proto());
validator.Execute(1);
}
} // namespace tensorrt
} // namespace inference
} // namespace paddle
// USE_OP(prelu);
USE_CPU_ONLY_OP(prelu);
......@@ -4,7 +4,7 @@ Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
......
......@@ -200,7 +200,8 @@ void TensorRTEngine::GetOutputInCPU(const std::string &name, void *dst,
Buffer &TensorRTEngine::buffer(const std::string &name) {
PADDLE_ENFORCE(infer_engine_ != nullptr, "call FreezeNetwork first.");
auto it = buffer_sizes_.find(name);
PADDLE_ENFORCE(it != buffer_sizes_.end());
PADDLE_ENFORCE(it != buffer_sizes_.end(), "tried to access buffer named %s",
name);
auto slot_offset = infer_engine_->getBindingIndex(name.c_str());
return buffers_[slot_offset];
}
......@@ -256,9 +257,10 @@ void TensorRTEngine::freshDeviceId() {
}
nvinfer1::IPluginLayer *TensorRTEngine::AddPlugin(
nvinfer1::ITensor *const *inputs, int nbInputs, PluginTensorRT *plugin) {
nvinfer1::ITensor *const *inputs, int num_inputs,
plugin::PluginTensorRT *plugin) {
owned_plugin_.emplace_back(plugin);
return infer_network_.get()->addPluginExt(inputs, nbInputs, *plugin);
return infer_network_.get()->addPluginExt(inputs, num_inputs, *plugin);
}
} // namespace tensorrt
......
......@@ -40,6 +40,7 @@ class TensorRTEngine : public EngineBase {
// Weight is model parameter.
class Weight {
public:
Weight() = default;
Weight(nvinfer1::DataType dtype, void* value, size_t num_elem) {
w_.type = dtype;
w_.values = value;
......@@ -127,7 +128,7 @@ class TensorRTEngine : public EngineBase {
int GetRuntimeBatch();
int GetDevice() { return device_; }
nvinfer1::IPluginLayer* AddPlugin(nvinfer1::ITensor* const* inputs,
int nbInputs, PluginTensorRT*);
int num_inputs, plugin::PluginTensorRT*);
// A pointer to CPU memory is needed of the TRT weight.
// Before TRT runs, fluid loads weight into GPU storage.
......@@ -170,7 +171,7 @@ class TensorRTEngine : public EngineBase {
// The specific GPU id that the TensorRTEngine bounded to.
int device_;
std::vector<std::unique_ptr<PluginTensorRT>> owned_plugin_;
std::vector<std::unique_ptr<plugin::PluginTensorRT>> owned_plugin_;
// TensorRT related internal members
template <typename T>
......
nv_library(tensorrt_plugin SRCS trt_plugin.cc split_op_plugin.cu DEPS enforce)
nv_library(tensorrt_plugin
SRCS trt_plugin.cc split_op_plugin.cu elementwise_op_plugin.cu prelu_op_plugin.cu
DEPS enforce tensorrt_engine)
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <glog/logging.h>
#include "paddle/fluid/inference/tensorrt/plugin/elementwise_op_plugin.h"
namespace paddle {
namespace inference {
namespace tensorrt {
namespace plugin {
namespace details {
template <typename T>
struct Add {
__device__ T operator()(const T& a, const T& b) const { return a + b; }
};
template <typename T>
struct Mul {
__device__ T operator()(const T& a, const T& b) const { return a * b; }
};
template <typename T, typename Operator>
__global__ void ColumnWiseKernel(Operator op, const T* x, const T* y, T* out,
int batch_size, int num_rows, int num_cols) {
for (int batch_id = 0; batch_id < batch_size; ++batch_id) {
int row = blockIdx.x;
for (; row < num_rows; row += gridDim.x) {
T value_y = y[batch_id * num_rows + row];
int col = threadIdx.x;
int offset = (batch_id * num_rows + row) * num_cols;
for (; col < num_cols; col += blockDim.x) {
T value_x = x[offset + col];
out[offset + col] = op(value_x, value_y);
}
}
}
}
template <typename T, typename Operator>
static void ElementWise(Operator op, const T* x, const T* y, T* out,
int batch_size, int prev, int midd, int post,
cudaStream_t stream) {
const int kThreadsPerBlock = 1024;
const int kMaximumBlocks = 65535;
if (prev == 1) {
int num_threads = (post > kThreadsPerBlock) ? kThreadsPerBlock
: (((post + 31) >> 5) << 5);
int num_blocks = (midd < kMaximumBlocks) ? midd : kMaximumBlocks;
ColumnWiseKernel<<<num_blocks, num_threads, 0, stream>>>(
op, x, y, out, batch_size, midd, post);
} else if (post == 1) {
PADDLE_THROW("Not implemented.");
} else {
PADDLE_THROW("Not implemented.");
}
}
} // namespace details
nvinfer1::Dims ElementWisePlugin::getOutputDimensions(
int index, const nvinfer1::Dims* input_dims, int num_inputs) {
PADDLE_ENFORCE_EQ(index, 0);
PADDLE_ENFORCE_EQ(num_inputs, 2);
PADDLE_ENFORCE_NOT_NULL(input_dims);
return input_dims[0];
}
int ElementWisePlugin::initialize() {
PADDLE_ENFORCE_GT(dims_y_.nbDims, 0);
axis_ = (axis_ == -1) ? dims_x_.nbDims - dims_y_.nbDims : axis_;
int trimed_nb_dims = dims_y_.nbDims;
for (; trimed_nb_dims > 0; --trimed_nb_dims) {
if (dims_y_.d[trimed_nb_dims - 1] != 1) {
break;
}
}
dims_y_.nbDims = trimed_nb_dims;
PADDLE_ENFORCE_GE(dims_x_.nbDims, dims_y_.nbDims + axis_);
PADDLE_ENFORCE_LT(axis_, dims_x_.nbDims);
prev_size_ = 1;
midd_size_ = 1;
post_size_ = 1;
for (int i = 0; i < axis_; ++i) {
prev_size_ *= dims_x_.d[i];
}
for (int i = 0; i < dims_y_.nbDims; ++i) {
PADDLE_ENFORCE_EQ(dims_x_.d[i + axis_], dims_y_.d[i],
"Broadcast dimension mismatch.");
midd_size_ *= dims_y_.d[i];
}
for (int i = axis_ + dims_y_.nbDims; i < dims_x_.nbDims; ++i) {
post_size_ *= dims_x_.d[i];
}
return 0;
}
int ElementWisePlugin::enqueue(int batch_size, const void* const* inputs,
void** outputs, void* workspace,
cudaStream_t stream) {
const float* x = reinterpret_cast<const float*>(inputs[0]);
const float* y = reinterpret_cast<const float*>(inputs[1]);
float* out = reinterpret_cast<float*>(outputs[0]);
if (type_ == nvinfer1::ElementWiseOperation::kSUM) {
details::ElementWise(details::Add<float>(), x, y, out, batch_size,
prev_size_, midd_size_, post_size_, stream);
} else if (type_ == nvinfer1::ElementWiseOperation::kPROD) {
details::ElementWise(details::Mul<float>(), x, y, out, batch_size,
prev_size_, midd_size_, post_size_, stream);
} else {
PADDLE_THROW("Not implemented.");
}
return cudaGetLastError() != cudaSuccess;
}
} // namespace plugin
} // namespace tensorrt
} // namespace inference
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
namespace paddle {
namespace inference {
namespace tensorrt {
namespace plugin {
class ElementWisePlugin : public PluginTensorRT {
public:
ElementWisePlugin(nvinfer1::ElementWiseOperation type,
nvinfer1::Dims const &dims_x, nvinfer1::Dims const &dims_y,
int axis)
: type_(type),
dims_x_(dims_x),
dims_y_(dims_y),
axis_(axis),
prev_size_(1),
midd_size_(1),
post_size_(1) {}
ElementWisePlugin(void const *serial_data, size_t serial_length) {
deserializeBase(serial_data, serial_length);
DeserializeValue(&serial_data, &serial_length, &axis_);
DeserializeValue(&serial_data, &serial_length, &dims_x_);
DeserializeValue(&serial_data, &serial_length, &dims_y_);
}
ElementWisePlugin *clone() const override {
// return new ElementWisePlugin(dims_x_, dims_y_, axis_);
return nullptr;
}
const char *getPluginType() const override { return "elementwise"; }
nvinfer1::Dims getOutputDimensions(int index,
const nvinfer1::Dims *input_dims,
int num_inputs) override;
int initialize() override;
// execute the layer
int enqueue(int batch_size, const void *const *inputs, void **outputs,
void *workspace, cudaStream_t stream);
protected:
size_t getSerializationSize() override {
return SerializedSize(axis_) + SerializedSize(dims_x_) +
SerializedSize(dims_y_) + getBaseSerializationSize();
}
void serialize(void *buffer) override {
serializeBase(buffer);
SerializeValue(&buffer, axis_);
SerializeValue(&buffer, dims_x_);
SerializeValue(&buffer, dims_y_);
}
nvinfer1::ElementWiseOperation type_;
nvinfer1::Dims dims_x_;
nvinfer1::Dims dims_y_;
int axis_;
int prev_size_;
int midd_size_;
int post_size_;
};
} // namespace plugin
} // namespace tensorrt
} // namespace inference
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include <cassert>
#include "glog/logging.h"
#include "paddle/fluid/inference/tensorrt/plugin/prelu_op_plugin.h"
namespace paddle {
namespace inference {
namespace tensorrt {
namespace plugin {
static const int CUDA_NUM_THREADS = 1024;
static const int CUDA_MAX_NUM_BLOCKS = 65535;
inline static int GET_NUM_BLOCKS(const int N) {
return (N + CUDA_NUM_THREADS - 1) / CUDA_NUM_THREADS;
}
__global__ void PReluChannelWiseKernel(const float *input, const float *alpha,
float *output, int channel,
size_t spatial_size) {
size_t offset = blockIdx.x * spatial_size;
const float *in = input + offset;
float *out = output + offset;
float scale = alpha[blockIdx.x % channel];
for (size_t i = threadIdx.x; i < spatial_size; i += blockDim.x) {
float x = in[i];
out[i] = (x > 0) ? x : scale * x;
}
}
__global__ void PReluElementWiseKernel(const float *input, const float *alpha,
float *output, size_t spatial_size) {
size_t offset = blockIdx.x * spatial_size;
const float *in = input + offset;
const float *scale = alpha + offset;
float *out = output + offset;
for (size_t i = threadIdx.x; i < spatial_size; i += blockDim.x) {
float x = in[i];
out[i] = (x > 0) ? x : scale[i] * x;
}
}
__global__ void PReluScalarKernel(const float *input, const float *alpha,
float *output, size_t spatial_size) {
size_t offset = blockIdx.x * spatial_size;
const float *in = input + offset;
float scale = *alpha;
float *out = output + offset;
for (size_t i = threadIdx.x; i < spatial_size; i += blockDim.x) {
float x = in[i];
out[i] = (x > 0) ? x : scale * x;
}
}
static inline void PReluChannelWise(cudaStream_t stream, const float *input,
const float *alpha, float *output,
int batch_size,
const nvinfer1::Dims &dims) {
size_t unroll = batch_size * dims.d[0];
size_t spatial_size = dims.d[1] * dims.d[2];
CHECK_LT(unroll, CUDA_MAX_NUM_BLOCKS);
PReluChannelWiseKernel<<<unroll, CUDA_NUM_THREADS, 0, stream>>>(
input, alpha, output, dims.d[0], spatial_size);
}
static inline void PReluElementWise(cudaStream_t stream, const float *input,
const float *alpha, float *output,
int batch_size,
const nvinfer1::Dims &dims) {
size_t unroll = batch_size * dims.d[0];
size_t spatial_size = dims.d[1] * dims.d[2];
CHECK_LT(unroll, CUDA_MAX_NUM_BLOCKS);
PReluElementWiseKernel<<<unroll, CUDA_NUM_THREADS, 0, stream>>>(
input, alpha, output, spatial_size);
}
static inline void PReluScalar(cudaStream_t stream, const float *input,
const float *alpha, float *output,
int batch_size, const nvinfer1::Dims &dims) {
size_t unroll = batch_size * dims.d[0];
size_t spatial_size = dims.d[1] * dims.d[2];
CHECK_LT(unroll, CUDA_MAX_NUM_BLOCKS);
PReluScalarKernel<<<unroll, CUDA_NUM_THREADS, 0, stream>>>(
input, alpha, output, spatial_size);
}
nvinfer1::Dims PReluPlugin::getOutputDimensions(int index,
const nvinfer1::Dims *inputDims,
int nbInputs) {
assert(nbInputs == 1);
assert(index < this->getNbOutputs());
nvinfer1::Dims const &input_dims = inputDims[0];
nvinfer1::Dims output_dims = input_dims;
return output_dims;
}
int PReluPlugin::enqueue(int batchSize, const void *const *inputs,
void **outputs, void *workspace, cudaStream_t stream) {
// input dims is CHW.
const auto &input_dims = this->getInputDims(0);
const float *input = reinterpret_cast<const float *>(inputs[0]);
const float *alpha = reinterpret_cast<const float *>(alpha_.get().values);
float *output = reinterpret_cast<float **>(outputs)[0];
if (mode_ == "channel") {
PReluChannelWise(stream, input, alpha, output, batchSize, input_dims);
} else if (mode_ == "element") {
PReluElementWise(stream, input, alpha, output, batchSize, input_dims);
} else {
PReluScalar(stream, input, alpha, output, batchSize, input_dims);
}
return cudaGetLastError() != cudaSuccess;
}
} // namespace plugin
} // namespace tensorrt
} // namespace inference
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
namespace paddle {
namespace inference {
namespace tensorrt {
namespace plugin {
class PReluPlugin : public PluginTensorRT {
TensorRTEngine::Weight alpha_;
std::string mode_;
protected:
size_t getSerializationSize() override {
// return getBaseSerializationSize(alpha_) + SerializedSize(mode_);
return 0;
}
// TRT will call this func when we need to serialize the configuration of
// tensorrt.
// It should not be called by users.
void serialize(void *buffer) override {
// serializeBase(buffer);
// SerializeValue(&buffer, alpha_);
// SerializeValue(&buffer, mode_);
}
public:
PReluPlugin(TensorRTEngine::Weight const &alpha, std::string const &mode)
: alpha_(alpha), mode_(mode) {}
// It was used for tensorrt deserialization.
// It should not be called by users.
PReluPlugin(void const *serialData, size_t serialLength) {
// deserializeBase(serialData, serialLength);
// DeserializeValue(&serialData, &serialLength, &alpha_);
// DeserializeValue(&serialData, &serialLength, &mode_);
}
PReluPlugin *clone() const override { return new PReluPlugin(alpha_, mode_); }
const char *getPluginType() const override { return "prelu"; }
int getNbOutputs() const override { return 1; }
nvinfer1::Dims getOutputDimensions(int index, const nvinfer1::Dims *inputs,
int nbInputDims) override;
int enqueue(int batchSize, const void *const *inputs, void **outputs,
void *workspace, cudaStream_t stream) override;
};
} // namespace plugin
} // namespace tensorrt
} // namespace inference
} // namespace paddle
......@@ -14,10 +14,15 @@
#pragma once
#include <cassert>
#include <cstring>
#include <type_traits>
#include <vector>
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace inference {
namespace tensorrt {
namespace plugin {
template <typename T>
inline void SerializeValue(void** buffer, T const& value);
......@@ -26,7 +31,7 @@ template <typename T>
inline void DeserializeValue(void const** buffer, size_t* buffer_size,
T* value);
namespace {
namespace details {
template <typename T, class Enable = void>
struct Serializer {};
......@@ -36,10 +41,12 @@ struct Serializer<T, typename std::enable_if<std::is_arithmetic<T>::value ||
std::is_enum<T>::value ||
std::is_pod<T>::value>::type> {
static size_t SerializedSize(T const& value) { return sizeof(T); }
static void Serialize(void** buffer, T const& value) {
std::memcpy(*buffer, &value, sizeof(T));
reinterpret_cast<char*&>(*buffer) += sizeof(T);
}
static void Deserialize(void const** buffer, size_t* buffer_size, T* value) {
assert(*buffer_size >= sizeof(T));
std::memcpy(value, *buffer, sizeof(T));
......@@ -51,10 +58,12 @@ struct Serializer<T, typename std::enable_if<std::is_arithmetic<T>::value ||
template <>
struct Serializer<const char*> {
static size_t SerializedSize(const char* value) { return strlen(value) + 1; }
static void Serialize(void** buffer, const char* value) {
std::strcpy(static_cast<char*>(*buffer), value);
std::strcpy(static_cast<char*>(*buffer), value); // NOLINT
reinterpret_cast<char*&>(*buffer) += strlen(value) + 1;
}
static void Deserialize(void const** buffer, size_t* buffer_size,
const char** value) {
*value = static_cast<char const*>(*buffer);
......@@ -73,39 +82,46 @@ struct Serializer<std::vector<T>,
static size_t SerializedSize(std::vector<T> const& value) {
return sizeof(value.size()) + value.size() * sizeof(T);
}
static void Serialize(void** buffer, std::vector<T> const& value) {
SerializeValue(buffer, value.size());
size_t nbyte = value.size() * sizeof(T);
std::memcpy(*buffer, value.data(), nbyte);
reinterpret_cast<char*&>(*buffer) += nbyte;
}
static void Deserialize(void const** buffer, size_t* buffer_size,
std::vector<T>* value) {
size_t size;
DeserializeValue(buffer, buffer_size, &size);
value->resize(size);
size_t nbyte = value->size() * sizeof(T);
assert(*buffer_size >= nbyte);
PADDLE_ENFORCE_GE(*buffer_size, nbyte);
std::memcpy(value->data(), *buffer, nbyte);
reinterpret_cast<char const*&>(*buffer) += nbyte;
*buffer_size -= nbyte;
}
};
} // namespace
} // namespace details
template <typename T>
inline size_t SerializedSize(T const& value) {
return Serializer<T>::SerializedSize(value);
return details::Serializer<T>::SerializedSize(value);
}
template <typename T>
inline void SerializeValue(void** buffer, T const& value) {
return Serializer<T>::Serialize(buffer, value);
return details::Serializer<T>::Serialize(buffer, value);
}
template <typename T>
inline void DeserializeValue(void const** buffer, size_t* buffer_size,
T* value) {
return Serializer<T>::Deserialize(buffer, buffer_size, value);
return details::Serializer<T>::Deserialize(buffer, buffer_size, value);
}
} // namespace plugin
} // namespace tensorrt
} // namespace inference
} // namespace paddle
......@@ -12,26 +12,26 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include <cassert>
#include "paddle/fluid/inference/tensorrt/plugin/split_op_plugin.h"
namespace paddle {
namespace inference {
namespace tensorrt {
namespace plugin {
nvinfer1::Dims SplitPlugin::getOutputDimensions(int index,
const nvinfer1::Dims* inputDims,
int nbInputs) {
assert(nbInputs == 1);
assert(index < this->getNbOutputs());
nvinfer1::Dims const& input_dims = inputDims[0];
nvinfer1::Dims output_dims = input_dims;
nvinfer1::Dims SplitPlugin::getOutputDimensions(
int index, const nvinfer1::Dims* input_dims, int num_inputs) {
PADDLE_ENFORCE_EQ(num_inputs, 1);
PADDLE_ENFORCE_LT(index, this->getNbOutputs());
nvinfer1::Dims output_dims = input_dims[0];
output_dims.d[axis_] = output_length_.at(index);
return output_dims;
}
int SplitPlugin::initialize() {
PADDLE_ENFORCE_LE(axis_, nvinfer1::Dims::MAX_DIMS);
std::vector<int> segment_offsets(1, 0);
for (int i = 0; i < this->getNbOutputs(); ++i) {
segment_offsets.push_back(segment_offsets.back() + output_length_[i]);
......@@ -76,6 +76,7 @@ int SplitPlugin::enqueue(int batchSize, const void* const* inputs,
return cudaGetLastError() != cudaSuccess;
}
} // tensorrt
} // inference
} // paddle
} // namespace plugin
} // namespace tensorrt
} // namespace inference
} // namespace paddle
......@@ -14,61 +14,58 @@
#pragma once
#include <vector>
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
namespace paddle {
namespace inference {
namespace tensorrt {
namespace plugin {
class SplitPlugin : public PluginTensorRT {
int axis_;
std::vector<int> output_length_;
int nx_, ny_, nz_;
std::vector<int> segment_offsets_;
public:
SplitPlugin(int axis, std::vector<int> const &output_lengths)
: axis_(axis), output_length_(output_lengths) {}
SplitPlugin(void const *serial_data, size_t serial_length) {
deserializeBase(serial_data, serial_length);
DeserializeValue(&serial_data, &serial_length, &axis_);
DeserializeValue(&serial_data, &serial_length, &output_length_);
}
SplitPlugin *clone() const override {
return new SplitPlugin(axis_, output_length_);
}
const char *getPluginType() const override { return "split"; }
int getNbOutputs() const override { return output_length_.size(); }
nvinfer1::Dims getOutputDimensions(int index,
const nvinfer1::Dims *input_dims,
int num_inputs) override;
int initialize() override;
int enqueue(int batchSize, const void *const *inputs, void **outputs,
void *workspace, cudaStream_t stream) override;
protected:
virtual size_t getSerializationSize() override {
size_t getSerializationSize() override {
return SerializedSize(axis_) + SerializedSize(output_length_) +
getBaseSerializationSize();
}
// TRT will call this func when we need to serialize the configuration of
// tensorrt.
// It should not be called by users.
virtual void serialize(void *buffer) override {
void serialize(void *buffer) override {
serializeBase(buffer);
SerializeValue(&buffer, axis_);
SerializeValue(&buffer, output_length_);
}
public:
SplitPlugin(int axis, std::vector<int> const &output_lengths)
: axis_(axis), output_length_(output_lengths) {
assert(axis <= nvinfer1::Dims::MAX_DIMS);
}
// It was used for tensorrt deserialization.
// It should not be called by users.
SplitPlugin(void const *serialData, size_t serialLength) {
deserializeBase(serialData, serialLength);
DeserializeValue(&serialData, &serialLength, &axis_);
DeserializeValue(&serialData, &serialLength, &output_length_);
}
SplitPlugin *clone() const override {
return new SplitPlugin(axis_, output_length_);
}
virtual const char *getPluginType() const override { return "split"; }
virtual int getNbOutputs() const override { return output_length_.size(); }
virtual nvinfer1::Dims getOutputDimensions(int index,
const nvinfer1::Dims *inputs,
int nbInputDims) override;
virtual int initialize() override;
virtual int enqueue(int batchSize, const void *const *inputs, void **outputs,
void *workspace, cudaStream_t stream) override;
int axis_;
std::vector<int> output_length_;
int nx_, ny_, nz_;
std::vector<int> segment_offsets_;
};
} // tensorrt
} // inference
} // paddle
} // namespace plugin
} // namespace tensorrt
} // namespace inference
} // namespace paddle
......@@ -17,6 +17,7 @@
namespace paddle {
namespace inference {
namespace tensorrt {
namespace plugin {
void PluginTensorRT::serializeBase(void*& buffer) {
SerializeValue(&buffer, input_dims_);
......@@ -25,12 +26,12 @@ void PluginTensorRT::serializeBase(void*& buffer) {
SerializeValue(&buffer, data_format_);
}
void PluginTensorRT::deserializeBase(void const*& serialData,
size_t& serialLength) {
DeserializeValue(&serialData, &serialLength, &input_dims_);
DeserializeValue(&serialData, &serialLength, &max_batch_size_);
DeserializeValue(&serialData, &serialLength, &data_type_);
DeserializeValue(&serialData, &serialLength, &data_format_);
void PluginTensorRT::deserializeBase(void const*& serial_data,
size_t& serial_length) {
DeserializeValue(&serial_data, &serial_length, &input_dims_);
DeserializeValue(&serial_data, &serial_length, &max_batch_size_);
DeserializeValue(&serial_data, &serial_length, &data_type_);
DeserializeValue(&serial_data, &serial_length, &data_format_);
}
size_t PluginTensorRT::getBaseSerializationSize() {
......@@ -44,18 +45,17 @@ bool PluginTensorRT::supportsFormat(nvinfer1::DataType type,
(format == nvinfer1::PluginFormat::kNCHW));
}
void PluginTensorRT::configureWithFormat(const nvinfer1::Dims* inputDims,
int nbInputs,
const nvinfer1::Dims* outputDims,
int nbOutputs, nvinfer1::DataType type,
nvinfer1::PluginFormat format,
int maxBatchSize) {
void PluginTensorRT::configureWithFormat(
const nvinfer1::Dims* input_dims, int num_inputs,
const nvinfer1::Dims* output_dims, int num_outputs, nvinfer1::DataType type,
nvinfer1::PluginFormat format, int max_batch_size) {
data_type_ = type;
data_format_ = format;
input_dims_.assign(inputDims, inputDims + nbInputs);
max_batch_size_ = maxBatchSize;
input_dims_.assign(input_dims, input_dims + num_inputs);
max_batch_size_ = max_batch_size;
}
} // namespace plugin
} // namespace tensorrt
} // namespace inference
} // namespace paddle
......@@ -14,23 +14,30 @@
#pragma once
#include <cassert>
#include <NvInfer.h>
#include <cstring>
#include <iostream>
#include <unordered_map>
#include <vector>
#include "NvInfer.h"
#include "paddle/fluid/inference/tensorrt/plugin/serialize.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/profiler.h"
DECLARE_bool(profile);
namespace paddle {
namespace inference {
namespace tensorrt {
namespace plugin {
class PluginTensorRT : public nvinfer1::IPluginExt {
public:
PluginTensorRT() {}
// It was used for TensorRT deserialization.
// It should not be called by users.
PluginTensorRT(const void* serialized_data, size_t length) {}
virtual ~PluginTensorRT() {}
nvinfer1::Dims const& getInputDims(int index) const {
return input_dims_.at(index);
}
......@@ -38,43 +45,66 @@ class PluginTensorRT : public nvinfer1::IPluginExt {
nvinfer1::DataType getDataType() const { return data_type_; }
nvinfer1::PluginFormat getDataFormat() const { return data_format_; }
virtual const char* getPluginVersion() const { return "1"; }
void AddInput(nvinfer1::ITensor* input) { inputs_.push_back(input); }
std::vector<nvinfer1::ITensor*>& GetInputs() { return inputs_; }
virtual nvinfer1::IPluginExt* clone() const = 0;
virtual const char* getPluginType() const = 0;
// Following functions are inherit from nvinfer1::IPluginExt
// Get the number of outputs from the layer
int getNbOutputs() const { return 1; }
// Get the dimension of an output tensor
virtual nvinfer1::Dims getOutputDimensions(int index,
const nvinfer1::Dims* input_dims,
int num_inputs) = 0;
// Find the workspace size required by the layer
size_t getWorkspaceSize(int) const override { return 0; }
// Initialize the layer for execution.
// This is called when the engine is created.
int initialize() override { return 0; }
// Shutdown the layer. This is called when the engine is destroyed
void terminate() override {}
virtual ~PluginTensorRT() {}
// Execute the layer
virtual int enqueue(int batch_size, const void* const* inputs, void** outputs,
void* workspace, cudaStream_t stream) = 0;
// Find the size of the serialization buffer required
virtual size_t getSerializationSize() = 0;
// Serialize the layer config to buffer.
// TensorRT will call this func to serialize the configuration of TensorRT
// engine. It should not be called by users.
virtual void serialize(void* buffer) = 0;
// Check format support. The default is FLOAT32 and NCHW.
bool supportsFormat(nvinfer1::DataType type,
nvinfer1::PluginFormat format) const override;
void configureWithFormat(const nvinfer1::Dims* inputDims, int nbInputs,
const nvinfer1::Dims* outputDims, int nbOutputs,
// Configure the layer
void configureWithFormat(const nvinfer1::Dims* input_dims, int num_inputs,
const nvinfer1::Dims* output_dims, int num_outputs,
nvinfer1::DataType type,
nvinfer1::PluginFormat format,
int maxBatchSize) override;
// *NOTE* The following functions need to be overrided in the subclass.
virtual nvinfer1::IPluginExt* clone() const = 0;
virtual const char* getPluginType() const = 0;
// Initialize the layer for execution. This is called when the engine is
// created.
int initialize() override { return 0; }
// Serialize the layer config to buffer.
virtual void serialize(void* buffer) = 0;
virtual size_t getSerializationSize() = 0;
virtual int enqueue(int batchSize, const void* const* inputs, void** outputs,
void* workspace, cudaStream_t stream) = 0;
int max_batch_size) override;
protected:
// Deserialize input_dims, max_batch_size, data_type, data_format
void deserializeBase(void const*& serialData, size_t& serialLength);
void deserializeBase(void const*& serial_data, // NOLINT
size_t& serial_length); // NOLINT
size_t getBaseSerializationSize();
// Serialize input_dims, max_batch_size, data_type, data_format
void serializeBase(void*& buffer);
void serializeBase(void*& buffer); // NOLINT
std::vector<nvinfer1::Dims> input_dims_;
size_t max_batch_size_;
nvinfer1::DataType data_type_;
nvinfer1::PluginFormat data_format_;
std::vector<nvinfer1::ITensor*> inputs_;
};
} // namespace plugin
} // namespace tensorrt
} // namespace inference
} // namespace paddle
set(INFERENCE_EXTRA_DEPS paddle_inference_api paddle_fluid_api ir_pass_manager analysis_predictor)
if(WITH_GPU AND TENSORRT_FOUND)
set(INFERENCE_EXTRA_DEPS ${INFERENCE_EXTRA_DEPS} analysis ${analysis_deps} ir_pass_manager analysis_predictor)
endif()
function(download_model install_dir model_name)
if (NOT EXISTS ${install_dir})
inference_download_and_uncompress(${install_dir} ${INFERENCE_URL} ${model_name})
......@@ -27,14 +31,14 @@ function(inference_analysis_api_test_with_fake_data target install_dir filename
endfunction()
# RNN1
if(NOT APPLE)
if(NOT APPLE AND WITH_MKLML)
set(RNN1_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/rnn1")
download_model_and_data(${RNN1_INSTALL_DIR} "rnn1%2Fmodel.tar.gz" "rnn1%2Fdata.txt.tar.gz")
inference_analysis_api_test(test_analyzer_rnn1 ${RNN1_INSTALL_DIR} analyzer_rnn1_tester.cc)
else()
# TODO: fix this test on MACOS, the reason is that
# fusion_seqexpand_concat_fc_op is not supported on MACOS
message(WARNING "These tests has been disabled in OSX before being fixed: \n test_analyzer_rnn1")
# TODO: fix this test on MACOS and OPENBLAS, the reason is that
# fusion_seqexpand_concat_fc_op is not supported on MACOS and OPENBLAS
message(WARNING "These tests has been disabled in OSX or WITH_MKL=OFF before being fixed: \n test_analyzer_rnn1")
endif()
# RNN2
......@@ -78,6 +82,10 @@ inference_analysis_api_test(test_analyzer_ocr ${OCR_INSTALL_DIR} analyzer_vis_te
inference_analysis_api_test_with_fake_data(test_analyzer_resnet50
"${INFERENCE_DEMO_INSTALL_DIR}/resnet50" analyzer_resnet50_tester.cc "resnet50_model.tar.gz")
# mobilenet with depthwise_conv op
inference_analysis_api_test_with_fake_data(test_analyzer_mobilenet
"${INFERENCE_DEMO_INSTALL_DIR}/mobilenet_depthwise_conv" analyzer_resnet50_tester.cc "mobilenet_model.tar.gz")
# anakin
if (WITH_ANAKIN AND WITH_MKL) # only needed in CI
# anakin rnn1
......@@ -105,6 +113,6 @@ if(WITH_GPU AND TENSORRT_FOUND)
inference_download_and_uncompress(${TRT_MODEL_INSTALL_DIR} ${INFERENCE_URL}/tensorrt_test "trt_test_models.tar.gz")
endif()
inference_analysis_test(test_trt_models SRCS trt_models_tester.cc
EXTRA_DEPS ${INFERENCE_EXTRA_DEPS} analysis ${analysis_deps} ir_pass_manager analysis_predictor
EXTRA_DEPS ${INFERENCE_EXTRA_DEPS}
ARGS --infer_model=${TRT_MODEL_INSTALL_DIR}/trt_test_models SERIAL)
endif()
......@@ -51,7 +51,7 @@ void PrintConfig(const PaddlePredictor::Config *config, bool use_analysis) {
LOG(INFO) << *reinterpret_cast<const contrib::AnalysisConfig *>(config);
return;
}
LOG(INFO) << *config;
LOG(INFO) << *reinterpret_cast<const NativeConfig *>(config);
}
void CompareResult(const std::vector<PaddleTensor> &outputs,
......@@ -222,7 +222,23 @@ void TestMultiThreadPrediction(
// The inputs of each thread are all the same.
std::vector<PaddleTensor> outputs_tid;
auto &predictor = predictors[tid];
LOG(INFO) << "running thread " << tid;
// warmup run
LOG(INFO) << "Running thread " << tid << ", warm up run...";
{
Timer warmup_timer;
warmup_timer.tic();
predictor->Run(inputs[0], outputs, batch_size);
PrintTime(batch_size, 1, num_threads, tid, warmup_timer.toc(), 1);
#if !defined(_WIN32)
if (FLAGS_profile) {
paddle::platform::ResetProfiler();
}
#endif
}
LOG(INFO) << "Thread " << tid << " run " << num_times << " times...";
{
Timer timer;
timer.tic();
for (int i = 0; i < num_times; i++) {
......@@ -235,6 +251,7 @@ void TestMultiThreadPrediction(
total_time += time;
PrintTime(batch_size, num_times, num_threads, tid, time / num_times,
inputs.size());
}
});
}
for (int i = 0; i < num_threads; ++i) {
......
......@@ -145,5 +145,3 @@ TEST(TensorRT_mobilenet, analysis) {
} // namespace inference
} // namespace paddle
USE_PASS(tensorrt_subgraph_pass);
add_subdirectory(detail)
cc_library(malloc SRCS malloc.cc DEPS buddy_allocator place enforce)
add_subdirectory(allocation)
cc_library(malloc SRCS malloc.cc DEPS place enforce allocator_facade)
cc_library(memcpy SRCS memcpy.cc DEPS place)
cc_library(memory
DEPS
malloc
memcpy)
cc_test(malloc_test SRCS malloc_test.cc DEPS malloc)
#if (WITH_GPU)
# nv_test(pinned_memory_test SRCS pinned_memory_test.cu DEPS place memory)
#endif()
cc_library(allocator SRCS allocator.cc DEPS place)
cc_library(cpu_allocator SRCS cpu_allocator.cc DEPS allocator)
cc_library(best_fit_allocator SRCS best_fit_allocator.cc DEPS allocator)
cc_library(locked_allocator SRCS locked_allocator.cc DEPS allocator)
cc_library(buffered_allocator SRCS buffered_allocator.cc DEPS allocator)
cc_library(legacy_allocator SRCS legacy_allocator.cc DEPS allocator buddy_allocator)
cc_test(buffered_allocator_test SRCS buffered_allocator_test.cc DEPS best_fit_allocator locked_allocator buffered_allocator cpu_allocator)
if (WITH_GPU)
nv_library(cuda_allocator SRCS cuda_allocator.cc DEPS allocator cuda_device_guard)
endif()
cc_library(retry_allocator SRCS retry_allocator.cc DEPS allocator)
if (WITH_GPU)
nv_test(best_fit_allocator_test
SRCS best_fit_allocator_test.cc
best_fit_allocator_test.cu
DEPS best_fit_allocator
locked_allocator
cpu_allocator
cuda_allocator
device_context
memcpy)
else()
cc_test(best_fit_allocator_test
SRCS best_fit_allocator_test.cc
DEPS best_fit_allocator
locked_allocator
cpu_allocator)
endif()
nv_library(pinned_allocator SRCS pinned_allocator.cc DEPS allocator)
if (WITH_GPU)
set(AllocatorFacadeDeps gpu_info cuda_allocator pinned_allocator cuda_device_guard)
else ()
set(AllocatorFacadeDeps)
endif()
cc_library(aligned_allocator SRCS aligned_allocator.cc DEPS allocator)
cc_library(auto_increment_allocator SRCS auto_increment_allocator.cc DEPS allocator)
cc_library(zero_size_allocator SRCS zero_size_allocator.cc DEPS allocator)
cc_library(conditional_allocator SRCS conditional_allocator.cc DEPS allocator)
cc_library(allocator_strategy SRCS allocator_strategy.cc DEPS gflags)
cc_library(allocator_facade SRCS allocator_facade.cc DEPS
${AllocatorFacadeDeps}
cpu_allocator
locked_allocator
best_fit_allocator
aligned_allocator
auto_increment_allocator
zero_size_allocator
conditional_allocator
retry_allocator
buffered_allocator
allocator_strategy
legacy_allocator
)
nv_test(allocation_and_eigen_test SRCS allocation_and_eigen_test.cu DEPS allocator_facade)
cc_test(retry_allocator_test SRCS retry_allocator_test.cc DEPS retry_allocator best_fit_allocator locked_allocator cpu_allocator)
cc_test(allocator_facade_test SRCS allocator_facade_test.cc DEPS allocator_facade)
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/memory/allocation/aligned_allocator.h"
namespace paddle {
namespace memory {
namespace allocation {
ThinAlignedAllocator::ThinAlignedAllocator(
std::shared_ptr<Allocator> underlyning_allocator)
: underlying_allocator_(std::move(underlyning_allocator)) {}
bool ThinAlignedAllocator::IsAllocThreadSafe() const {
return underlying_allocator_->IsAllocThreadSafe();
}
} // namespace allocation
} // namespace memory
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <memory>
#include "paddle/fluid/memory/allocation/allocator.h"
namespace paddle {
namespace memory {
namespace allocation {
// The aligned allocation and allocator will wrap a managed allocator,
// and returns the aligned pointer.
//
// NOTE(yy): For speed reason, I just use a template parameter to get
// alignment, however, it can be an private member if necessary.
//
// NOTE(yy): kAlignment must be 2^N. a `static_assert` should be added.
template <size_t kAlignment>
class AlignedAllocation : public Allocation {
static_assert(kAlignment > 0 && (kAlignment & (kAlignment - 1)) == 0,
"kAlignment must be 2^N");
public:
AlignedAllocation(AllocationPtr&& underlying_allocation, size_t size)
: Allocation(AlignedPtr(underlying_allocation->ptr()),
size + kAlignment - Offset(underlying_allocation->ptr()),
underlying_allocation->place()),
underlying_allocation_(std::move(underlying_allocation)) {}
private:
static void* AlignedPtr(void* ptr) {
return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(ptr) +
Offset(ptr));
}
// Offset to aligned pointer.
// if ptr is already aligned, returns 0.
static size_t Offset(void* ptr) {
auto ptr_addr = reinterpret_cast<intptr_t>(ptr);
intptr_t aligned_addr = (ptr_addr & ~(kAlignment - 1));
intptr_t diff = aligned_addr - ptr_addr;
if (diff == 0) {
return 0;
} else {
return kAlignment + diff;
}
}
AllocationPtr underlying_allocation_;
};
// Thin aligned allocator is trivial and used to generate a small size binary.
//
// NOTE(yy): This is a trick to make a template class. This class extract the
// common code into a `thin` class. So if there are multiple specification of
// the template class, the binary size will not extended too much.
//
// NOTE(yy): This could be an over design. If it harms readability of code, it
// could be removed later.
class ThinAlignedAllocator : public Allocator {
public:
explicit ThinAlignedAllocator(
std::shared_ptr<Allocator> underlyning_allocator);
bool IsAllocThreadSafe() const;
protected:
std::shared_ptr<Allocator> underlying_allocator_;
};
// An aligned allocator will allocate `size+kAlignment` allocation and adjust
// the pointer offset.
template <size_t kAlignment>
class AlignedAllocator : public ThinAlignedAllocator {
public:
using ThinAlignedAllocator::ThinAlignedAllocator;
protected:
Allocation* AllocateImpl(size_t size, Allocator::Attr attr) override {
auto raw_allocation =
underlying_allocator_->Allocate(size + kAlignment, attr);
return new AlignedAllocation<kAlignment>(std::move(raw_allocation), size);
}
};
} // namespace allocation
} // namespace memory
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "gtest/gtest.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/for_range.h"
#include "unsupported/Eigen/CXX11/Tensor"
// NOTE(yy): this unittest is not important. It just used for debugging.
// It can be removed later.
struct FillZero {
public:
float* ptr_;
__device__ void operator()(size_t i) { ptr_[i] = 0.0f; }
};
namespace paddle {
TEST(Eigen, main) {
framework::Tensor tensor;
platform::CUDAPlace gpu(0);
float* ptr = tensor.mutable_data<float>({10, 10}, gpu);
auto& dev_ctx = *reinterpret_cast<platform::CUDADeviceContext*>(
platform::DeviceContextPool::Instance().Get(gpu));
PADDLE_ENFORCE(cudaMemset(ptr, 0, sizeof(float) * 100));
platform::ForRange<platform::CUDADeviceContext> for_range(dev_ctx, 100);
for_range(FillZero{ptr});
dev_ctx.Wait();
auto eigen_vec = framework::EigenVector<float>::Flatten(tensor);
auto& eigen_dev = *dev_ctx.eigen_device();
eigen_vec.device(eigen_dev) = eigen_vec.constant(0.0f);
}
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/memory/allocation/allocator.h"
namespace paddle {
namespace memory {
namespace allocation {
class AllocationWithUnderlying : public Allocation {
public:
explicit AllocationWithUnderlying(AllocationPtr allocation)
: Allocation(allocation->ptr(), allocation->size(), allocation->place()),
allocation_(std::move(allocation)) {}
AllocationPtr allocation_;
};
} // namespace allocation
} // namespace memory
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/memory/allocation/allocator.h"
#include <functional>
namespace paddle {
namespace memory {
namespace allocation {
Allocation::~Allocation() {}
Allocator::~Allocator() {}
bool Allocator::IsAllocThreadSafe() const { return false; }
AllocationPtr Allocator::Allocate(size_t size, Allocator::Attr attr) {
auto ptr = AllocateImpl(size, attr);
ptr->set_allocator(this);
return AllocationPtr(ptr);
}
void Allocator::Free(Allocation* allocation) { delete allocation; }
const char* BadAlloc::what() const noexcept { return msg_.c_str(); }
void AllocationDeleter::operator()(Allocation* allocation) const {
auto* allocator = allocation->allocator();
allocator->Free(allocation);
}
} // namespace allocation
} // namespace memory
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <memory>
#include <string>
#include "paddle/fluid/platform/place.h"
namespace paddle {
namespace memory {
namespace allocation {
// Exception when `Alloc`/`AllocShared` failed
class BadAlloc : public std::exception {
public:
explicit BadAlloc(std::string msg) : msg_(std::move(msg)) {}
const char* what() const noexcept override;
private:
std::string msg_;
};
class Allocation;
class AllocationDeleter {
public:
void operator()(Allocation* allocation) const;
};
class Allocator;
// Allocation is the object holding the actually pointer. Use
// `Allocation::ptr()` will returns the pointer that allocated.
//
// NOTE: this is the base class of Allocation. Each allocator can use its own
// allocation object.
// NOTE: the `Allocation::ptr()` could be nullptr, if the allocation size is 0
class Allocation {
public:
Allocation(void* ptr, size_t size, platform::Place place)
: allocator_(nullptr), ptr_(ptr), size_(size), place_(place) {}
Allocation(const Allocation& o) = delete;
Allocation& operator=(const Allocation& o) = delete;
// Returns the holding pointer.
// NOTE: For performance consideration, it is better not to make this method
// as a virtual method. If we want to implement a `defragmentation` later,
// we might need to make `ptr_` field as a protected field, and add a virtual
// method like `defragmentation` to change `ptr_`.
void* ptr() const { return ptr_; }
// Returns the size of this memory buffer, i.e., ptr() + size() - 1 is the
// last valid element.
//
// NOTE: Some allocator might alloc more memory than request. The size
// could larger than its request. For example,
// the AlignedAllocator will always allocate memory as size + kAlignment.
// The raw pointer might not aligned, so an offset might be added to raw
// the pointer. The size of this allocation will be
// `size + kAlignemnt - offset`.
size_t size() const { return size_; }
const platform::Place& place() const { return place_; }
Allocator* allocator() { return allocator_; }
void set_allocator(Allocator* allocator) { allocator_ = allocator; }
virtual ~Allocation();
private:
Allocator* allocator_;
void* ptr_;
size_t size_;
platform::Place place_;
};
using AllocationPtr = std::unique_ptr<Allocation, AllocationDeleter>;
// Base interface class of memory Allocator.
// To allocate a memory, allocator needs two parameters:
// 1. size of bytes.
// 2. Attribute of memory.
// NOTE: the attribute of memory might be ignored if the allocator does not
// care it.
class Allocator {
public:
enum Attr {
kDefault = 0, // Default attribute. Uses the fast or stablest allocation
// algorithm.
kFixedHuge = 1, // The allocation may not be freed until the program
// ends. e.g., `Parameters` and `Momentum`.
kFluxHuge = 2, // The allocation may create and freed frequently and the
// allocation is considerable huge. Like `activations`
// and gradients.
kScratchpad =
3, // The `Scratchpad` memory is allocated and freed very soon,
// usually within an operator or aux memory.
// Like CUDNN workspace, AUX memory in batch norm, etc.
//
// https://en.wikipedia.org/wiki/Scratchpad_memory
kCrossDevice =
4, // The memory used cross-device memory copy/communication.
// For example:
// 1. it can use an `pinned` memory for CPU-GPU
// communication.
// 2. it can use an `registered` memory for RDMA
// communication.
NumOfAttrs = 5 // The number of all attributes. It is used internally.
};
virtual ~Allocator();
// Allocate an allocation.
AllocationPtr Allocate(size_t size, Allocator::Attr attr = kDefault);
// True if the `Allocate` is thread safe.
virtual bool IsAllocThreadSafe() const;
protected:
virtual void Free(Allocation* allocation);
virtual Allocation* AllocateImpl(size_t size, Allocator::Attr attr) = 0;
private:
friend class AllocationDeleter;
};
} // namespace allocation
} // namespace memory
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/memory/allocation/allocator.h"
#include <gflags/gflags.h>
#include <map>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/memory/allocation/aligned_allocator.h"
#include "paddle/fluid/memory/allocation/allocator_facade.h"
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
#include "paddle/fluid/memory/allocation/auto_increment_allocator.h"
#include "paddle/fluid/memory/allocation/best_fit_allocator.h"
#include "paddle/fluid/memory/allocation/conditional_allocator.h"
#include "paddle/fluid/memory/allocation/cpu_allocator.h"
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
#include "paddle/fluid/memory/allocation/locked_allocator.h"
#include "paddle/fluid/memory/allocation/retry_allocator.h"
#include "paddle/fluid/memory/allocation/zero_size_allocator.h"
#include "paddle/fluid/platform/cpu_info.h"
#include "paddle/fluid/platform/place.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_allocator.h"
#include "paddle/fluid/memory/allocation/pinned_allocator.h"
#include "paddle/fluid/platform/cuda_device_guard.h"
#include "paddle/fluid/platform/gpu_info.h"
#endif
DEFINE_int64(
gpu_allocator_retry_time, 0,
"The retry time (milliseconds) when allocator fails "
"to allocate memory. No retry if this value is not greater than 0");
namespace paddle {
namespace memory {
namespace allocation {
// TODO(yy): Dirty code here. This class should be configurable in runtime.
class CPUManagedAllocator : public Allocator {
public:
CPUManagedAllocator() : normal_allocator_(new CPUAllocator()) {}
bool IsAllocThreadSafe() const override { return true; }
protected:
Allocation* AllocateImpl(size_t size, Allocator::Attr attr) override {
return normal_allocator_->Allocate(size, attr).release();
}
private:
std::shared_ptr<Allocator> normal_allocator_;
};
// TODO(yy): Dirty code here. This class should be configurable in runtime.
class ChunkedAllocator : public Allocator {
public:
explicit ChunkedAllocator(std::unique_ptr<Allocator> system_allocator,
size_t max_chunk_size, size_t capacity = 1,
int64_t retry_time = -1)
: max_chunk_size_(max_chunk_size), retry_time_(retry_time) {
raw_allocator_ = std::move(system_allocator);
if (max_chunk_size_ == 0) {
default_allocator_ = raw_allocator_;
} else {
if (capacity == 1) {
VLOG(10) << "Create BestFitAllocator with chunk_size "
<< max_chunk_size_;
default_allocator_ = CreateAllocatorWithChunk();
} else {
VLOG(10) << "Create AutoIncrementAllocator with chunk_size "
<< max_chunk_size_ << " and capacity " << capacity;
default_allocator_ = std::make_shared<AutoIncrementAllocator>(
[this] { return std::move(CreateAllocatorWithChunk()); }, capacity);
}
}
auto* cond_allocator = new ConditionalAllocator();
cond_allocator
->AddAllocator(
[this](size_t size, Attr attr) { return size < max_chunk_size_; },
default_allocator_)
.AddAllocator(
[](size_t size, Attr attr) {
return true; // default case
},
raw_allocator_);
default_allocator_.reset(cond_allocator);
}
~ChunkedAllocator() override {
// Specify destruct order.
default_allocator_.reset();
chunks_.clear();
raw_allocator_.reset();
}
std::shared_ptr<Allocator> CreateAllocatorWithChunk() {
chunks_.emplace_back(raw_allocator_->Allocate(max_chunk_size_));
auto* allocation = chunks_.back().get();
std::unique_ptr<Allocator> allocator(new LockedAllocator(
std::unique_ptr<Allocator>(new BestFitAllocator(allocation))));
if (retry_time_ > 0) {
auto* retry_allocator =
new RetryAllocator(std::move(allocator), retry_time_);
allocator.reset(retry_allocator);
}
return std::make_shared<AlignedAllocator<64u>>(std::move(allocator));
}
bool IsAllocThreadSafe() const override { return true; }
protected:
Allocation* AllocateImpl(size_t size, Allocator::Attr attr) override {
return default_allocator_->Allocate(size, attr).release();
}
protected:
size_t max_chunk_size_;
int64_t retry_time_;
std::vector<AllocationPtr> chunks_;
std::shared_ptr<Allocator> raw_allocator_;
std::shared_ptr<Allocator> default_allocator_;
};
#ifdef PADDLE_WITH_CUDA
class CUDAChunkedAllocator : public ChunkedAllocator {
public:
explicit CUDAChunkedAllocator(int dev_id)
: ChunkedAllocator(std::unique_ptr<Allocator>(
new CUDAAllocator(platform::CUDAPlace(dev_id))),
GetMaxChunkSize(dev_id), GetCapcity(dev_id),
GetRetryTime()) {}
private:
static size_t GetMaxChunkSize(int dev_id) {
platform::CUDADeviceGuard guard(dev_id);
return platform::GpuMaxChunkSize();
}
static size_t GetCapcity(int dev_id) {
platform::CUDADeviceGuard guard(dev_id);
size_t available, total;
platform::GpuMemoryUsage(&available, &total);
size_t max_chunk_size = platform::GpuMaxChunkSize();
return max_chunk_size == 0 ? 0 : available / max_chunk_size;
}
static int64_t GetRetryTime() { return FLAGS_gpu_allocator_retry_time; }
};
class CUDAPinnedChunkedAllocator : public ChunkedAllocator {
public:
CUDAPinnedChunkedAllocator()
: ChunkedAllocator(std::unique_ptr<Allocator>(new CPUPinnedAllocator()),
platform::CUDAPinnedMaxChunkSize(), GetCapacity(),
-1) {} // never retry
private:
static size_t GetCapacity() {
size_t total = platform::CpuTotalPhysicalMemory();
size_t max_chunk_size = platform::CUDAPinnedMaxChunkSize();
return max_chunk_size == 0 ? 0 : total / max_chunk_size;
}
};
#endif
class AllocatorFacadePrivate {
public:
std::map<platform::Place, std::shared_ptr<Allocator>> allocators_;
~AllocatorFacadePrivate() = default;
AllocatorFacadePrivate() {
if (GetAllocatorStrategy() == AllocatorStrategy::kLegacy) {
InitLegacyAllocator();
} else {
InitCPUAllocator();
InitCUDAAllocator();
InitCUDAPinnedAllocator();
WrapZeroSizeAllocator();
}
}
private:
void InitLegacyAllocator() {
std::vector<platform::Place> places{platform::CPUPlace()};
#ifdef PADDLE_WITH_CUDA
for (int dev_id = 0; dev_id < platform::GetCUDADeviceCount(); ++dev_id) {
places.emplace_back(platform::CUDAPlace(dev_id));
}
places.emplace_back(platform::CUDAPinnedPlace());
#endif
for (auto& p : places) {
allocators_[p] = std::make_shared<LegacyAllocator>(p);
}
}
void InitCPUAllocator() {
allocators_[platform::CPUPlace()] = std::make_shared<CPUManagedAllocator>();
}
void InitCUDAAllocator() {
#ifdef PADDLE_WITH_CUDA
int device_count = platform::GetCUDADeviceCount();
for (int dev_id = 0; dev_id < device_count; ++dev_id) {
allocators_[platform::CUDAPlace(dev_id)] =
std::make_shared<CUDAChunkedAllocator>(dev_id);
}
#endif
}
void InitCUDAPinnedAllocator() {
#ifdef PADDLE_WITH_CUDA
allocators_[platform::CUDAPinnedPlace()] =
std::make_shared<CUDAPinnedChunkedAllocator>();
#endif
}
void WrapZeroSizeAllocator() {
for (auto& pair : allocators_) {
pair.second =
std::make_shared<ZeroSizeAllocator>(pair.second, pair.first);
}
}
};
// Pimpl. Make interface clean.
AllocatorFacade::AllocatorFacade() : m_(new AllocatorFacadePrivate()) {}
AllocatorFacade::~AllocatorFacade() { delete m_; }
AllocatorFacade& AllocatorFacade::Instance() {
static AllocatorFacade instance;
return instance;
}
std::shared_ptr<Allocation> AllocatorFacade::AllocShared(
const platform::Place& place, size_t size, Allocator::Attr attr) {
return std::shared_ptr<Allocation>(Alloc(place, size, attr).release(),
AllocationDeleter());
}
AllocationPtr AllocatorFacade::Alloc(const platform::Place& place, size_t size,
Allocator::Attr attr) {
auto it = m_->allocators_.find(place);
if (it == m_->allocators_.end()) {
throw BadAlloc(
string::Sprintf("No such allocator for the place, %s", place));
}
return m_->allocators_.at(place)->Allocate(size, attr);
}
} // namespace allocation
} // namespace memory
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <memory>
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/platform/place.h"
namespace paddle {
namespace memory {
namespace allocation {
// Allocator Facade is the interface exposed to other modules.
// All the configuration or dirty code under development should
// be hidden behind this facade.
//
// NOTE(yy): This class is a singleton class.
// NOTE(yy): To create a stable ABI and make compilation faster. Here we use
// a Pimpl trick;
class AllocatorFacadePrivate;
class AllocatorFacade {
public:
~AllocatorFacade();
AllocatorFacade(const AllocatorFacade& o) = delete;
const AllocatorFacade& operator=(const AllocatorFacade& o) = delete;
static AllocatorFacade& Instance();
// Allocate a shared allocation.
std::shared_ptr<Allocation> AllocShared(
const platform::Place& place, size_t size,
Allocator::Attr attr = Allocator::kDefault);
// Allocate a unique allocation.
AllocationPtr Alloc(const platform::Place& place, size_t size,
Allocator::Attr attr = Allocator::kDefault);
// TODO(yy): Allocate a Copy-On-Write allocation?
private:
AllocatorFacade();
AllocatorFacadePrivate* m_;
};
} // namespace allocation
} // namespace memory
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/memory/allocation/allocator_facade.h"
#include <gflags/gflags.h>
#include <gtest/gtest.h>
#ifdef PADDLE_WITH_CUDA
DECLARE_double(fraction_of_gpu_memory_to_use);
DECLARE_double(fraction_of_cuda_pinned_memory_to_use);
DECLARE_int64(gpu_allocator_retry_time);
#endif
namespace paddle {
namespace memory {
namespace allocation {
TEST(allocator, allocator) {
#ifdef PADDLE_WITH_CUDA
FLAGS_fraction_of_gpu_memory_to_use = 0.01;
FLAGS_gpu_allocator_retry_time = 500;
FLAGS_fraction_of_cuda_pinned_memory_to_use = 0.5;
#endif
auto &instance = AllocatorFacade::Instance();
platform::Place place;
size_t size = 1024;
{
place = platform::CPUPlace();
size = 1024;
auto cpu_allocation = instance.Alloc(place, size);
ASSERT_NE(cpu_allocation, nullptr);
ASSERT_NE(cpu_allocation->ptr(), nullptr);
ASSERT_EQ(cpu_allocation->place(), place);
ASSERT_EQ(cpu_allocation->size(), size);
}
#ifdef PADDLE_WITH_CUDA
{
place = platform::CUDAPlace(0);
size = 1024;
auto gpu_allocation = instance.Alloc(place, size);
ASSERT_NE(gpu_allocation, nullptr);
ASSERT_NE(gpu_allocation->ptr(), nullptr);
ASSERT_EQ(gpu_allocation->place(), place);
ASSERT_GE(gpu_allocation->size(), size);
}
{
// Allocate 2GB gpu memory
place = platform::CUDAPlace(0);
size = 2 * static_cast<size_t>(1 << 30);
auto gpu_allocation = instance.Alloc(place, size);
ASSERT_NE(gpu_allocation, nullptr);
ASSERT_NE(gpu_allocation->ptr(), nullptr);
ASSERT_EQ(gpu_allocation->place(), place);
ASSERT_GE(gpu_allocation->size(), size);
}
{
place = platform::CUDAPinnedPlace();
size = (1 << 20);
auto cuda_pinned_allocation =
instance.Alloc(platform::CUDAPinnedPlace(), 1 << 20);
ASSERT_NE(cuda_pinned_allocation, nullptr);
ASSERT_NE(cuda_pinned_allocation->ptr(), nullptr);
ASSERT_EQ(cuda_pinned_allocation->place(), place);
ASSERT_GE(cuda_pinned_allocation->size(), size);
}
#endif
}
} // namespace allocation
} // namespace memory
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
#include "gflags/gflags.h"
DEFINE_string(
allocator_strategy, "legacy",
"The allocation strategy. Legacy means the original allocator of Fluid."
"New means the experimental allocators of Fluid. in [legacy, new]");
namespace paddle {
namespace memory {
namespace allocation {
static AllocatorStrategy GetStrategyFromFlag() {
return FLAGS_allocator_strategy == "legacy"
? AllocatorStrategy::kLegacy
: AllocatorStrategy::kNaiveBestFit;
}
AllocatorStrategy GetAllocatorStrategy() {
static AllocatorStrategy strategy = GetStrategyFromFlag();
return strategy;
}
void UseAllocatorStrategyGFlag() {}
} // namespace allocation
} // namespace memory
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
namespace paddle {
namespace memory {
namespace allocation {
enum class AllocatorStrategy { kLegacy, kNaiveBestFit };
extern AllocatorStrategy GetAllocatorStrategy();
// Do nothing, just make sure linker do not prune this file.
extern void UseAllocatorStrategyGFlag();
} // namespace allocation
} // namespace memory
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/memory/allocation/auto_increment_allocator.h"
namespace paddle {
namespace memory {
namespace allocation {
bool AutoIncrementAllocator::IsAllocThreadSafe() const { return true; }
std::shared_ptr<Allocator> AutoIncrementAllocator::CreateNewAllocator() {
std::lock_guard<std::mutex> guard(mtx_);
auto old_size = allocator_num_.load();
PADDLE_ENFORCE_LT(old_size, underlying_allocators_.size(),
"Allocator number exceeds capacity %d",
underlying_allocators_.size());
underlying_allocators_[old_size] = creator_();
prev_success_allocator_ = old_size;
++allocator_num_;
PADDLE_ENFORCE(
underlying_allocators_[old_size]->IsAllocThreadSafe(),
"the underlying allocator must be thread safe. This is a program "
"bug.");
return underlying_allocators_[old_size];
}
Allocation *AutoIncrementAllocator::AllocateImpl(size_t size,
Allocator::Attr attr) {
auto cur = prev_success_allocator_.load();
size_t retry_count = allocator_num_.load();
size_t allocator_num = retry_count;
while (retry_count-- > 0) { // until there retry count is zero
try {
auto res = underlying_allocators_[cur]->Allocate(size, attr);
prev_success_allocator_ = cur;
return res.release();
} catch (BadAlloc &) {
if (++cur >= allocator_num) {
cur = 0;
}
} catch (...) {
// if there is another type of allocation, just rethrow it.
throw;
}
}
// This happens when the first allocator is exhausted and
// there are more than 1 allocation requests
// In this situation, the first allocation request would success
// and the second allocation request would fail if we do not use
// the newly created allocator by the first allocation request.
for (cur = allocator_num; cur < allocator_num_; ++cur) {
try {
auto ret = underlying_allocators_[cur]->Allocate(size, attr);
prev_success_allocator_ = cur;
return ret.release();
} catch (BadAlloc &) {
} catch (...) {
throw;
}
}
// No suitable allocator
return CreateNewAllocator()->Allocate(size, attr).release();
}
} // namespace allocation
} // namespace memory
} // namespace paddle
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册